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Abstract: The methods presented in this paper were designed to improve the performance
of a control scheme for the automatic track-keeping of inland vessels. The performance of this
control scheme heavily depends on the underlying models as it employs model inversion for the
calculation of feedforward input signals and reference trajectories for feedback control. However,
vessels on rivers are subject to model uncertainties as well as disturbances, such as cross currents
or wind. Therefore, an estimation scheme was designed for the estimation of disturbances and
their integration into the model inversion procedure. Simulation results show the usefulness of
the presented methods for various disturbances and model uncertainties.
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Fig. 1. Structure of the navigation system.

1. INTRODUCTION

The methods presented in this paper were designed for
the integration into an existing navigation system for the
automatic track-keeping of inland vessels. The structure of
the navigation system, including the track-keeping func-
tionality is depicted in Fig. 1. The graphical user interface
consists of a computer screen, displaying the position of
the ship in an electronic map overlaid with a radar image.
The captain has the option, via a user panel, to select one
of the displayed guiding lines(GL) stored in the system
and activate the track controller. The track controller then
actuates the rudder and keeps the vessel on the chosen
track allowing the captain to focus on traffic. With the use
of a joy stick, the captain has the option to parallel shift
the desired track to avoid oncoming traffic, for example.
Then the navigation system updates the desired track and
generates a smooth transition from the current position to
the newly set parallel distance to the guiding line. The data
of various sensors, such as GPS or gyroscopes, is fed into
the system were it is processed by a Kalman filter allowing
for the estimation of the dynamic states. The structure of
the controller is depicted in Fig. 2. It is based on a 2dof-
design, with a feedforward component for the calculation

Desired Track Feedback
Inversion
Model

Ship

Filter
Kalman

αs, κ, κ
′

δff

δfbψs, rs, αs, ds

ψ, r, α, dx, y sensor data

Fig. 2. Controller structure (variables see Fig. 3).

of the feedforward rudder angle δff and reference states
as well as a feedback component to compensate for model
uncertainties and external disturbances. The feedforward
controller is based on the dynamic inversion of the ship
model, whereas the feedback controller is implemented as
a Riccati controller based on the linearized model around
the desired track. This control system has been proven to
work well with various vessels and river conditions, thereby
providing the captain an important aid in navigating
safely. The methods presented in this paper aim to enhance
control performance and robustness. To achieve this goal,
external disturbances, which were unaccounted for in the
existing control scheme, are now estimated and explicitly
processed in the feedforward component of the control
algorithm. Moreover, using model based control schemes,
knowledge of the parameters of the underlying models is
important for control performance. However, it is desirable
to maintain control performance even in case of inaccu-
rately set parameters. Therefore, it was also investigated
whether an estimation of disturbances can compensate for
model errors. In Do (2010) a disturbance observer for the
estimation of unknown constant disturbances is integrated
into the control design for track-keeping. The methods
presented here are specifically tailored for the integration
into the existing control scheme.

This paper is organized as follows. In section two the model
and the model inversion procedure are introduced. Section
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three describes estimation schemes for the estimation of
disturbances in the drift angle β and the turning rate r
and their incorporation in the control scheme. Simula-
tion results demonstrate the usefulness of the presented
methods for various disturbances and model uncertainties.
Finally, the paper is concluded with a brief discussion of
the advantages of the presented methods.

2. MODEL EQUATIONS AND INVERSION

In this section the model equations and the inversion
procedure are introduced. The feedforward model consists
of the states heading angle ψ, turning rate r and drift angle
β which are depicted in Fig. 3, along with all other relevant
variables. This section is finished by a brief description of
the feedback model.

2.1 Model Equations

For the turning rate r a simple first order Nomoto model
(see e.g. Fossen (2002)) is employed:

ṙ = −
1

Tr
r + brδ. (1)

The parameters Tr and br are assumed to be dependent
on relative speed vr according to Bolk (2004)

Tr = TN
r

vNr
vr
, br = bNr

vr
2

vNr
2
. (2)

The differential equation for the drift angle β was origi-
nally derived in Bittner (2002). Here a slightly different

approach is presented, which is based on Newton’s law for
the sway speed vs in the reference point P . Assuming the
center of gravity in P , the horizontal plane model results
in

m(v̇s + usr) = Fad +
∑

Fy, (3)

with the surge speed us and the added mass related force
Fad (Fossen (2002)):

