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Abstract

The intensity and phase distributions near the geo-
metrical focus of an error-free pencil of monochromatic
light bounded by an annular aperture are obtained. The
numerical results for a single point scatterer (point
source) and for a cylindrical, homogeneous collection of
stationary scatterers are discussed. If the central ob-
struction is kept small, an increase in the size of the
scattering volume results in an increase in the size of
the central image, across which the intensity and the phase
are fairly constant. For medium and large central ob-
structions the numerical results indicate a very small or
no change in the central image size if the scattering
volume is increased. This might cause rather severe
alignment restrictions if one wanted to use
extreme forward laser scattering combined with wave
mixing to study tokamak-like plasmas.
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I Introduction

We are investigating the problem of three-dimensional
diffraction of a point or finite size source in an error-
free axially symmetric optical system containing a ring-
shaped aperture. The intensity and phase information are
equally stressed in these studies. These investigations were
' prompted by a proposall to study tokamak or stellarator-
like plasma by utilizing an extreme forward laser scattering
method in which the scattered light is either homodyned or
heterodyned and the IF signal is then spectrum-analyzed to
extract the information on the plasma. A similar problem
might occur in laser communication and the results of this

paper can be pertinent there, too.

2 3

(1885) and Struve~ (1886) were first to find

the intensity distribution in an aberration-free image of

Lommel

a point source in a circular, axially symmetric optical
system. For this purpose Lommel introduced new kind of
functions, which are called Lommel functions after him.
Utilizing Lommel-Struve theory, Zernike and Nijboer4 (1949)
were first to publish the intensity distribution near the
> (1952) applied this
theory to telescopic star images by studying only the in-

geometrical focus. Linfoot and Wolf

tensity distribution and the circular aperture. Later (1952)
they obtained numerical results of the intensity distribution
for an annular aperture6 - the problem that was earlier in-
vestigated by Steward7 (1925) . In a more recent paper Linfoot
and Wolf8 (1956) evaluated the phase distribution near the
focus in an aberration-free diffraction image. This was

done for a circular aperture and a point source only.

We are extending these results in the case of an annular
aperture by expressing the solutions in terms of three in-
stead of - as done earlier6 - two regions in order to obtain
better convergence of the solutions. We also study the phase
distribution for the case of a point source and annular

aperture, which was not investigated earlier.




Finally, on the basis of a particular model we
study the influence of an increased source size on the in-
tensity and phase distributions near the focus.

In Sec., II the problem is defined. In Sec. III A and
B the theoretical preliminaries for the point source case
are given and some special cases are discussed. Sec. III C
is devoted to presentation of numerical results for the
point source case. In Sec. IV A the model and the computation
method for the finite source case are discussed. Sec., IV B
presents the results of the numerical calculation of the
finite source case. Finally in Sec. V the results of these
calculations are summarized and the conclusions from these
investigations are drawn.

II. :‘Statement of Problem

This work was motivated by Gondhalekar and Keilmannl,
who proposed an extreme forward scattering experiment
to measure the ion temperature. The same method
can be utilized to study the spectrum of the waves
in the plasma. A very simplified diagram of their
method is shown in Fig. 1. A pulsed COz-laser beam is
scattered from the plasma and the scattered radiation is
collected by a lens and beam obstruction configuration
such that the scattering angle is of the order of 10 mrad
and the hollow collection cone has about 2 mrad. This
scattered radiation is then focused on a mixer. The false
light coming through the optical system can be used as a
local oscillator. The mixer is a very fast cryogenic detector
capable of several ns response time. The mixing is done



JuswTIadxa HUTISIJEDS pPILMIOI SWOIIX2 3yl I0J dn-39s Teorado a3yl jo wexberp orjewsayds T °btd

43XIW A

NES A0

w\.\\ L LL)
1\\- + &

‘\‘

H3ZAIVNY  H31dINdWY
WNHL103dS 31

LS NN -‘ NN NN

-




in either the homodyne or heterodyne mode of operation. The
mixed signal is then amplified and the spectrum analyzed.

To be able to predictnéixing efficiency,which is im-
portant in this experiment, one has to know the intensity

and phase distributionsof the scattered and the local oscillator
wavesacross the surface of the mixer. In case of ordinary
detection, only the intensity distribution across the

detector surface is important and the phase is irrelevant.

