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A bstract

We examine experimentally and theoretically the r.f. po-
tential within a capacitor, filled with a homogeneous plasma
in a magnetic field and driven at frequencies w g < w <.4mci.
We assume the ions to be cold, and the electrons to have a
Maxwellian velocity distribution along the magnetic field, but

zero radius of gyration. Thus ion acoustic waves are included.

The whole kz—spectrum of the exciter is needed to explain the

experimental results.




I. Plane wave dispersion relation in an infinite homogeneous

Elasma

In an actual laboratory plasma experiment at ion wave fre-
quencies the geometrical dimensions of the arrangement are often
much smaller than the free space wavelength of the applied signal.
Therefore we will use an electrostatic analysis to describe the

wave propagation in the plasma. The dispersion relation then ge-

nerally is, if we set ky = o,
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K is the dielectric tensor,
(OMURA, DERFLER (1967)), and the
contributions due to electrons
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is the polarization tensor,
subscripts e and i describe the
or ions. In (la) we have neglected
in an electrostatic calculation

identically. In a hot plasma we
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with /u‘ ﬁx R ; ;k:-7??zzzzz_ ., and the other symbols have

their usual meaning.

In this paper we assume not only m<ﬁ'mce but a magnetic

field strong enough that we may consider it as infinitely strong

with respect to the electrons, i.e W, =90 and /ue = 0. In this
case the electron polarization terms become:
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The ion polarization terms remain as given by (2) and (3). De-
pending on the ratio of the phase velocity parallel to the ma-
gnetic field u%@ﬁ and the thermal velocity of the electrons Qthe,

(assuming thhi‘éi 1Fthe)' we may use various approximations:
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Here we can use the asymtotic expansion for the plasma dis-
persion function. This applies essentially for the case kzleao,
i.e. strictly perpendicular propagation. The dispersion re-

lation in this case then is
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For cold ions this is:
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out of (5) for kz = o we get the ion-Bernstein wave dispersion

relation

by (4+Txxi) = O (5b)
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v thi<< /,&2 K thef ©OF §0e<< 1; but all ni>> 1. Here
we use the power series expansion for the plasma dispersion
function, which, taking only the first term, yields the

dispersion relation:
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For k, & ki we may neglect (1 + =, .)- k, and get

or
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Compared with (5b) we see that (7a) contains an additional

constant, 1. This has the effect that the solution kx = o of
eq. (5b) is now shifted to a solution kx'%=o, which is a for-
ward wave existing in a dense plasma in addition to the back-

ward Bernstein waves.
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Taking the limit of cold ions, 1.e. wxx/ © = ./
W= W ‘

we can extract this wave out of (7a) and get:
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which we recognize as an ion acoustic wave propagating almost
perpendicular to the magnetic field. It is the wave which in
Stix’s book,(STIX (19629, is called the electrostatic ion
cyclotron wave. In order to get eq.(7b) we made the assumptions
%’%«’U;&e and also ki £ ki. For larger k,6 the second con-
dition does not hold. Then the term ki(l + ﬂzzi) in eq.(7) is

no longer negligible. The dispersion equation then becomes
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© is the angle between 4 and B,.

A dispersion diagram corresponding to eq. (7c) is shown in

fig.1l. Note, that in taking By —> 0, the lower hvybrid fre-

2 2 2 . .
quency becomes Wy T mpi + Wi o and fig. 1 applies only as
long as this relation holds, i.e. for wpiz/mci2 ;é 200. Care

must also be taken if w approaches w since at larger k-

LH'
values we may arrive at the point where ki ® Rfl= /ui is no

longer small enough that ion temperature effects are negligible.

Dispersion measurements of the waves shown in fig. 1 have been

made by HIROSE, ALEXEFF, JONES (1970).

Equation (7a), compared to (7b), also includes ion tem-

perature effects and has been evaluated by AULT, IKEZI (1970)

and also by SCHMITT (1972, 1973). Their dispersion characteristics

show, how the ion Bernstein waves, eq.(5c), join onto the per-
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pendicular ion acoustic waves eq.(7b) and a gap appears in the
frequency range below a harmonic nw_; - Such a dispersion dia-
gram is shown in fig.2. Here we see that the coincidence of
the forward wave branch of eq.(7a) and the perpendicular ion
acoustic waves, eq.(7b) is very good for w2<£ wiH and for
small values of Ti/Te' With increasing Ti/Te the gap width
increases and the features of the perpendicular ion acoustic
wave disappear. This is due to the’ fact that/ui increases and

ion temperature effects become serious.

w
In the range 1f£hi K ./ktﬁf4f£he we cannot use any approximation

for Z’(% oe) and we have to use the full dispersion relation
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II. Capacitor experiment

