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Abstract
Although human biomedical and physiological information is readily available, such infor-

mation for great apes is limited. We analyzed clinical chemical biomarkers in serum sam-

ples from 277 wild- and captive-born great apes and from 312 healthy human volunteers

as well as from 20 rhesus macaques. For each individual, we determined a maximum of

33 markers of heart, liver, kidney, thyroid and pancreas function, hemoglobin and lipid

metabolism and one marker of inflammation. We identified biomarkers that show differ-

ences between humans and the great apes in their average level or activity. Using the rhe-

sus macaques as an outgroup, we identified human-specific differences in the levels of

bilirubin, cholinesterase and lactate dehydrogenase, and bonobo-specific differences in the

level of apolipoprotein A-I. For the remaining twenty-nine biomarkers there was no evidence

for lineage-specific differences. In fact, we find that many biomarkers show differences

between individuals of the same species in different environments. Of the four lineage-

specific biomarkers, only bilirubin showed no differences between wild- and captive-born

great apes. We show that the major factor explaining the human-specific difference in

bilirubin levels may be genetic. There are human-specific changes in the sequence of the

promoter and the protein-coding sequence of uridine diphosphoglucuronosyltransferase

1 (UGT1A1), the enzyme that transforms bilirubin and toxic plant compounds into water-sol-

uble, excretable metabolites. Experimental evidence that UGT1A1 is down-regulated in the

human liver suggests that changes in the promoter may be responsible for the human-spe-

cific increase in bilirubin. We speculate that since cooking reduces toxic plant compounds,

consumption of cooked foods, which is specific to humans, may have resulted in relaxed

constraint on UGT1A1 which has in turn led to higher serum levels of bilirubin in humans.
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Introduction
Humans and their closest evolutionary relatives, the chimpanzees and bonobos, differ from
one another in morphological, cognitive, behavioural and physiological traits [1–3]. The avail-
ability of genome sequences for human, chimpanzee, bonobo and rhesus macaque allows for
the identification of lineage-specific sequence changes. However, since most of the sequence
differences are likely to be neutral [4], it remains a challenging task to identify those that have
important biological consequences [5]. For a relative small number of loci, human lineage-spe-
cific genomic changes have been linked to phenotypic differences to the other great apes [6].
One example is a deletion within the human gene CMAH which leads to the loss of the sialic
acid Neu5Gc and to altered pathogen susceptibility [7].

Using the great apes to identify connections between genotype and phenotype in humans is
hampered by the comparatively limited biomedical and physiological information about great
apes [1, 5, 8]. Blood provides an opportunity to quantitatively analyze metabolic products that
can serve as markers of metabolic and hormonal states [9]. The genes and metabolic pathways
underlying these metabolic products are often well-characterized and it is therefore sometimes
possible to identify the potential genetic basis for differences in metabolite levels.

While blood biomarkers are extensively studied in humans, there have been only limited
comparative studies of humans and great apes. These that exist have been carried out in small
numbers of captive animals [10, 11] or involve a single species [12–15].

The aim of this study was to identify biomarkers that show lineage-specific changes in their
levels or activity in the serum of humans, chimpanzees and bonobos. We analyzed serum sam-
ples from 277 wild-born and captive-born great apes (121 Central African chimpanzees, 95
West African chimpanzees, 61 bonobos), and from 312 healthy human volunteers from Ger-
many. For each sample we measured up to 33 biomarkers that are routinely used in human
and veterinary medicine to quantify heart, liver, kidney, thyroid and pancreas function, hemo-
globin and lipid metabolism and one marker of inflammation. We assigned lineage-specific
changes based on comparison to serum levels of the same biomarkers in 20 rhesus macaques
from Germany (Fig 1). We identified biomarkers that are likely to have changed on one lineage
and divide these into changes that are strongly influenced by environmental factors and
changes that are unlikely to be explained by environmental effects alone.

Methodology

Ethics statement
All animal work was conducted according to relevant national, EU and international guide-
lines. In all cases, the animals were not subjected to any experimental procedures, and the
blood samples used were left-over aliquots collected by veterinarians carrying out routine med-
ical examinations. Authorization for use of the samples was obtained from the respective Min-
istries of Environment as well as by the Ministère de la Recherche Scientifique (DRC) to “Les
Amis des Bonobos du Congo”, the Uganda Wildlife Authority and the Uganda National Coun-
cil for Science and Technology, and the Ministère de l'Enseignement Supérieur et de la Recher-
che Scientifique from Republic of Congo. The international transport of samples was approved
(CITES numbers: Uganda E-3520/05, Kenya E-1259/05, DRC E-0908/07, Republic of Congo
E-1274/07). The proposal that in part covers this research (233297, TWOPAN) was reviewed
and approved by the European Commission.
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Samples
Sera from 121 (65 male and 56 female) wild-born Central African chimpanzees (Pan troglo-
dytes troglodytes), 76 (34 male and 42 female) wild-born and 19 (6 male and 13 female) cap-
tive-born West African chimpanzees (Pan troglodytes verus), 50 (28 male and 22 female) wild-
born and 11 (7 male and 4 female) captive-born bonobos (Pan paniscus), 20 (3 male and 17
female) captive-born rhesus macaques (Macaca mulatta) and from 312 (156 male and 156
female) humans was used for this study.

All samples of wild-born great apes were collected in 2007 and 2009 during annually
planned health checks. The samples of wild-born Central African chimpanzees were collected
at Tchimpounga Sanctuary (Pointe Noire, Republic of Congo), the samples of wild-born West
African chimpanzees were collected at Tacugama Sanctuary (Freetown, Sierra Leone) and the
samples of wild-born bonobos were collected at Lola Ya Bonobo Sanctuary (Kinshasa, Demo-
cratic Republic of Congo).