on the other hand, in the case of mixing both the intensity

and phase distributionsof the scattered and local oscillator
waves across the mixer surface are important. To obtain
efficient mixinq,the most essential condition is that the

phase difference between the local oscillator and scattered
waves be constant across the surface of the mixer. The
difference signal - the signal that is amplified and

spectrum-analyzed - is given at some point'?'on the mixer by

; e -
U ) ~ E(F)E(F)cos[Awt + -],
s L0 J S L0
where Eig79 and f;fﬁ? are the fields of the local oscillator
and scattered wavesat the point T , Qo= 4),-4)‘.0 is
the frequency difference between the scattered wave and the
. o5y -
local oscillator frequency, and ﬂ(r) and ﬁo(") are the
phases of these two waves at the point r on the mixer. The
total signal leaving the mixer is obtained by integrating
1%3(;9 over the mixer surface

l‘js = fu‘s(;") dus)
A

where A is the mixer area and dS is the surface element.
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To obtain for some constantAa maximum signal US ¢ Ug
should not oscillate as a function of ?’, which means that
the difference ﬁ(P)-ﬁp‘P) must stay constant on the mixer
surface. This condition on the phase necessitates very
stringent requirements on the alignment of the scattered
and local oscillator waves. These two waves have to be
aligned very well radially and their axes have to coincide

to within a small allowed angular error.

First, the simplest case of a point source - or a very
small scattering volume -~ is discussed. The information
thus obtained is very valuable in understanding the finite
scattering volume case., The finite scattering volume case
is investigated under a very special scattering condition
that, nevertheless, allows us to make some conclusions re-
garding the mixing efficiency and mixing optimization.

It should be added that these investigations can be
easily adapted for a case of laser communication, where
the laser arrier beam has also to be mixed with a local
oscillator beam in order to extract the information carried

by the carrier beam.

III. Diffraction of a Point Source on an Annular Aperture

A) Theoretical Preliminaries

The geometry of the problem is shown in Fig. 2. A point
source at the position 07 is focused by a lens into point
O. The lens is represented as two lenses in series: a
collimating lens L, and a focusing lens L of diameter 2a
and focal length f. The lens is covered by a concentric
circular disc of radius b defining thereby an annular aperture
of an outer radius a and inner radius b. The ratio of these
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two radii defines the obstruction coefficient &€ = b/a.
Two conical sets of extreme rays passing the tips of the
obstruction disc and the lens will separate the half-space
near the focus into three regions:I, II and III as indicated
in Fig. 2. I and III are theshadow regions and II is
the illuminated region.
the

UsingAHuygens-FresneI principngthe complex displace-

ment at the observation point P(x,y,2z) near the focus can

be written as

(1)

where A/f is the amplitude of the wave in the annular aperture,

dS is the surface element on the annular aperture, s is the
distance between the surface element and the point P,and
k = ‘2-:-'?./)» is the wave number. If, additionally, £5> a>> X
and the point P is very near to the focus, i.e. only few

fringes away, the complex displacement becomes

U(P)= - Eme(2T Acrplil il L= S} o

where C(u,v) and S(u,v) are integrals which for a point source

have the form:

C:;(u,v-) = 2 J;(V.SD) oS (2’- u_g")fglﬂ; (3)

Se(w,v)= 2| J (ve)sin (£ ug’)gde (4)

(/]




and u and v are normalized coordinates defined as

w = .gf—(%)zz (5)
v o= 'Z'SLJE'(%) r, (6)

z : "
r = x2 + y2 and J, is the Bessel function of the first kind.

The integrals (3) and (4) can be evaluated in terms of
Lommel functions,which Lommel introduced for this purpose

— 3 n+2m
U, (wp) =) (07 (% {d’{)‘v‘) (7)
=0

and °

n+2m

Viww) =) ()(Z) T, 07, ©
=0

where Jn+2m are again Bessel functions of the first kind.

These functions converge differently in each one of the
three regions. In the region I, where v > u, Un functions
converge faster than L functions and conversely in the region
III, where £w>7?% , the functions Vn will converge faster,
In the region II,on the other hand,a proper combination of
v, and V functions will converge in a fastest manner.




The expressions for the Cp and Sp for the three regions

can be shown to have the following forms:

(a) Region I: 1u/vl =1

co.s b‘ln u
&3 (uv)= :L U (w,v) + 7 U, v) -
2. 2 (9)
z CDSLU-E?- 2 sin>us 2
—6{—-—-‘?‘ u(‘u.i,t}'&)-(- ES u(u_s_)vg)}
1 ue? .."_u_ z 2
2 2.

fu I (10)

—a{””“"‘“‘ U, (u ve)— S22 Y (oo}

1 ue? 1ue*

(b) Region II: 1 & Iu/vl < 1/&8

o DT R sinsu
Coleyv) = Z:sin o + —2— V (up) — —2=— i 222V (u,0) —
2 Z
(11)
—& {Cﬂ;zut u ('LLE 'v'f-)'f‘ __‘,_ui. u (U.E. v_@}
gr

3 o vr  cosiu sinlu
Sp ()= - 05— o V (w,7) ——-’-‘-—%u V, (u,v)

(12)

E{slh ?_'u.i. u (ﬂi- vs_)_coa 2_112. u_ [‘ui. v_g)}

1
21{2. —-‘t.l.i'.
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(c) Region III: lu/vl 2. 1/&

5 1
Sin z u cosz U
L Lu
2 (13)

cos U oim U
Solu, )=~ 2=V, (u,») - '1 =2 4
z z W (14)

o 4, St

= WE UL

—+ &"{CDS zUe %(ua';o-a) L ) — V(us o—z)} .
$T-us® Tus® !

