Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Experimentally Coupled Thermokinetic Oscillators: Phase Death and Rhythmogenesis

MPG-Autoren
/persons/resource/persons86527

Zeyer,  K.-P.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86397

Mangold,  M.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86172

Gilles,  E. D.
Systems Biology, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zeyer, K.-P., Mangold, M., & Gilles, E. D. (2001). Experimentally Coupled Thermokinetic Oscillators: Phase Death and Rhythmogenesis. Journal of Physical Chemistry A, 105(30), 7216-7224. doi:10.1021/jp0041454.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-A1A7-3
Zusammenfassung
We present an experimental investigation of two coupled thermokinetic oscillators. The system is the exothermic iron-(III)-nitrate catalyzed oxidation of ethanol with hydrogen peroxide to ethanal and acetic acid. The coupling of two continuous flow stirred tank reactors (CSTRs) is performed in four different ways: via coupling of the cooling circuits, via exchange of reaction mass, and via combinations of both in equal and opposite directions. The experiments are modeled by a set of ordinary differential equations,which we have used in previous studies of the uncoupled free running system in a single CSTR. The model calculations predict three different kinds of qualitative behavior before and after the coupling. First, the qualitative behavior can remain unchanged, i.e. one gets steady states when steady states are coupled or one gets periodic oscillations when periodic oscillations are coupled. Second, oscillations can emerge when stationary states are coupled (rhythmogenesis) and third, oscillations are suppressed and change into steady states (phase death) when the coupling is activated. All these types of behavior can be verified in the experiments. Generating thermal oscillations by coupling can also lead to significant safety implications. We demonstrate experimentally a safe and an unsafe way of performing the rhythmogenesis experiment guided by our model calculations. © Copyright 2011 Elsevier B.V., All rights reserved. [accessed 2014 March 31st]