Fig 1. Flow chart of the analytic approach to identify lineage-specific biomarker levels. A: differences in biomarker levels were sorted as specific to (i)
humans, (ii) great apes, (iii) bonobos, (iv) chimpanzees, (v) Central African chimpanzees, (vi) West African chimpanzees and as (vii) non-lineage specific.B:
Human-specific changes were defined as significant differences to chimpanzees and bonobos taken together (but not between the latter two species) as well
as to rhesus macaques (shown); and as significant differences between humans and the individual great ape species (not shown), regardless of significant
differences between species born and living under different environments. Relations of species as shown in cladograms derived from [103, 104].

doi:10.1371/journal.pone.0134548.g001
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The wild-born great apes were fasting from the evening before the anaesthesia and were
then anaesthetized with a combination of medetomidine (Domitor, Pfizer, NY, USA, 0.03 to
0.05 mg/kg) and ketamine (Imalgen, Merial, GA, USA, 3 to 4 mg/kg), injected intramuscularly
with either a dart (Telinject, France) or a syringe (Terumo, Japan). Blood was collected from
the femoral vein with the Vacutainer (Becton Dickinson, NJ, USA) or with the Monovette-sys-
tem (Sarstedt, Germany). Then blood was processed according to a standardized protocol in
order to minimize preanalytic influences. Blood was allowed to clot for 30 minutes at room
temperature, then centrifuged at 4° C for 10 minutes at 1600 g. The supernatant serum was
transferred into a freezing tube, stored on dry ice, protected from light and transferred to our
laboratory for subsequent biomarker analysis. Two bonobos were excluded from analysis since
they died shortly after the sampling of the blood. One Central African chimpanzee was
excluded since he was an outlier in a principle component analysis. Median ages for wild-born
bonobos, Central and West African chimpanzees were 6 years (range: 3 to 20 years), 8 years
(range: 2 to 42 years) and 4 years (range: 1 to 23 years), respectively (Table 1). Median weights
were 18.8 kg (2.5th to 97.5th percentiles: 4.9 and 45 kg), 38.8 kg (2.5th to 97.5th percentiles: 10
and 67 kg) and 27 kg (2.5th to 97.5th percentiles: 9.9 and 53.2 kg).

Samples from captive-born West African chimpanzees and bonobos were obtained from
the Leipzig Zoo during routine health checks between 2005 and 2013. Animals fasted for 12
hours prior to anaesthesia with a combination of xylazine (2 to 3 mg/kg for bonobos and 2.4 to
4 mg/kg for chimpanzees) and ketamine (4 to 6 mg/kg for bonobos and 2.5 to 4 mg/kg for
chimpanzees), injected intramuscularly with a dart. Blood was taken either from the vena
saphena parva superficialis or from the vena mediana cubiti. Sera were stored at -80°C prior to
analysis. No weights were available for captive-born great apes. Median ages for captive-born
bonobos, and West African chimpanzees were 14 years (range: 3 to 17 years) and 20 years
(range: 8 to 46 years), respectively (Table 1).

Sera from rhesus macaques were purchased from the German primate center (Göttingen/
Germany). The sera were from healthy individuals kept for breeding purposes, and were col-
lected during routine physical exams in May 2007 from the vena saphena of the proximal forth
of the thigh. Animals had been anaesthetized with ketamine after a 12 hour fast. All sera were
stored at -20° C prior to analysis. Although individual weights were not recorded for each rhe-
sus macaque, males were between 2 and 3 kg and females between 7 and 8 kg. The median age
for rhesus macaques was 3.5 years (range: 1 to 22 years; Table 1).

As the human reference group we used serum of a group of 312 young healthy blood donors
previously described [16]. Median age was 27 years (range: 18 to 65 years; Table 1); median
weight was 70 kg (2.5th to 97.5th percentiles: 52 and 98 kg).

Biochemical analyses
All biochemical analyses were performed at the Institute of Laboratory Medicine, Clinical
Chemistry and Molecular Diagnostics of the University Clinic Leipzig/Germany except for
parts of the analysis of lipoprotein(a) (Lp(a)) which was performed at the Department of Medi-
cal Genetics, Molecular and Clinical Pharmacology, Divisions of Genetic Epidemiology and
Human Genetics of the Innsbruck Medical University (Innsbruck/Austria).

Total cholesterol, HDL and LDL cholesterol, triglycerides, albumin, total protein, creatinine,
urea and uric acid, bilirubin, glucose and phosphate were measured by using commercial pho-
tometric tests on an automated Modular P analyzer (Roche/Hitachi; S1 Dataset) [17–31]. Con-
centrations of apolipoprotein A-I and apolipoprotein B-100, C-reactive protein and
Lipoprotein (a) were measured by using immunoturbidimetric assays (Tina-quant apo AI ver-
sion 2 and Tina-quant apo B-100 version 2, C-reactive protein Gen.3; Tina-quant Lipoprotein
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Table 1. Results for clinical chemical biomarkers in serum samples fromwild- and captive-born great apes (wild-born Central African chimpan-
zees from the Republic of Congo (Ch—CG), wild-bornWest African chimpanzees from Sierra Leone (Ch—SL) and captive-born chimpanzees from
Germany (Ch—DE), wild-born bonobos from the Democratic Republic of the Congo (B—CD) and captive-born bonobos fromGermany (B—DE)),
captive-born rhesusmacaques fromGermany (Rh—DE), and from healthy human volunteers (H—DE).