Knowing the C and S functions for either a point or a
finite size source,one can obtain the normalized intensity
distribution and the phase distribution from

Ttuw)=, 2V e LWO-WD=L [Clupd+ Stupdfas

and

P _.6 2 -1 S(&,‘U‘)
‘ﬁ(u,b-) =+ (a_)u — tan “"_C-Cu,#) . (16)

The intensity is normalized by assuming that the total
power incident on the aperture is:'constant of & . This means
that the power density is not constant but is proportional
to 1/(1-&'.2) . The intensity and phase distributions are axially
symmetric around ‘the optical axis and mirror symmetric around
the focal plane u = 0,
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B) Special Cases

It is of interest to observe the behavior of C and S
functions in the focal plane and along the optical axis for
varioks obstruction coefficients £ . The behavior of these
special case functions will give us a clue about the effect
of a finite source on the intensity and phase distributions.

(a) Distribution in the Focal Plane

In this caseyu = O and one can show that the expressions
(9) to (14) reduce to

Cp(O,»v-) == % [J;(u_) - & J;(z*zr)J (17)

and

'SP(O)‘!") = 0,

A set of CP functions for various & is shown in Fig. 3.
One can observe that by increasing the obstruction coefficient
the first zero of the Cp function moves toward smaller v. The
same can be concluded for higher order zeros,only the motion
of the zero as & increases oscillates slightly before it
moves toward smaller v.

Indeed,one can show that by increasing & from O to 1
: a- ) .
the first zero moves fromdcertaln maximum value of v to a

certain minimum value. These values of v are just solutions
of a transcendental equation

J(v) — & J,(-‘-'-‘”)" O, (18)

where & 1is a parameter,
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Fig. 3 Variation of the displacement function oHu = nwﬁo.<v in the focal plane for various
obstruction coefficients &£.
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For £ = O the first zero is just the root of the Bessel
function Jq(v) = O, i.e. v = 3.83. If £ is almost equal
to 1, one can put & =1 = J‘ , where cP<.< 1 and therex-
pand Jl(s v) in terms of the small parameter d and higher
order Bessel functions. The relation (18) will then reduce
to Jo(v) = 0, which then means that the roots of (18) for the
extreme case of & = 1 (full blocking of the aperture) are
just the roots of Jo(v) function. The first root of the Jo(v)
is v, = 2.4. Obviously, the first minima of the <:p function and,
therefore, intensity lie for various obstruction coefficients
£ Dbetween vy = 3.83 and Vg = 2.4 values,

(b) Distribution along the Axis

Plugging v = O into expressions (9) to (14), one obtains
C, (w, 0) = -‘?—ain_[.l. u.({-—a'j]cos[l (1+5.")U'] (19)
P 4 T w 4q q
and

Sp(u., 0) _—_%sin [é—u(*l—z'j]sin [—%u (4+z")] . (20

Zeros of these functions are given by u,= 4‘}.”:2
and 4, - 2MIT for the Sp function =¥
£7 q-e2
T+ 2% 71—z
+

Cp function, where m = O, 1; L2 eese INCreasing £, the
ul-zeros move toward smaller u,".s and the uz—zeros toward

larger z’s . This can be seen in Fig., 4, where these two
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Fig. 4 Variation of displacement functions Cp = Cp(u,o) and
sp(u,o) along the optical axis for various obstruction

coefficients ¢,
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functions are depicted with &£ as a parameter. The intensity
will fall to zero when a Cp—zero coincides with an S_-zero.
The normalized intensity distribution is given with a known

formula:

[(u;0) =(1=£") Jd 1903

= sin[%u(f—i‘)] 2
A et
&u.(‘l £)

It will be shown later that the isophotes (surfaces of
constant intensity) are of ellipsoidal form very near the
focus and of a general toroidal form for some distance away
from the focus. The optical axis is the axis of symmetry for
these snur:face‘gsb:‘Z Increasing £, these surfaces are slightly
compressed in,radial direction but very strongly elongated

A
= . . . i
in,axial direction. The elongation factor on the optical

ax?s is found from (21) to be 1/(1-&2). From the earlier
discussion it follows that the maximum compression ratio for
the Airy disc is equal to 1.6, which is the ratio of the first
root for Ji(v) - corresponding to, & = O case - and the first
root of Jo(v) - corresponding toffﬁa-#-l case, The compression
is therefore a very weak function of &£ . The elongation is
much more pronounced. It should be added that compression
means better resolution and elongation represents an

increase in optical depth.
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C) Numerical Results for the Point Source