Fad = madv̇s. (4)

The drift angle β can be described as

tan(β) = −
vs
us
. (5)

With vs ≪ us the following assumptions can be made:

β = −
vs
us
, us = vabs, u̇s = v̇abs = 0 (6)

and

β = −
vs
vabs

, β̇ = −
v̇s
vabs

. (7)

With (4),(6) and (7) β̇ can be stated as

β̇ = −
1

(m+mad)vabs

∑
Fy +

m

m+mad

r . (8)

The forces Fy consist of the following components:

• forces of the water acting upon the hull due to the
angle βr between hull and stream (Bittner (2002)):

F β
y = cβv

2

rβr = cβv
2

r (β − βw). (9)

• forces Fw due to wind
• rudder force Fδ

The rudder force Fδ is assumed to be small compared
to F β

y and is therefore neglected. The force Fw is not
dependent on the states or the inputs and is therefore
considered as disturbance.

For the drift angle βw between the vector of absolute
speed vabs and the vector of relative speed vr the following
equation holds

vr sin(βw) = vw sin(α− αw). (10)

Given that |βw| <
π
2
, which is the case in track-keeping

occurring under normal conditions, the following approxi-
mation can be introduced:

βw ≈
vw
vr

sin(α− αw). (11)

The drift dynamics model results in:

β̇ = −
1

TN
β

v2r
vabs

(β −
vw
vr

sin(α− αw)) +Kβr. (12)

2.2 Model Inversion

In Bittner (2002) the model inversion procedure for feed-
forward control of inland vessels was introduced. The task
of model inversion consists of calculating a feedforward
rudder angle δff that keeps the vessel on the desired track
under nominal conditions, as well as calculating reference
trajectories for the model states of the underlying state
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feedback controller. For the reference states ψs, rs and βs
the following relations can be stated

ψs = αs + βs (13)

rs = α̇s + β̇s (14)

ṙs = α̈s + β̈s , (15)

whereas αs represents the known course of the desired
track and α̇s and α̈s can be calculated with the known
curvature κ of the desired track:

α̇s = vabsκ (16)

α̈s = vabs
∂

∂s
κ (17)

From eq.(1) it follows that

δff =
1

br
ṙs +

1

Trbr
rs. (18)

Equations (14) and (12) allow for the formulation of a
differential equation for βs,

β̇s = −
1

TN
β (1 −Kβ)

v2r
vabs

(βs −
vw
vr

sin(αs − αw))

+
Kβ

1−Kβ

α̇s,

(19)

which is only dependent on βs and the known quantities
αs, αw (see section two) and α̇s and can therefore be
integrated. In system theoretic terms eq.(19) represents
the zero dynamics of the system for the output α = ψ−β.
As Kβ < 1 this equation is stable and can always be
integrated.

Eq. (19), (13) and (14) allow for the computation of
reference trajectories for the underlying state feedback
controller. Eq. (19), (14), (15) and (18) allow for the
computation of the feedforward rudder angle δff .

2.3 Feedback Model

The Riccati controller in Fig. 2 is based on the linearized
model equations around the reference trajectories for the
respective states. As the goal is ultimately to control
the distance d between the control reference point of the
vessel and the desired track, the distance d needs to be
incorporated into the feedback model, with

d

dt
(d− ds) = vabs(α− αs), (20)

with ds = 0. Apart from that, the model is augmented by
the state i =

∫
d− ds, to guarantee for zero offset in the

state d in case of disturbances. More information can be
found in Bolk (2004).

3. DISTURBANCE ESTIMATION

In the following sections the algorithms for the estimation
of disturbances in the turning rate r and the drift angle
β are presented. The simulations were carried out for the
parameters of a push tow with four empty barges (length
= 180m), going downstream with vabs = 4.5m/sec. The
underlying model and control parameters can be found in
table 1. Additionally, the employed simulation tool allows
for the simulation of sensor data with their respective
sample rates and measurement noise.

Table 1. List of parameters.

vabs vr TN
r bNr vNr TN

B
Kβ Taw Trw Krw

4.5 3.5 22.0 0.001 3.5 50.0 0.7 40.0 20 0.1
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Fig. 4. Measured and simulated drift angle β and turning
rate r.