With this experiment we want to look for a manifestation
of the waves described above. The plasma used is produced in
helium at about 3 r10-3 Torr by a beam of electrons, U = 60 V,
which penetrate a % 90 % transparent anode grid. The electron
current was controlled with a grid between the cathode and the
anode. After a length of about 70 cm the plasma, diameter = 5 c¢cm,
was terminated by a collector plate which had the same potential
as the anode grid. Superimposed was a magnetic field BO ~ 500
- 700 Gauss. The density has been determined by measuring the
dispersion characteristics of the electron plasma waves joining
on to the Trivelpiece-Gould mode,(TRIVELPIECE, GOULD (1959Ll

(f = 80 - 200 MHz). For a cathode current of i, = 50 mA we got

i

n (4.5 p 1) % 108 cm_3. The electron temperature was de-

-
termined with ion acoustic waves (f = 8o + 150 kHz) propagating

parallel to the magnetic field and was found to be Te ~ 3 eV.

The waves are excited by driving an r.f. current through
a plasma filled capacitor formed by two shells on opposite
sides of the plasma column, fig. 3. For the r.f. measurements
(400 kHz - looo kHz) we used a polar interferometer,(O'BRIEN
(19679, to display the measured r.f. potential as @(x) = ¢o(x\-
ei(p(x) in the complex plane. A block diagram of this arrange-

ment is shown in fig. 4.

Observing the signal sent through the delav line rather
than through the plasma we can determine the sense of rotation

of the vector in the complex plane indicating a forward wave.



Increasing the signal path length by increasing the delay is
equivalent to moving the detector in the direction of the phase
velocity of the forward wave on the delay line. Result: this

sense of rotation indicates a forward wave: (r]'.

Experimentally obtained records of the r.f. potential in
the plasma are shown in fig. 5. How can we interprete such a
trace ? 1. the presence of loops, i.e. of a phase variation
(P(x), tells us that we have waves in the plasma. 2.the centers
of these loops don’t coincide with one another and also not with
the origin of the complex plane; therefor the wave signal is
superimposed on some other signal. 3. moving along the trace,
i.e. when the probe moves from one capacitor plate through the
plasma to the other plate, we see that the sense of rotation
with which these loops are described changes at the point where
the probe is in the center of the plasma. This tells us that we
have radially propagating waves. 4. the sense of rotation itself
tells us that the phase velocity of these waves is directed from

the capacitor plates towards the center of the plasma column.

Near the center of the plasma, where the sense of rotation
changes, the trace is a piece of a straight line going roughly
through the origin and thus represents nearly only amplitude
variation but not a phase variation, i.e. the features of a
standing wave pattern. We consider now the angle of this piece
of straight line in the complex plane. In fig. 5 we see how this
angle changes clockwise with frequency. There is, in a wide para-
meter range, nearly no such change observeable when the density

or the magnetic field are varied. The wavelength of the waves



we see can be roughly determined by measuring the distance which
the probe moves in describing one full loop and lies between 1

and 3 cm.

All the above observations lead us to the assumption that
the waves observed are rather the perpendicular ion acoustic

waves, eq.(8), and not the backward ion Bernstein waves.

With this in mind we are tempted to describe what we see as
a superposition of an ion acoustic wave potential superimposed
on a cold plasma potential (which has an infinite wavelength),
the wave potential being due to two damped waves travelling from
the two plates into the plasma and forming the standing wave
pattern in its center, fig. 6. If this is true, the phase angle

of the standing wave part in the center of the plasma is
Ko
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or 90(x = B8] = kxxo' if we assume a homogeneous plasma. This
assumption should be well satisfied in our plasma, since according

to eq.(7b,c) for our parameters the wavenumber is nearly independent
of the density (mpiz/m2 2 1o0).

Figure 7 shows a measurement of qp(x = o) as a function of
frequency, and for two different discharge currents. The solid
lines are computed phases according to eq. (9), assuming the waves
are perpendicular ion acoustic waves satisfying eq.(?b)} the
electron temperature is taken to be 3 eV according to the measured

value. The three lines are for different effective plasma radii
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and the best agreement in the slope is obtained for X, = 2 cm,
which is a reasonable value when we consider the experimental
density profile in fig. 8. However, although the slope agrees,
there is still a considerable, rather constant phase difference
between measured and the thus calculated phases 90 (x = o) which
cannot be explained by merely assuming that the wave propagates
oblique at an angle © < 90° rather than perpendicular so that

k, = k - sine. This means, that our explanation of the situation
at hand is too crude, and it will be reexamined in the next
section. In addition we want to remark that we did not observe
any effects due to the ion cyclotron harmonics. This is reasonable
since in this kind of plasma we have Ti<§ T and the gap which
appears in the dispersion diagram below the harmonics is very
narrow. Also we did not observe any resonances of the type of
the Buchsbaum-Hasegawa resonances,(BUCHSBAUM, HASEGAWA (1964&)
although we carefully looked for them by monitoring the r.f.-

current flowing into the primary coil of the balanced exciter.