The intensity and phase distributions were
numerically evaluated on a computer for various obstruction
coefficients & utilizing the relations (9) to (14) for C
and SP for the three regions and the relations (15) and (16)
for the intensity and phase. The results of these calculations
are shown in Figs, 5 to 12 . In the upper part of Fig. 5
the surfaces of constant intensity - the isophotes - are
shown for an obstruction coefficient very close to zero.
The surfaces of constant phase are shown beneath and in the
vicinity of two characteristic planes normal to the optical
axis. Very near the focal plane - u = O - these surfaces are
plane and experience a sudden jump of JC at the radial
distances v at which the intensity becomes zero. Another
characteristic plane is the plane at which the intensity in
the focus decreases by 20 % on the optical axis, This
position is important because it defines the length of the
object - that can be successfully imaged. For a very small &
it occurs around the plane um'—" 3 . Note that the constant
phase surfaces are much smoother now but still retain a
faster phase change around the values of v at which the in-
tensity goes to zero. This phase behavior is an important item of
information for the mixing if the signal comes from an
elongated object and the local oscillator is not specified.
This point will be more thoroughly discussed in the section
on the finite volume sources.,

The effect of increasing & is shown in subsequent
figures. For obstruction ratios £ = 0.25, 0.6 and 0.95 the
phase behavior is not shown, but for the cases & = 0.4 and
0.817 it is again shown,The intensity distributions show in-
deed the trend that by increasing & the isophotes are
slightly compressed iﬁf?%dial direction but are very much
elongated .inAaxial direction. Note also that the complexity
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Fig. 5 Diffraction near,focus of an aberration-free pencil for
an obstruction coefficient & = 0.0l. (a) Isophotes (lines of
equal intensity) I(u,v) = Const are shown. The dotted lines re-
present the boundaries of the hollow geometrical cone of rays.
The diagram possesses axial symmetry around the u-axis and
mirror s etry around the focal plane u = 0. (b) Co-phasal sur-
faces (u,v) = Const in the immediate neighborhood of the focal
plane u = O and around u = 3.0 for f/a = 15. The jumps in phase
occur in the Airy dark rings.
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Fig. 7 Diffraction near,focus of an aberration-free pencil for

an obstruction coefficient & = 0.4. (a) Isophotes. (b) Co-phasal
surfaces in the immediate neighborhood of the focal plane u = 0
and around u = 4,0 for f/a = 15.
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Fig., 9 Diffraction nearj%%cus of an aberration-free pencil for
an obstruction coefficient & = 0.817 (a) Isophotes. (b) Co-
phasal surfaces in the immediate neighborhood of the focal plane
u =0 and around u = 9.4 for f/a = 15.
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of the intensity distribution is decreased by increasing £ .
The phase distribution does not change very much with in=
creased .., only the co-phasal surfaces are compressed 1in the
radial direction with the same ratio as the isophotes. One
can also observe that the phase jump at u n— remains
steeper for higher values of & . This less smooth behavior
of the phase is advantageous for mixing. By increasing further
the value of u an anomaly 1in phase distribution can be ob-
served. This occurs at the value of u at which the intensity
on the optical axis becomes equal to zero. This case is shown
in Fig. 10 for & = 0.817. All these evaluations of phase
were obtained for the same f/a ratio.

Another important item of information is the relative
distribution of the power into various Airy rings at the
focal plane as a function of & : PN(,Z.) =-..S Lathrd
Sy is the area of the Nth ring over which the integration of the
intensity has to be performed. The result of this computation
is shown in Fig. 12. For small £ most of the power resides
in the Airy disc,with a small percentage of the power in
the first and second Airy rings. Increasing &, the power
into the Airy disc decreases monotonically. The power into
the second and higher rings does not change monotonically:
the higher order rings show at least two maxima. As &
approaches 1 the relative power in all the rings approaches
the same value, that is, about 25 % higher than the power in
the Airy disc. As an example, for £ = 0.817, one can observe
that about 18 % of the power is contained in the Airy disc,
22 % in the first, 20 % in the second, 17 % in the third,

13 % in the fourth, 9 % in the fifth, etc. ring. It follows
that an increase in & is detrimental to power collecting
efficiency if the power is collected by a detector or mixer
that covers only the Airy disc.
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IV. Finite Size Source
A) Model and Method

To investigate the effect on the intensity and phase
distributionsneagf%ocus if the source is finite, a scattering
model has to be assumed. We consider here a cylindrical model
whose axis coincides with the axis of the optical system.

From the cylindrical model it is easy to deduce models for a

filamentary, circular or disc type source.

Oour model is highly idealized: The scatterers are assumed
to be not randamly but continuously and homogeneously
distributed. They are stationary so that the scattered light
does not experience the Doppler shift in frequency. We also
assume full correlation across the beam and also that the

power across the beam is constant.