Species

Rh—DE B—CD B—DE Ch—CG Ch—SL Ch—DE H—DE
N (m/f) 20 (3/17) 50 (28/22) 11 (7/4) 121 (65/56) 76 (34/42) 19 (6/13) 312 (156/156)

Age [years] median 3.5 6 14 8 4 20 27

range 1–22 3–20 3–37 2–42 1–23 8–46 18–65

Alanine transaminase activity
[μkat/L]

median 0.10 0.27 0.54 0.48 0.48 0.65 0.18

percentiles/range 0.07–0.15 0.09–0.66 0.43–0.83 0.21–0.94 0.27–0.94 0.41–1.93 0.08–0.40

Albumin [g/L] median 42.8 33.3 40.0 36.9 37.6 39.3 43.8

percentiles/range 34.4–47.6 24.8–40.2 35.5–42.6 29.1–41.1 32.4–42.2 28.8–43.5 38.7–48.2

Apolipoprotein A [g/L]—bs median 1.40 2.15 2.51 1.63 1.85 1.71 1.58

percentiles/range 0.80–2.08 1.47–2.83 2.06–3.52 1.15–2.28 1.25–2.41 1.08–3.10 1.11–2.26

Apolipoprotein B [g/L] median 0.37 0.79 0.76 0.59 0.70 0.73 0.72

percentiles/range 0.20–0.47 0.50–1.33 0.48–0.97 0.35–0.89 0.46–0.92 0.29–1.24 0.42–1.31

Aspartate transaminase [μkat/L] median 1.20 0.53 0.40 0.79 0.39 0.48 0.42

percentiles/range 0.87–1.66 0.21–2.91 0.27–0.80 0.39–1.80 0.22–0.56 0.26–1.08 0.26–0.69

Total bilirubina [μmol/L]—hs median < 1.71 < 1.71 < 1.71 < 1.71 < 1.71 < 1.71 3.40

percentiles/range < 1.71 <1.71–2.70 < 1.71–2.00 < 1.71–2.40 < 1.71–2.40 < 1.71–2.10 < 1.71–13.34

Cholinesterase [μkat/L]—hs median 201.2 156.9 214.0 199.7 208.0 209.3 126.0

percentiles/range 136.9–448.9 98.0–282.0 159.60–339.90 105.6–345.2 124.8–280.1 154.8–364.9 72.0–191.2

Total cholesterol [mmol/L] median 3.42 5.63 5.50 4.63 5.07 4.58 4.72

percentiles/range 1.84–4.39 3.90–8.54 4.61–6.45 3.00–7.06 3.78–6.78 2.90–8.07 3.24–6.95

Colloid osmotic pressure [mmHg] median 26.1 24.9 n. a. 22.4 22.2 n. a. 28.3

range 22.3–29.2 20.5–29.3 19.0–25.4 18.7–24.1 24.2–32.5

C-reactive protein [mg/L] median 1.11 23.90 0.84 2.32 0.53 1.00 0.72

percentiles/range < 0.30–27.09 0.71–239.24 < 0.30–3.39 1.00–45.80 < 0.30–50.82 < 0.30–3.57 < 0.30–10.28

Creatine kinase [μkat/L] median 42.28 2.14 4.10 2.97 1.80 3.68 1.19

percentiles/range 18.97–86.40 0.56–12.11 2.57–6.91 1.31–10.40 0.92–6.23 1.17–13.32 0.50–4.39

Creatinine [μmol/L] median 76.0 46.5 82.0 62.0 58.5 75.00 70.0

percentiles/range 52.0–118.0 14.5–93.9 34.0–123.0 33.1–121.9 35.6–103.1 50–253 48.5–95.0

Ferritin [ng/ml] median n. a. 21.3 71.5 105.4 69.1 203.2 27.0

percentiles 4.0–157.2 31.0–171.9 15.5–388.2 18.0–268.8 17.5–883.3 5.5–144.6

Folate [nmol/L] median n. a. 31.50 21.18 28.31 18.69 36.16 20.56

percentiles 15.43–45.40 12.84–45.40 17.51–45.40 11.02–29.84 28.50–45.00 9.27–39.36

Gamma-glutamyl transpeptidase
[μkat/L]

median 1.59 0.10 0.15 0.26 0.32 0.44 0.28

percentiles/range 0.72–3.40 < 0.05–0.32 0.09–0.34 0.11–0.99 0.18–0.58 0.18–1.13 0.12–1.75

Glucose [mmol/L] median n. a. 4.37 6.31 5.17 5.18 6.46 4.49

percentiles 2.53–7.96 4.46–9.67 2.19–10.17 2.62–7.65 4.34–9.89 2.85–7.84

Glutamate dehydrogenase [μkat/L] median 0.27 0.11 0.04 0.12 0.10 0.07 0.04

percentiles/range 0.19–0.32 0.03–0.52 0.02–0.75 0.06–0.43 0.05–0.28 0.03–0.29 0.02–0.19

High-density lipoprotein
cholesterol [mmol/L]

median 0.83 1.67 2.35 1.58 1.68 1.60 1.45

percentiles/range 0.46–1.29 0.56–2.84 2.06–4.16 0.84–2.66 0.87–2.40 0.38–3.08 0.90–2.41

Lactate dehydrogenase
[μkat/L]—hs

median 9.55 6.56 4.59 12.33 5.95 6.18 2.07

percentiles/range 6.14–13.28 3.55–32.93 3.96–9.07 6.07–48.73 4.15–8.34 2.96–9.18 1.43–2.98

Lipase [μkat/L] median 0.22 0.18 0.13 0.16 0.18 0.19 0.53

percentiles/range 0.00–0.71 0.13–0.32 0.09–0.24 0.13–0.24 0.14–0.25 0.12–0.27 0.25–1.30

Lipoprotein (a) [mg/dl] median 37.3 102.8 74.1 43.6 181.0 97.4 37.3

percentiles/range 9.9–116.1 3.5–269.8 31.9–120.3 2.1–166.2 65.9–296.90 14.6–163.0 < 5.0–154.4

Low-density lipoprotein cholesterol
[mmol/L]

median 1.89 3.03 2.90 2.48 2.66 2.40 2.72

percentiles/range 0.42–2.50 1.71–5.94 1.79–3.47 1.29–4.06 1.67–4.03 1.71–5.64 1.41–4.60