3.1 Estimation of αw

As stated above the integration of eq. (19) requires knowl-
edge of the direction of current αw. In previous applica-
tions of the presented control scheme, αw was assumed
to be parallel to the desired track and therefore set to
αw = αs. This is a reasonable assumption when no addi-
tional information about the river is available, as generally
no strong side currents are found on inland waterways.
However, this is not true for certain scenarios, e.g.

• Desired tracks that are not perfectly parallel to the
stream direction

• At places where there are actually significant side
currents, for example close to inlets.

If the assumption for αw is incorrect, the calculated
reference trajectory for βs is incorrect as well, leading
to errors in the remaining reference trajectories and the
calculation of δff . Moreover, model errors as well as
unmodeled forces on the hull, like wind forces or forces due
to interactions with other vessels will lead to errors in the
calculation of the desired states and inputs. Therefore, the
disturbance estimation algorithm is designed to estimate
disturbances acting on the hull, such as water currents and
wind. To illustrate the necessity of disturbance estimation,
in Fig. 4 on the left, the measured drift angle βmeas and
the simulated drift angle βsim are depicted for a push tow
with four empty barges navigating on the Rhine river. As
there is an offset between βmeas and βsim for positive and
negative drift angles, this offset cannot be compensated
for by adjusting the model parameters of the underlying
simulation.

Often times, the estimation of disturbances is integrated
into the state estimation algorithm, which is a Kalman
filter in this application. For this purpose, the model is
extended by an additional state, representing the distur-
bance to be estimated. In our application this state αwfb

represents the offset between the assumed direction of
the current αwff

and the actual direction of current. The
modified equations within the Kalman filter model are

β̇ =−
1

TN
B

v2rel
vabs

(β −
vw
vr

sin(α− (αwff
+ αwfb

))

+Kβr (21)
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Fig. 5. Closed-loop simulation results for the KF-
estimation of a constant disturbance ∆αw = 7◦ with
αw = αGL +∆αw .

α̇wfb
= 0 . (22)

As no assumption can be made about the dynamics of
αwfb

it is modeled with trivial dynamics. The variable
αwff

represents an input into the system. If no additional
information about the river is available the best apriori
guess for the direction of the current is αwff

= αGL. The
design parameters that determine the dynamic behavior
of the Kalman filter are the elements in the covariance
matrix Q of the associated state noise (see e.g. Pannocchia
(2003)), for which a diagonal structure is usually assumed.
In particular, the elements Qβ and Qαwfb, associated with
the state noise for the respective states, determine how
quickly changes in external disturbances can be traced
and how noisy the resulting signals are. Fig. 5 shows
the simulation results for the closed-loop simulation of
the system with αwfb

estimated within the Kalman filter
and fed into the model inversion procedure for a constant
disturbance. The value Qβ was left unchanged from the es-
timation without disturbance, Qαwfb was chosen such that
a constant offset in αw could be traced adequately fast.
It becomes obvious that the model inversion algorithm is
very sensitive to noisy estimations of αw, which produces
unacceptably strong noise, especially in the signal for δff .
In fact, by choosing both Qβ and Qαwfb to be very small it
is possible to reduce the noise in the variable αwfb

leading
to a smoother signal. However, this design process is not
intuitive, requiring tedious trial and error work. Moreover,
if Qβ and Qαwfb are chosen to be too small, there is an
offset between the measured value βmeas and its estimated
counterpart βest, especially in the case of model errors.

Therefore, an alternative approach is presented here. As it
is necessary to generate a smooth signal αw to be fed into
the model inversion procedure the following algorithm,
which is part of the controller rather than the estimator,
is employed:
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Fig. 6. Closed-loop simulation results for the estimation of
a constant disturbance ∆αw = 7◦ with αw = αGL +
∆αw.