This model is, of course, very different from the actual
plasma scattering situation but it will, nevertheless, give
us an idea how the finite source volume influences the

intensity and phase distributions around the focal plane.

The intensity and phase distributions for the finite
sources of filamentary, circular, disc and cylindrical form
can casily be found by integrating the expressions for C
and Sp,i.e. point source expressions (9) to (14) . We do not
integrate in the object space but in the image space and
therefore use normalized variables u and v. The integration
limits - the length of the filament or cylinder and the
radius of the circle, disc or cylinder - should stay small
in order that the conditions for the applied approximation
method remain valid. Since relations are valid only over

several fringes of lateral and longitudinal displacements,



it follows that the size of the source shculd not violate
these conditions. These conditions automatically insure that
another condition is satisfied: that the lateral and longitudi-

nal magnification is constant over the object dimensions.
The relations for various sources are now given:

(a) Axial Filament

If the length of the filament is 2uo, then the inte-
grated values for C and S at the position P (u,v) will be

given by
h+,
CF(‘LL,U') = "—;u"‘ CP(H.:'D') J—LL’ (22)
°
WU,
W+ W,
1 / /
) e (23)
5{__(‘&., ) 2 Sp(u_)'tr)af.u. )
W~

where Cp and SP are gﬁ}nt source functions given by expressions
(9) to (14) and u' igAgistance between the infinitesimal ele-
ment du' on the filament image and the projection of P (u,v)
ogfﬁiaxis. The expressions are normalized with 2uo to obtain
values per unit length. The variable v is kept constant.

(b) Axially Symmetric Circular Filament

Integration along the circular filament line of radius Y

and normalization per unit length result in




5 Of =

Jo

Ck(u/v) = —"f—fah,oo Cp(u,}fu—’) (24)

Je

0

.

1 /

\Sk(u.,v) — ?Jdﬁ Sp(u,v*)) (25)
0

where

v = T4 % 27)-2{;(:0.5%

N n
is the distance between the source element Vod?% on the
circular filament image v = V_ and the observation point
P (u,v), and Vb is the angular coordinate of this element.

The integration is performed in the u = const plane.

(c) Axially Symmetric Thin Disc Source

Consider a disc source image of radius Ve The inte-
gration is performed as indicated in Fig. 1%. Depending on
whegi:r the size of the disc image v is smaller or larger
thanAradial distance v of the observation point P (u,v) from

the axis we will have two different expressions for G, and Sp e

g vZ_vo
Point P (u,v) is outside the image disc. Then

UV,
2 .12 (26)
7'
Co(ﬂ-,?f = __8__2 C (w,v')arc co.s{v'* ,g“-]'v-’dv—'
T Y P 29
U=

©
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L0 2 PP

So(u,v) = e Sp(u,?r) arc cos po—

=1,

2 ]2 . 2
I ] /
v v 'U'la[flr,
(27)

where v' is again the distance from the surface element dS' =
2v'¥7dv' to the observation point P (u,v). The angle P is
replaced by

/
i -t ]

— akrc CcoS
4 [ 2 v’

The integration is again performed in the u = const plane.

2, v<& vo

Point P (u,v) is inside the image disc. In this case
the integration is performed in two steps. For v' < T
the integration is performed over a full circle and the
surface element is dS' = 2J)tv'dv'. For v' > Vige =4V the inte-
gration has to be performed only over a part of the circle
as in the previous case 1 and therefore dSs' = 2v'c.P av'.
Two contributions are added and we obtain

v -v
. I )
= (u‘rr) r—T-’-r Cp(u,'u‘)v-dv- —+
(28)
0
Vo + V- s 5
v A /
-+ 2 A (‘t:.,‘v")a.r'c. cos * rdv
ol Al L 2’

V-



w BY) w

V-1
.x ’
SD(u,v-):: Z -/LJ.S (w,v)vdv" +
zyt ) L
0
VotV
R (29)
VU U, ly !
+ Z | S (w,v")arc cos -2\ v,
T Yr 3 2vvr
V-V
The expressions are again normalized - now to‘JEvol’i.e.

per unit area.

(d) Axially Symmetric Cylinder Source:

The length of the source image is assumed to be 2uo and
its radius is Ve We again have as in the disc case two regions:
VEv. and v < Vg The integration is performed by assuming
a thin disc source of thickness du'. The total contribution
of all the thin disc sources is then given by

W+,

Cifu) werides f C (o) ot

Zu,

(30)

U-u,
u+te,

S (u,v) { f‘%(u’,v-)du'. S

2u,
u-u,

CD and SD are corresponding functions given by relations

Another way would be first to obtain the axial filament
solution from (22) and (23) and then plug in these values
into (26) to (29) instead of CP and SP to obtain the cylinder
source distributions. This is actually the method that was
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used to obtain the numerical results,

The intensity and phase distributions for each one of
these cases is obtained simply by inserting the corresponding
C's and S's into expressions (15) and (16).