(Continued)
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(a), Roche; S1 Dataset) on Modular P [32–35]. The catalytic activities of alanine transaminase,
aspartate transaminase, cholinesterase, creatine kinase, gamma-glutamyl transpeptidase, gluta-
mate dehydrogenase, lactate dehydrogenase and lipase were determined using a photometric
test on the same automated analyzer (S1 Dataset) [36–40]. Ferritin, free and total triiodothyro-
nine and thyroxine, amino-terminal prohormone of brain natriuretic peptide (NTproBNP),
troponin T and vitamin B12 were analyzed by a heterogeneous electrochemiluminescence
immunoassay on an automated Modular E analyzer (Roche/Hitachi, S1 Dataset) [41, 42]. Lp
(a) quantification in samples from the Republic of Congo, Sierra Leone and the Democratic
Republic of Congo was performed as described in detail [43, 44] with a double-antibody
enzyme-linked immunosorbent assay (ELISA), using an affinity-purified polyclonal apo(a)
antibody for coating and the horseradish peroxidase-conjugated monoclonal antibody for
detection. Colloid osmotic pressure was determined via direct hydrostatic pressure measure-
ment on a colloid osmometer (Osmomat 50, Gonotec, Berlin, Germany) [45, 46] in triplicates.

A list of all biomarkers measured in this study with the corresponding method of detection,
associated gene name (where possible) and pairwise alignment score for the comparison of

Table 1. (Continued)

Species

Rh—DE B—CD B—DE Ch—CG Ch—SL Ch—DE H—DE
N (m/f) 20 (3/17) 50 (28/22) 11 (7/4) 121 (65/56) 76 (34/42) 19 (6/13) 312 (156/156)

N-terminal prohormone of brain
natriuretic peptide [pg/mL]

median <5.0 204.4 73.1 195.0 154.5 194.3 33.2

percentiles <5.0–9.9 26.9–2563.6 35.7–401.6 17.9–775.7 59.0–502.7 < 5.0–836.7 6.9–144.6

Phosphate [mmol/L] median n. a. 1.58 1.13 1.43 1.57 1.32 1.29

percentiles 0.86–2.16 0.47–2.00 0.57–1.93 0.82–2.31 0.36–1.93 0.96–1.65

Total protein [g/L] median 66.7 83.1 71.8 76.9 68.9 69.6 72.0

percentiles/range 58.4–74.0 64.9–98.5 65.9–75.7 65.7–87.6 61.5–78.5 64.7–81.0 64.0–79.6

Thyroid-stimulating hormone
[mU/L]

median < 0.005 3.73 4.61 1.71 3.06 3.56 1.34

percentiles < 0.005–0.007 0.33–19.88 2.43–18.10 0.51–5.38 0.74–11.09 0.005–8.50 0.39–3.61

Free thyroxine [pmol/L] median 14.14 11.33 14.41 12.37 12.14 16.61 16.53

percentiles/range 7.92–24.37 6.53–18.37 10.26–25.19 7.19–20.87 8.15–21.03 11.40–24.21 13.11–20.76

Triglycerides [mmol/L] median 0.69 1.15 0.56 1.02 1.12 1.08 1.28

percentiles/range 0.44–1.01 0.58–3.11 0.28–1.70 0.56–2.30 0.63–1.94 0.73–3.06 0.55–3.95

Free triiodothyronine [pmol/L] median 5.71 6.47 6.57 6.59 5.01 6.63 5.15

percentiles/range 1.71–17.37 1.28–11.22 4.30–8.83 4.04–11.09 3.05–10.44 3.69–10.00 3.92–6.66

Troponin T [μg/L] median n. a. < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

percentiles/range < 0.01–0.18 < 0.01–0.04 < 0.01–0.05 - < 0.01–0.25 < 0.01

Urea [mmol/L] median 7.60 1.50 1.95 1.60 1.45 2.60 4.43

percentiles/range 4.30–13.20 < 0.83–6.74 0.80–3.60 < 0.83–4.99 < 0.83–3.25 1.30–7.80 2.56–7.30

Uric acid [μmol/L] median < 11.9 203.0 128.0 145.5 145.5 124.0 265.5

percentiles < 11.9–12.0 106.4–371.6 93.0–192.0 75.0–226.8 64.5–221.8 81–224 142.1–407.5

Vitamin B12 [pmol/L] median n. a. 272.7 974.3 233.3 593.9 1476 278.9

percentiles/range 126.8–1459.6 173.3 - >1476 82.4 - >1476 215.2 - >1476.0 1475 - >1476 147.5–576.6

ISO 3166 codes for the representation of countries of origin of serum samples; median, 2.5th—97.5th percentiles for wild-born great apes and humans

and range for captive born great apes and rhesus macaques; ranges for age, colloid osmotic pressure and for lipoprotein (a) in wild-born Central African

chimpanzees; “n. a.” = not analyzed; “bs” indicates a bonobo-specific biomarker and “hs” indicates human-specific biomarkers, green border denotes

bonobo-specific biomarkers; blue border denotes human-specific biomarkers; “<”/”>” indicate below lower limit/above upper limit of quantification; percent

of individuals below lower level of quantification (LLOQ) for bilirubin: wild- and captive-born bonobos: 82 and 55 percent, Central African chimpanzees: 75

percent; wild- and captive-born West African chimpanzees: 82 and 63 percent; rhesus macaques 100 percent; humans: 12.3 percent; see “Methodology”

for details on the origin of the samples. The underlying data can be downloaded as S4 Dataset.

doi:10.1371/journal.pone.0134548.t001
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proteins between humans and both West African chimpanzees and rhesus macaques is pro-
vided in S1 Dataset. A protein search was done using the HomoloGene function on NCBI’s
webpage to obtain homologous protein sequences of human, West African chimpanzee and
rhesus macaque proteins. When a homologous protein was not available for any of the non-
human primate species using the HomoloGene function, a protein blast with the human pro-
tein was performed using UniProt to find the homologous protein in the remaining species.