III. Grid capacitor at ion wave frequencies

To get an idea of what is going on we look at a grid ca-
pacitor, immersed in an infinite homogeneous plasma with cold
ions (/ui = o) and an infinite magnetic field for the electrons

(w =9 ,/ue = o). However, the electrons can move freely along

ce
B with their thermal velocity. The capacitor treated here consists
of a pair of grids, which carry an oscillating surface charge &%,

producing a space charge, fig. 9
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It is assumed to be infinitely long in y-direction, so that
aéﬁECj. Then, from Poisson’s equation we may derive a differential

equation for the potential which after a Fourier transformation

in z-direction reads:
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This we recognize as the superposition of two waves travelling

from the grids at x = = X, towards oneanother.

The potential in real space is obtained by an inverse Fourier
transform:
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Here we see that in order to describe the r.f. potential
correctly we have to integrate over all the obliquely propagating
waves, which are excited by the grids with an amplitude according
to the Fourier transform of their charge, G’(kz). Figure 1o shows
this excitation spectrum. Also indicated are the regions where
we may use the various approximations to the dispersion relation
as discussed in the beginning. Now we regognize that the crude
model in Chapter II of a cold plasma potential and a superimposed
perpendicular ion acoustic wave takes into account only two very
limited regions, a and ca, of the excitation spectrum, while the
major regions are neglected. Especially the region b gives a
large complex contribution to the integral in eq. (13) and thus
will have a considerable influence on the phase of ¢ (x, z)

around X = 0.

In fig. 11 we see a direct evaluation of eq. (13) by means
of a fast Fourier transform program, rigorously using eq. (8) as
dispersion relation over the whole spectral range. The coordinates
x and z are normalized to the Debey length, s = x/kD and t =
z/kD. For the calculation we took the dimensions of the capacitor
grids as s_ = xo/lD = 40, and t_ = zo/kD = 8o, in agreement with
the experiment. There we had the probe at z = o. The computed
traces in fig. 11 for t = o, 17.9, 35.9, 53.8, however, don’t
look very similar to the measured ones. We even get opposite
sense of rotation of the wave loops at t = 35.9 and 53.8, which
seems very strange since we took T, =0 in the calculation and
thus cannot get effects due to backward ion Bernstein waves.
However, a pretty trace like those we measured is the one near

the end of the capacitor at t = 71.8. How can we explain that ?
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In fig. 11 we can see that the phase of @(s, t) around s = o
depends strongly on the position t along the capacitor. Computing
@(t) for a constant value of s from eq. (13), we see that we have
not only perpendicularly propagating waves, but also parallel
propagation with a wavelengths of x/ley 15, corresponding to

the wavelength of parallel propagating ion acoustic waves. These
require an electric field along the z-axis. In the experiment
this field can, however, not develop along the probe. Therefore
we don’t see any wave coming from the side along the probe and
thus it appears as if the probe were at the end of the capacitor

br as if the capacitor terminated at x =« o).

Figure 12 shows calculated potentials for various frequencies
and t = 71.8, and we can see how here too the phase at x = o
changes with frequency. We measure this phase aﬁgle as we do in
the experiment and compare it with the phase that would result if
the field were due to a superposition of a cold plasma field and
perpendicularly propagating ion acoustic waves, which is q>(x = 0)
= kx X with kx out of eq.(7b). This is seen on fig. 13 and we
see that here too the actual phases are displaced by the same

order of magnitude as has been experimentally observed in fig. 7.

IV. Conclusion

This experiment shows that in an ion wave experiment we really
have to consider the whole kz-spectrum which is excited. The
picture of a cold plasma field and one superimposed wave field

is certainly wrong in most cases. Second, we need to think about
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the possibility of the probe shorting out electric fields and

destroying the wave patterns, when evaluating probe measurements

of electrostatic waves.
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Fig.l Ion acoustic wave dispersion relation,

eqg. (7c) (not to scale)
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Fig.8 Experimental density profile
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Fig.lo Excitation spectrum G (kgp)
in region a we may use eq.(5a), yielding the cold plasma
potential,
in region b we may use eq.(8),
in region ¢ we may use eq.(7c), oblique ion acoustic waves
in region ca we may use eq.(7b), perpendicular ion acoustic
waves

in region cb we get imaginary k i.e. a high damping of

x!
the integrand in eq. (13)
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