B) Results of Computation

All four kinds of sources were numerically investigated
but results will be presented only for the cylindrical case.
The obstruction coefficient g , the source image length 2uo
and radius v, - were varied to study their influence on
the intensity and phase distributions, The F-number of the
lens was kept constant, f£/a = 15. Three groups of results are
described in which g was kept constant - & = 0.0l1, 0.4 and
0.817 - and u, and v, were varied.

If the size of the source is increased radially and/or
axially, one should expect a flattening of the intensity
distribution and an increase in the size of the Airy disc
to occur. The Airy disc becomes the image of the source and
should have the size of the source image. The co-phasal
surfaces across the image should straighten out. This, on the
other hand,would mean that the size of the mixer can be in-
creased to the size of the image, thereby increasing the
collected power and the signal without impairing the mixing
efficiency, whichdepends on the phase distributions of the

scattered and local oscillator waves across the mixer.
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If the aperture blocking is kept very small, this is
exactly what is observed. The computational results for
£ = 0,01 are shown in Figs. 14 to 21 . Comparing iso-
phote figures 14 to 17 with the point source case of the
same & in Fig. 5, one can observe flattening of the iso-
photes and increased loss of detail. As either u, or v or
both are increased a plateau in the focal plane slowly appears
enlarging the Airy disc.Keeping W 3 constant and increasing
the length of the cylinder from 2u_ = 3 to 18, the size of the
Airy disc - as shown in Figs. 14 to 16 fﬁfﬁﬁfi&)= 4.8 to 6.4,
An interesting result happens if v is kept equal to 6 and
2u0 is increased again from O to 18.Two examples are shown in
Figs. 17 and 18 . Instead of an intensity maximum on the
optical axis at u = O (focal point) the maximum shifts sudden-
ly to u = 9, Increasing 2u0,this maximum slowly disappears and
at 2uo = 18 the maximum appears again at the focal point. At
the same time the size of the Airy disc increases from about
8 to about 10.

Keeping the length of the cylinder constant - 2uo =6 -
and increasing the radius from Vi, = 1l to 6 will change the
isophote structure very strongly: They are smoothed out, with
many local maxima and minima disappearing and the focal plane
plateau becoming distinct. The Airy disc radius v_ increases

D
very drastically: from about 4 to about 8.2.

The change in co-phasal lines for & = 0.0l and for the
variablesvo and ug is shown in Figs. 19 to 21 . In each
figure either vV, Or ug is kept constant and the other is
changed parametrically. For the extreme values of the para-
meter - maximum and minimum - two co-phasal lines are shown
separated by a phase difference of Jt . The other values of
the parameter are represented only by one co-phasal line.

For Vg = 3 and 2uo changed from 3 to 18 - see Fig. 19 = the

co-phasal lines straighten out monotonically with increased u.
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Fig. 14 1Isophotes near the focus for an obstruction coefficient
£ = 0.0l. The source is a cylinder of length 2u = 3 and of

radius ey ™ 3.
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Fig. 15 1Isophotes near the focus for an obstruction coefficient
E = 0.0l1l. The source is a cylinder of length 2uo = 9 and of

radius Vs = 3.
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Fig. 16 Isophotes near the focus for an obstruction coefficient

£€ = 0.0l. The source is a cylinder of length 2uo = 18 and of
radius ¥y T 3.
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Fig. 17 Isophotes near the focus for an obstruction coefficient

£ = 0.01l. The source is a disc of radius Nt 6.
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Fig. 18 Isophotes near the focus for an obstruction coefficient
£ = 0.0l. The source is a cylinder of length 2u_ = 9 and of
radius Ve 6. -
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3.22
Fig. 19 Co-phasal surfaces in

the neighborhood of u = 3.2 for
an obstruction coefficient & = 0.0l and f/a
is a cylinder of radius vg

15. The source

= 3. The length of the source varies:
1-2110:3,2—2\10:6.3-2110
and 6 - 2up

3.23

=

18. The distance between the two sets of curves is Jt,
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Fig. 20 Co=-phasal surfaces in the neighborhood of u = 3.2 for
= 15. The source

an obstruction coefficient & = 0.0l and f/a
9. The radius vg of the source

is a cylinder of length 2ug

is varied and its values are indicated in the figure.

Fig.

3:23 u

3.20
34 Co-phasal surfaces in the neighborhood of u = 9.1 for an

321 3.22

obstruction coefficient & = 0.817 and f/a
cylinder of length 2uo = 9. The radius Y of the source is varied

15. The source is a

and its values are indicated in the figure.