The expression level of UGT1A1 transcripts in humans, chimpanzees, and rhesus macaques
(Fig 2) was determined by transcript sequencing (RNA-Seq on an Illumina GA IIx) of liver
samples from 3 males and 3 females from each species [47]. Significant differences in expres-
sion levels between species were determined using the negative binomial model implemented
in DESeq [48].

The expression levels of UGT1A1 transcripts in mice fed either a raw or a cooked diet com-
posed of meat or of tuber were measured by RNA-Seq (Fig 3)[49]. Total RNA was prepared
from 17 individuals and sequenced as a pool on two lanes of an Illumina HiSeq 2500. Signifi-
cant differences in expression between mice fed raw diets and mice fed cooked diets were quan-
tified using DESeq [48].

Statistical analysis
Calculations were performed with IBM SPSS Statistics software (version 20.0.0) and R (version
2.12.1; http://cran.r-project.org/).

Fig 2. Liver UDP-glucuronosyltransferase 1A1 (UGT1A1) promoter transcript expression in rhesus
macaques, chimpanzees and humans [47] and respective TATAA-box length [56, 57, 105] - UGT1A1
transcript expression was determined from RNA-Seq of human, chimpanzee and rhesus macaque liver RNA
samples from 3 males and 3 females of each species [47]. Relative expression levels were calculated from
the original dataset setting human expression levels at 100 percent (also see S1 Table for the variability of TA
repeats in TATA box of UGT1A1 promoter in archaic hominins, humans and non-human primates).

doi:10.1371/journal.pone.0134548.g002
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The study population was split into species groups. Percentages of change are given as medi-
ans (2.5th to 97.5th percentiles and ranges). The statistical significance of the differences
between groups was assessed by using theWilcoxon rank-sum test with the significance thresh-
old set at 0.01.

Results

Sex-specific differences in serum biomarker levels
Our study included both male and female individuals and we therefore expect some differences
in biomarker levels to reflect sex-specific traits. Using average timing of sexual maturity in each
species [50] we expect that approximately 50 percent of the rhesus macaques, 30 and 73 per-
cent of the wild- and captive-born bonobos, 49 percent of the wild-born Central African chim-
panzees, 35 and 100 percent of the wild- and captive-born West African chimpanzees, and 100
percent of the humans in this study were sexually mature. We tested to what extent biomarker
levels differ between males and females in each of the species. Sex-specific differences in serum
biomarker levels are shown in S2 Dataset. Humans showed the largest number of significantly
different biomarkers between females and males (67 percent of total number of biomarkers dif-
fered compared to between 0 and 12 percent in the non-human primates; S2 Dataset). In wild
bonobos mean levels of low-density lipoprotein cholesterol, apolipoprotein A, apolipoprotein

Fig 3. LiverUGT1A1-mRNA expression in mice on raw and cooked diets: Liver mRNA expression of
UGT1A1 transcripts in mice fed either a raw or cooked meat or raw or cooked or tuber diets was measured by
RNA-Seq [49]. Total RNA was prepared from 17 individuals and sequenced as a pool on two lanes of an
Illumina HiSeq 2500. Significant differences in expression between mice fed raw diets and mice fed cooked
diets were quantified using DESeq [48].

doi:10.1371/journal.pone.0134548.g003
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B and total cholesterol were significantly higher in females than in males. However, this differ-
ence was not seen in captive-born bonobos where levels of these same biomarkers were not sig-
nificantly different between males and females (S2 Dataset).

Wild-born male Central African chimpanzees showed a significantly higher catalytic activ-
ity of creatine kinase, and higher levels of uric acid and ferritin than females. Cholinesterase
was found to be significantly increased in wild-born male West African chimpanzees, while
lactate dehydrogenase was significantly higher in captive-born West African male chimpanzees
(S2 Dataset). In rhesus macaques no significant differences between the sexes were found for
any of the biomarkers. In humans, all biomarkers with the exception of total cholesterol, col-
loid-osmotic pressure, folic acid, glucose, lactate dehydrogenase, lipoprotein (a), Thyroid-stim-
ulating hormone, troponin T and vitamin B12 showed significant differences between the sexes
(S2 Dataset).

Lineage-specific biomarker levels
We assigned differences in biomarker levels as: (i) human-specific, (ii) great ape-specific, (iii)
bonobo-specific, (iv) chimpanzee-specific, (v) Central African chimpanzee-specific, (vi) West
African chimpanzee-specific and (vii) as uncategorized changes using the rhesus macaques as
an outgroup (Fig 1). We did not identify rhesus macaque-specific changes since this would
require an appropriate outgroup. Human-specific changes were defined as significant differ-
ences to all chimpanzees and bonobos taken together (but not between the two apes) as well as
to rhesus macaques; and as significant differences between humans and the individual great
ape species (Wilcoxon rank-sum test, p< 0.01). Using this approach, we identified human-
specific differences in three biomarkers (bilirubin, cholinesterase, lactate dehydrogenase), and
a bonobo-specific difference in one biomarker (apolipoprotein A). There was no biomarker
difference specific to either the great apes as a group, to chimpanzees as a group or to West or
Central African chimpanzees (Fig 1). Twenty-nine biomarkers showed differences that could
not be assigned uniquely to one lineage because they were either not statistically significant or
because they have changed on multiple lineages. These were classified as “non-lineage-
specific”.

Amino acid differences in protein sequences may affect test results by altering antibody
affinity for an analyte or the catalytic activities of enzymes. For three of the four biomarkers
with species-specific differences, the genes underlying the biomarker can be identified. We
compared the protein sequences of these genes between human, chimpanzee and rhesus
macaque (S1 Dataset). The bonobo sequence of apolipoprotein A was 99.6, 99.6 and 94.8 per-
cent identical to those fromWest African chimpanzees, humans and rhesus macaques, respec-
tively. Human cholinesterase was 99.2, and 95.8 percent identical to those fromWest African
chimpanzees, and rhesus macaques (S1 Dataset; a bonobo sequence was not available). Lactate
dehydrogenase consists of three subunits (LDHA, LDHB and LDHC) with a median identity
of 99.7 percent between humans and West African chimpanzees and a median identity of 98.9
percent between humans and rhesus macaques (S1 Dataset; a bonobo sequence was not avail-
able). As a metabolite, the fourth biomarker, bilirubin, is structurally identical in all species of
our study [51].

