Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Stochastic game dynamics under demographic fluctuations

MPG-Autoren
/persons/resource/persons56739

Huang,  Weini
Department Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56973

Traulsen,  Arne
Department Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Huang, W., Hauert, C., & Traulsen, A. (2015). Stochastic game dynamics under demographic fluctuations. Proceedings of the National Academy of Sciences of the United States of America, 112(29), 9064-9069. doi:10.1073/pnas.1418745112.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0027-B19F-A
Zusammenfassung
Frequency dependent selection and demographic fluctuations play important roles in evolutionary and ecological processes. Under frequency dependent selection, the average fitness of the population may increase or decrease based on interactions between individuals within the population. This should be reflected in fluctuations of the population size even in constant environments. Here, we propose a stochastic model, which naturally combines these two evolutionary ingredients by assuming frequency dependent competition between different types in an individual-based model. In contrast to previous game theoretic models, the carrying capacity of the population and thus the population size is determined by pairwise competition of individuals mediated by evolutionary games and demographic stochasticity. In the limit of infinite population size, the averaged stochastic dynamics is captured by the deterministic competitive Lotka-Volterra equations. In small populations, demographic stochasticity may instead lead to the extinction of the entire population. As the population size is driven by the fitness in evolutionary games, a population of cooperators is less prone to go extinct than a population of defectors, whereas in the usual systems of fixed size, the population would thrive regardless of its average payoff.