It is interesting to note that they all cross in one point

at v = 3. Increasing Vo to 6, keeping it constant and
changing 2uo again from 3 to 18 will straighten the phase
even more. In this case two joint crossing points appear.
Keeping 2uo constant and equal to 9 and changing Ve from 1

to 6 - as shown in Fig. 21 =~ results in an even stronger
flattening of the co-phasal surfaces. Only one joint crossing

point occurs.

The effect of a medium aperture blocking of & = 0.4 is
shown in Figs. 22 to 28 . As in the upper case, v was
kept constant and equal to 3 and 6 and u_ was varied. Also
in another set of numerical experiments u, was kept constant
and v, was varied. Again a gradual loss of detail, straightening
of the isophotes and co-phasal lines can be observed. This is
especially evident in the u-direction. A rather surprising result
is that the change in the radial direction is small. By in-
creasing vV, OT U, the Airy disc does not grow correspondingly
but stays small At certain values of U, and Ve the maximum
in the focus shifts from the u = O position toward some finite u:
to u = 11 for 2u = 9 and v = 6 and beyond that point for even
higher ug and the same v _. At the same time an intensity
minimum can occur in the focal point - see Fig. 25. The
corresponding co-phasal lines are shown in Figs. 26 to 28.
Keeping Vs rather small - approximately the size of the
Airy disc - and increasing 2uo,the co-phasal surfaces straighten
out but experience an increasingly steeper jump at the position
of the intensity minimum in the v direction. This is shown in
Fig. 26. For \F 6 and 2u0 changing - the case that is shown
in Fig. 27 - the co-phasal surfaces show inverted dependence
on u and v. They bulge inward on the optical axis instead of
forward as is the normal case. This inward bulging occurs at
values of u: and 8 for which the intensity maximum on the
axis moves away from u = O. Increasing uo,the co-phasal sur-

faces again become more straight but experience a sudden steeper
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Fig. 22 1Isophotes near the focus for an obstruction coefficient
€ = 0.4. The source is a cylinder of length 2uo = 3 and of

radius Vs = 3.

30 lth u

20
Fig. 23 1Isophotes near the focus for an obstruction coefficient

€ = 0.4. The source is a cylinder of length 2uo = 9 and of
radius Vo= 3.
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Fig. 24 1Isophotes near the focus for an obstruction coefficient
€ = 0.4. The source is a cylinder of length 2u0 = 18 and of

radius Vo = 3.

10 20 30 40 u
Fig. 25 1Isophotes near the focus for an obstruction coefficient

£ = 0.4. The source is a cylinder of length 2uo = 9 and of
radius V. E 6.
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Fig. 26 Co-phasal surfaces in the neighborhood of u = 3.2 for

an obstruction coefficient & = 0.4 and f/a = 15. The source is

a cylinder of radius v, = 3. The length of the source varies:

1l =-2u5=3, 2 ~-2u5=6, 3 =2uy=29, 4 - 2u, = 12, 5 - 2u,=15
and 6 = 2ug = 18. The distance between the two sets of curves
is JT.
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Fig. 27 Co-phasal surfaces in the neighborhood of u = 3.2 for
an obstruction coefficient &£ = 0.4 and f/a = 15. The source is
a cylinder of radius vg = 6. The length of the source varies:

1l =-2u =3, 2 ~2u5=6, 3 -2u5=29, 4 -2ug =12, 5 - 2ug=15
and 6 - 2u, = 18.
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the.
jump inAintensity minimum. For 2uo = 18 the inward bulge in the

co-phasal surfaces suddenly reverses to forward. This
coincides with the motion of the intensity maximum back to the
u = 0 point. In Fig. 28 very similar results are shown for

u, = 4.5, Vo variable case, where a sudden inward bulge
appears for Vs = 5.

An even more surprising result is obtained when & = 0.817,
shown in Figs. 29 to 34. Changing the diameter or the length
of the source results in a very small change in the isophotes or
co-phasal surfaces. The only influence is on the intensity
values,which drop rather fast with increased ¥ and ue The
position of the Airy disc does not change. The surfaces are
not flattened out and the amount of detail in the isophote
distribution stays the same. The only change occurs when 2u0
is increased to about 15 (see Fig. 30). Here the intensity
maximum shifts from the focal point to u=2 25. This is
accompanied by sudden inward bulging of the co-phasal sur=
faces , as can be observed in Figs. 32 and 33 for 2uo = 15,
Otherwise increasing L and/or u, does not change the co-
phasal surfaces except that they beccme somewhat steeper -
see Figs. 32 to 34.

V. Summary and Conclusions

In summarizing the cylindrical source results one notes

several trends that should be emphasized.