Biomarker level differences between wild- and captive-born individuals
Differences in biomarker levels may represent organismal responses to short- or long-term
environmental factors, genetic differences between species, or both. We assume that biomark-
ers that show large differences between members of the same species living in different envi-
ronments are those most affected by short-term environmental factors. We therefore
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compared each biomarker between wild- and captive-born individuals of the same species. We
were only able to compare 32 biomarkers since colloid osmotic pressure was neither deter-
mined in captive-born bonobos nor in captive-born chimpanzees. Of these, 17 biomarkers dif-
fered between wild- and captive-born bonobos and 14 differed between wild- and captive-born
chimpanzees; Wilcoxon rank-sum test, p< 0.01; S3 Dataset). When excluding the 25 biomark-
ers showing an environmental effect, only seven biomarkers remained (apolipoprotein B, bili-
rubin, total cholesterol, low-density lipoprotein cholesterol, N-terminal prohormone of brain
natriuretic peptide, Thyroid-stimulating hormone and troponin T).

Biomarker levels that were significantly higher in both captive-born chimpanzees and cap-
tive-born bonobos were alanine transaminase, creatine kinase, ferritin, glucose, and vitamin
B12 (S3 Dataset). The levels or catalytic activity of aspartate transaminase, gamma-glutamyl
transpeptidase, the free thyroid hormones triiodothyronine and thyroxine, urea and folic acid
were only significantly higher in captive-born chimpanzees but not in captive-born bonobos.
The levels or catalytic activity of albumin, apolipoprotein A, cholinesterase and high-density
lipoprotein cholesterol were only significantly higher in captive-born bonobos.

No biomarker was consistently higher in both wild-born great apes, whereas C-reactive pro-
tein, lactate dehydrogenase, lipase, total protein, triglycerides and uric acid were higher in
wild-born and lipoprotein A and phosphate in wild-born chimpanzees (S3 Dataset).

Quantification of influence of environment and species on biomarkers
To assess the relative influence of genetic and environmental factors in our dataset, we tested
whether chimpanzees and bonobos from similar environments showed more similar bio-
marker levels than those from different environments. More specifically, we compared bio-
marker levels between captive- and wild-born bonobos and captive- and wild-born West
African chimpanzees (see description of S1 Fig for details). We observe that wild-born bonobos
and wild-born West African chimpanzees show the smallest differences. In contrast, compari-
sons between different environments (wild-born bonobos to captive-born West African chim-
panzees and captive-born bonobos to wild-born West African chimpanzees) show significantly
larger differences than the comparison between wild-born bonobos and wild-born chimpan-
zees (Wilcoxon rank-sum test, p< 0.001 in both comparisons; S1 Fig). Larger differences are
also observed in the comparison of captive-born bonobos and chimpanzees. We conclude that
short-term environmental influences may account for many of the observed differences in bio-
marker levels.

Exclusion of biomarkers that are significantly different between
individuals of the same species in different environments
To identify potential genetic differences for biomarker concentrations we eliminated from con-
sideration biomarkers that differed between wild- and captive-born great apes since we rea-
soned that these are likely to be influenced by short-term environmental factors. Of the four
lineage-specific biomarkers in our study, only bilirubin levels were equivalent among members
of the same species from distinct habitats.

A human-specific increase in serum bilirubin
Humans have significantly higher serum levels of bilirubin than great apes and rhesus
macaques (Median: 3.4 μmol/L in humans vs.< 1.71 μmol/L in the remaining species). While
12.3 percent of human samples were below the lower limit of quantification for bilirubin, the
fraction in the other species was higher (between 55 and 82 percent in the great apes and 100
percent in the rhesus macaques) (Table 1; Fig 4).
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Fig 4. Lineage-specific biomarker levels in humans and other primates - box representing 25th, 50th and 75th percentiles; whiskers representing 2.5th

to 97.5th percentiles; outliers are not shown; description of species: Rh—DE: captive-born rhesus macaque samples from Germany; B—CD: wild-born
bonobo samples from the Democratic Republic of the Congo; B—DE: captive-born bonobo samples from Germany; Ch—CG: wild-born Central African
chimpanzee samples from the Republic of Congo; Ch—SL: wild-bornWest African chimpanzee samples from Sierra Leone; Ch—DE: captive-born West
African chimpanzee samples Germany; H—DE: human samples from Germany; A: Bonobo-specific change in apolipoprotein A-I; human-specific change in
B: bilirubin, C: cholinesterase and D: lactate; for determination of bilirubin, 1.71 μmol/L represents the lower limit of quantification of the assay.

doi:10.1371/journal.pone.0134548.g004
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Genome-wide association studies have shown that the major gene associated with serum
bilirubin levels is uridine diphosphoglucuronosyltransferase 1 (UGT1A1) [52–54]. The expres-
sion of UGT1A1 largely depends on a microsatellite in the promoter of the UGT1A1 gene, with
an inverse relationship between the number of TA repeats and the activity of the gene [55].
The genome sequences show differences in TA repeat length with 3 repeats in rhesus macaques
(reference assembly rheMac2), 3 to 4 repeats in chimpanzees (chimpanzee resequencing data
from [56]) and 5–8 repeats in humans (13 human genomes from [57]; Fig 2, S1 Table). Fur-
thermore, we found that the transcript expression levels of UGT1A1 in rhesus macaque and
chimpanzee livers were 46 and 35 percent higher than in humans (p = 0.15 and 0.27, respec-
tively; Fig 2, S2 Table). The microsatellite length in two Neandertal individuals [57] and one
Denisovan [58] are similar to present-day humans outside of Africa in having a TA repeat of
length 6 in the promoter of UGT1A1 (S2 Table).

By protein sequence alignment of UGT1A1, we found one human-specific amino acid sub-
stitution F518L (S2 Fig). The substitution lies between a transmembrane domain and di-lysine
motifs in the cytosolic tail that confer retention of UGT1A-proteins to the endoplasmic reticu-
lum (ER) and alter the half-life of UGT1A1 protein [59].

UGT1A1 is the main isozyme responsible for the glucuronidation of bilirubin. However, it
is also involved in the glucuronidation that aides excretion of phytoalexins which are toxic
plant-derived compounds [60]. To assess the effect of a plant- or animal-derived diet on
UGT1A1-expression, we determined UGT1A1 expression in liver samples of mice fed tuber or
meat diets that were either cooked or raw (Carmody et al. in preparation). Mice on a raw tuber
diet showed a tendency of higher UGT1A1 expression than mice on either meat or cooked
tuber diets (Fig 3).

Discussion
The dataset presented here is, to our knowledge, the largest screen of biomarkers in wild- and
captive-born great apes. While this dataset can be used for a variety of analyses, we have chosen
to concentrate on the identification of lineage-specific changes in biomarker levels.

Large effort has been made to minimize preanalytic influences. All samples, including those
from Africa, were frozen immediately after serum extraction. Studies have shown that long-
term storage (up to 10 years) does not affect the results for any of the biomarkers we have
tested [61]. All analyses were carried out using the same automated analyser.

We note that all great apes had to be sedated before sampling. Ketamine anaesthesia has
been shown to influence blood levels of some of the biomarkers we measured (alanine and
aspartate aminotransferase and creatine kinase [62, 63], phosphate [64]) whereas bilirubin is
not changed [65, 66]. However, the differences we observe between captive-born and wild-
born apes indicate that anaesthesia is not a major factor determining differences in blood-
chemistry between groups.

All animals included in this study were deemed healthy by a trained veterinarian. However,
we cannot exclude that subclinical infection could explain high values of C-reactive protein in
the bonobos from Lola Ya Bonobo.

Our laboratory analyses were performed using established automated assays optimized for
use in human clinical medicine. We are aware that this may affect results obtained in other spe-
cies [10, 11, 67]. The sequence identity of proteins measured in our study lies between 95.1 and
100 percent compared to humans for West African chimpanzees and between 87.2 and 100
percent for rhesus macaques (S1 Dataset). Results obtained for some antibody-based assays
(e.g. immunoassays) may therefore be species-dependent. Furthermore, serum catalytic activity
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as the product of enzymatic concentration and activity of each enzyme may be influenced by
differences in protein sequence and/or structure.

Our study included serum samples from both male and female individuals. As sex-specific
biomarker traits may affect overall biomarker level distributions, we analyzed our data for gen-
der-specific differences. The number of significantly different biomarkers between sexes was
greatest in humans compared to all other species (S2 Dataset). The reason for this finding is
not clear. The finding is not consistent with the extent of sexual dimorphism [68]. Possible
explanations include differences in proportions of male and female individuals in our study
groups (female excess among rhesus macaques and captive-born chimpanzees, Table 1) and
the proportion of mature individuals (highest in our human study group).

We find evidence for only few species-specific biomarker differences. Lactate dehydroge-
nase, cholinesterase and bilirubin showed human-specific differences and apolipoprotein A
showed a bonobo-specific difference.

We found many differences in biomarker levels between members of the same species born
and living under different environments. The biomarker levels that showed significant differ-
ences between captive- and wild-born individuals include those that are known to be influ-
enced by dietary factors (ferritin, folic acid, glucose, the free thyroid hormones
triiodothyronine and thyroxine, vitamin B12) and enzymes whose release into blood is depen-
dent upon muscle mass or activity (aspartate transaminase, creatine kinase; S3 Dataset and
Table 1) [26]. Except for bilirubin the comparison between captive-born and wild-born apes
indicates that environmental differences may explain these lineage-specific differences.

In our study levels of apolipoprotein A-I were specifically higher in bonobos. In agreement
with this result, levels of apolipoprotein A-I and high-density lipoprotein cholesterol have been
found to be similar in captive-born West African chimpanzees and humans [10]. However, a
study comparing lipid status in free-ranging and captive macaque species and humans found
that levels varied more between the same species in different environments than between the
different macaque species [67]. Further, apolipoprotein A-I was found to be elevated in female
wild-born bonobos, female captive-born chimpanzees, and in female humans whereas this pat-
tern was not seen in the remaining species. High-density lipoprotein cholesterol levels, which
are highly correlated with apolipoprotein A-I, are known to be influenced by both diet and
exercise in both humans and macaques [19, 26, 69–73]. We therefore cannot exclude that the
lineage-specific change in bonobos is due to some environmental factor.

Lactate dehydrogenase showed a human-specific decrease compared to the apes and rhesus
macaques. However, we detected significant variation in serum LDH activity between wild-
and captive-born great apes, suggesting that LDH activity is likely to be environmentally influ-
enced. As a cytoplasmic enzyme and constituent of all tissues, lactate dehydrogenase is liber-
ated into the blood in response to tissue damage, which may also include muscle activity and
alarm reactions before blood taking [26]. It is therefore conceivable that the non-human pri-
mates in our study group have higher lactate dehydrogenase activity due to a difference in
physical activity.

Serum cholinesterase activity showed a human-specific decrease. The exact function of
serum cholinesterase is unclear [74]. It is abundant in plasma, liver, pancreas, spleen and the
white matter of the brain and is commonly used in clinical medicine to quantify liver synthetic
capacity [26]. In humans genetic variants with catalytic activities that differ by a factor of ten
exist [26]. Cholinesterase activity is furthermore known to be associated with weight, body
mass index (BMI) and muscle mass [75]. Possible explanations for the observed differences
may include a combination of the above mentioned factors.