For very small obstruction coefficient & the influence
of increasing the size of the source is very strong: The iso-
phote diagrams become smoother, a central plateau builds up
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Fig. 28 Co-phasal surfaces in the neighborhood of u = 3.2 for
an obstruction coefficient & = 0.4 and f/a = 15. The source is

a cylinder of length 2uo = 9. The radius Va of the source is
varied and its values are indicated in the figure.
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Fig. 29 1Isophotes near the focus for an obstruction coefficient
&£ = 0.817. The source is a cylinder of length 2uo = 9 and of
radius Y& = 3.
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Fig. 30 1Isophotes near the focus for an obstruction coefficient
& = 0.817. The source is a cylinder of length 2u° = 15 and of

radius Y 508 3.
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Fig., 31 Isophotes near the focus for an obstruction coefficient

&€ = 0.8l17. The source is a cylinder of length 2u° = 9 and of

radius Vi ™ 6.




- 45 -

ol
e g
b4\
........ . B
e -

5 e
- R G — -
R i o S K eaa e TS

Eat s L2

=

\
1
v
1 .
\ .
: 1 .
i [
H 1 -
: T
0 '

4 4
T T
g-lu gull

S

Fig. 32 Co-phasal surfaces in the neighborhood of u = 9.1 for
an obstruction coefficient & 0.817 and f/a = 15. The source
is a cylinder of radius vp = 3. The length of the source varies:
l -2 =3,2=-2u5=6, 3 -2uy,=29, 4 - 2u, = 12,

5 = 2ug = 15, and 6 - 2ugy =

= 18. The distance between the two
sets of curves is JT .
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Fig. 33 Co-phasal surfaces in the neighborhood of u = 9.1 for
an obstruction coefficient & 0.817 and f/a =

is a cylinder of radius vg
l"'ZU.Q=
5-2\10:

15. The source

6. The length of the source varies:
3, 2 -2u5 =6, 3 -2uo =9, 4 - 2ug = 12,
15, and 6 - 2ugy = 18,
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Fig. 21 Co-phasal surfaces in the neighborhood of u = 3.2 for

an obstruction coefficient &= 0.0l and f/a 15. The source

is a cylinder of length 2uo = 9, The radius v

o of the source
is varied and its values are indicated in the figure.
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and enlarges around the focal point with a very straight
phase front. Increasing the source radius has a stronger
effect than a comparable increase in the source length. As &
increases this trend becomes weaker so that as & approaches
there is almost no influence on the isophote and co-
phasal diagrams when the source size is increased. This di-
minished sensitivity of the diffraction pattems on the size
of the object if & is increased can be understood in the
following way: if £ is very small, there will be a large phase
difference between the waves emanath; from one or more points
of the source and reaching two extreme points of the
annular aperture - the obstruction edge and the lens edge.
This should result in a diffraction pattern more sensitive
to the values of the source length and radius, As &£
approaches 1 this phase difference becomes smaller with the
result that the diffraction pattern is less sensitive to
the size of the source.

It is also observed that as the source size is increased
the‘normalized intensities go down. On the one hand, this is a
peculiarity of our very special scattering model. On the
other hand,one can observe from Figs. 3 and 4 that the
functions for the point source Cp and Sp oscillate faster
with increased £ . Their oscillation period decreases. In the
case of the finite size source the integration usually
extends over several of these periods so that the integrated
value is averaged out to a lower value., This then results
in a lowered intensity.

It is obvious that in general the diffraction pattern
should depend on the nature of the scattering: coherent,
partially coherent or incoherent. This point should be further
investigated.,
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For very small £ the angular alignment of the signal
beam (scattered radiation) and the local oscillation beam
has, as usual, to be rather accurate. On the other hand,
the radial alignment of these two beams is not so crucial.
The size of the mixer should be equal tgﬁghlarged Airy disc
diameter. This would guarantee that the phase difference
between the signal and the local oscillator waves across
the mixer is constant. The local oscillator could be either
a plane wave or a wave focused on the mixer with an
appropriate phase distribution.

If the aperture blocking is large - as is the case

in extreme forward scattering - the size of the central

plateau (Airy disc) is very small and it carries only a
fraction of the signal beam power. It is now more difficult

to achieve radial alignment. Mixing can now be achieved
in two ways:

%. The size of the mixer is equal to the size of the
Airy disc. For the Gondhalekar-Keilmannproposal this would
mean a mixer with a diameter of 0.07 mm. The signal power jin-
cident on the mixer is only about 17 % of the input
power; the rest is lost on other diffraction rings. The
advantage of this method is that the local oscillator can
be either a plane wave or a focused wave.

2. The size of the mixer is increased to cover 5
to 7 diffraction rings. Now most of the signal power is
utilized. The signal and local oscillator beams have to be
very accurately aligned - the allowed error being only a
fraction oﬁd iry disc. This means that for the Gondhalekar-
Keilmann proposal the allowed error would be about 10 um.
The signal and local oscillator waves have to be focused
with a lens of lhesame f/a number and, furthermore, the
local oscillator optics has to have the same obstruction
coefficient as the signal optics. The alignment in angle
between the signal and the local oscillator has to have the

usual accuracy.
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