The protein sequences of apolipoprotein A-I, serum cholinesterase and lactate dehydroge-
nase differ between species (S1 Dataset). It is not known whether these differences change their
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interaction with binding antibodies or their catalytic activity and therefore alter the measure-
ment of these biomarkers with the standard assays applied here. For example, in our study apo-
lipoprotein A-I was determined with an immunoturbidimetric assay that may be sensitive to
protein differences. The human and chimpanzee apolipoprotein A-I protein sequence is identi-
cal while bonobos differ from both by one amino acid. We can therefore not distinguish
whether the lineage-specific changes in apolipoprotein A-I in bonobos, and serum cholinester-
ase and lactate dehydrogenase in humans are due to differences in their protein sequence (S1
Dataset).

Bilirubin levels were consistently higher in humans than in West and Central African chim-
panzees and bonobos (both captive and wild-born), as well as in rhesus macaques. This is in
agreement with a small study that showed that bilirubin levels are twice as high in humans as
in captive chimpanzees [10].

Serum concentration of bilirubin is a function of extrahepatic formation and intrahepatic
excretion of bilirubin. The magnitude of bilirubin formation depends mainly on erythrocyte
half-life [76, 77]. Since the erythrocytes of chimpanzees and rhesus macaques have a half-life
which is about 50 percent shorter than that of human erythrocytes, bilirubin production should
be higher in the great apes and rhesus macaques [78, 79]. However, we observe serum bilirubin
levels that are lower in all the non-human primates, suggesting that bilirubin depletion and not
bilirubin formation may cause the difference in levels.

To explore whether genetic changes might explain this difference we focused on the gene
encoding UDP-glycosyltransferase 1 (UGT1A1) which is the major enzyme involved in the glu-
curonidation of bilirubin (99.5 percent of total turnover) and in the excretion of phytoalexins
which are toxic plant-derived compounds [60, 80, 81]. Levels of bilirubin are highly heritable
and association studies have shown that UGT1A1 is the main contributor to these levels [52,
53]. The gene has not been found to vary in copy number [82]. However, Gilbert’s syndrome
(GS, MIM�143500), an inherited form of mild hyperbilirubinemia, is typically caused by a
homozygous TA insertion in the TATAA element of the 5’ promoter region in Europeans (nor-
mal A(TA)6TAA) (UGT1A1�28) [83]. Homozygotes for the A(TA)7TAA sequence have higher
levels of bilirubin whereas bilirubin levels of heterozygotes are between homozygotes and sub-
jects carrying the wild type [83, 84].

While the promoter repeat length varies from 5 to 8 in humans, rhesus macaques and chim-
panzees show a reduced repeat length of 3 and 3 to 4, respectively. Based on the shorter pro-
moter repeat length we would predict that UGT1A1 expression is reduced in humans
compared with non-human primates. Indeed we find RNA expression to be 46 and 35 percent
higher in rhesus macaques and chimpanzees than in humans (Fig 3. And S2 Table). Notably,
the UGT1A1 promoter in the Neandertal and Denisovan genomes (S1 Table) carries the
sequence A(TA)6TAA, common in humans today. Since the Michaelis constant Km of UDP-
glycosyltransferase (the substrate concentration at which the reaction rate is half of the maxi-
mum rate) lies at bilirubin levels of 0.26 μmol/l [85], well below the median bilirubin of
3.4 μmol/l in humans, lower expression of UGT1A1may well increase serum bilirubin levels.

Protein sequence alignment of UGT1A1 revealed one human-specific amino acid substitu-
tion at position F518L (S2 Fig). Interestingly, this substitution is situated between di-lysine
motifs in the cytosolic tail and a transmembrane domain that confer retention of UGT1A-pro-
teins to the endoplasmic reticulum (ER) [59]. This amino acid substitution between two ER-
retention signals may alter the percentage of protein that stays in the ER and thus the turnover
of UGT1A1 independently of expression differences. Further work is necessary to elucidate if
and to what extent this protein difference and the promoter difference contribute to the altered
bilirubin concentrations in humans.
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In the process of heme degradation, mammals reduce water-soluble biliverdin to the poten-
tially toxic [86–91] bilirubin in an energy-dependant step [51]. Because bilirubin is poorly solu-
ble in water, it is further conjugated with glucuronic acid by UGT1A1 and transported into the
bile, both steps requiring additional energy. Whether this particular mode of heme catabolism
serves further purposes remains elusive [92]. Both in vitro [51, 93] and in vivo [94, 95] anti-oxi-
dative and neuroprotective [96] properties of bilirubin have been known for many years. Clini-
cal studies have shown associations between elevated bilirubin levels and lower incidence of
cardiovascular disease [97], respiratory disease [98], cancer [99] and stroke [100]. However, it
is not clear if this association is due to the inherently higher bilirubin levels or whether more
bilirubin is degraded due to the disease [92].

Modern human populations derive more of their dietary energy from meat than the great
apes (Leonard, Snodgrass et al. 2007). Improved diet quality due to cooking and consumption
of animal protein and fat has been proposed as one among other factors allowing the increased
brain size in humans [101, 102]. Our results indicate that expression of UGT1A1 is higher in
mice fed a raw plant diet than in mice fed either a meat or cooked-plant diet (Fig 3), consistent
with the role UGT1A1 plays in the detoxification and excretion of plant toxins [60]. We
hypothesise that the consumption of cooked food in the last million years of hominin history
may either have reduced the selective constraint on sufficiently high levels of UGT1A1 expres-
sion or even driven reduction in the levels of UGT1A1 expression. The higher level of bilirubin
may be a side-effect of the change in UGT1A1 expression, but may also have come under selec-
tion on its own right due to the beneficial effects associated with higher levels of bilirubin. The
change in bilirubin may thus constitute an example of the wide-ranging consequences of cook-
ing in the evolution of humans.
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