β̇sim =−
1

TN
B

v2rel
vabs

(βsim −
vw
vr

sin(α− αw)) +Kβr(23)

αw = αwff
+ αwfb

(24)

αwff
= αwGL

(25)

αwfb
=

t∫

to

−
1

Twα

(βref − βsim)dτ . (26)

The estimation of αw is based on an internal simulation of
β based on the underlying model. The value αw is adapted
such, that the difference between the actual value βref
and the internally simulated value βsim becomes small.
The signal βref can either be the measurement itself or
the estimated value βest. As above, the estimated value
of αw consists of an apriori or ”feedforward” estimation
awff = αGuidingLine which is extended by a ”feedback”-
component αwfb. The terms ”feedforward” and ”feedback”
are also chosen to indicate the analogy of the algorithm
to a control scheme with βsim as the output variable,
βref as the desired variable and αw as the manipulated
variable. The desired smoothness of the signal for αw is
achieved by merely integrating the ”control error” (βref −
βsim). Fig. 6 shows the closed-loop simulation results
for the previously introduced scenario and the presented
estimation scheme. Due to the smoothness of the signal
αwfb

no additional noise is introduced by the estimation
scheme. The dynamics of the estimation of αwfb

is tuned
with the single parameter Twα

, representing the time
constant for the integration. This allows for adjusting the
dynamics of αwfb

in a transparent way in contrast to the
estimation via Kalman filtering, making the estimation
scheme well suited for online tuning.

Ideally, the estimation scheme should not only be able to
compensate for additional external forces but should also
be able to improve control performance by compensating
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Fig. 7. Closed-loop simulation results for TN
B = 100sec.

for model uncertainties. For the drift dynamics equation,
these uncertainties are mostly related to the time constant
TN
B , as identification experiments with data from various

inland vessels revealed. In Fig. 7, the simulation results
are shown for a large error in the assumed value for TN

B .
The parameter in the plant model was set to TN

B = 100,
whereas the assumed value within the controller was left
at the value listed in table 1. The desired track in this
simulation is a section of a circle, similar to the large curves
of the Rhine river with slow changing curvatures.

Due to the wrongly set value for TN
B the desired calculated

value βs is too small in the long curve compared to the
actually required value βs. The estimation scheme reacts
to this difference, by adapting αwfb

such that the vessel
can be kept on its track, even though the error in βs is
not due to a large angle between α and αw. However,
compensating for model uncertainties is only possible for
tracks with slow changing curvatures κ, as the resulting
estimated value αwfb

is dependent on β. This is true for
most stretches on the Rhine river. For some stretches of the
Rhine river, or in case of aggressive avoidance maneuvers,
this condition is violated, leading to larger distances d
to the desired track. This situation is illustrated in Fig.
8, which shows the closed-loop simulation results for
the previously introduced S-shaped track. The simulation
results in Fig. 8 reveal that for large model uncertainties
in the time constant TN

B and a desired track with quick
changing curvature an estimation of TN

B is necessary to
achieve good control performance. In Fig. 9 the closed-
loop simulation results are shown for an estimation of
TN
B within the Kalman filter whose model was augmented

by an additional state ∆TN
B representing an offset in the

assumed value TN
Bmod:

TN
Best

= TN
Bmod +∆TN

B . (27)

The value TN
Best

was then fed into the inversion procedure.
It becomes obvious that the control performance is im-
proved by the estimation of ∆TN

B . However, as pointed out
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Fig. 8. Closed-loop simulation results for TN
B = 100sec.
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Fig. 9. Closed-loop simulation results for TN
B = 100sec and

estimation of ∆TN
B .

above, this requires careful calibration of the Kalman filter
matrix Q. The employment of simultaneous disturbance
and parameter estimation is subject to current research.

3.2 Estimation of rw

The dynamics of the turning rate r is subject to external
disturbances in the same way as the drift angle β. The
currents in rivers are strongly variable, especially in case
of high water, leading to additional forces not covered by
the model in eq.(1). Moreover, offsets in rudder forces are a
common phenomenon if the control system is not carefully
calibrated. For example, if the output of the control system
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Fig. 10. Closed-loop simulation results for δoff = 10 and
TN
r = 44, dprev..distance without estimation of rw.

is δout = 0, the actual rudder angle is δ = δoff . There-
fore, a disturbance estimation algorithm is introduced to
account for these phenomena. Moreover, this estimation
scheme allows for improving control performance in case of
model uncertainties, as well. The model of eq. 1 is extended
by an additional term rw, representing the influence of
unmodeled forces or model errors. It can be interpreted
as the stationary turning rate, due to disturbances with
δout = 0:

ṙ = −
1

Tr
(r − rw) + brδ. (28)

The algorithm for the estimation for rw is set up similarly
to the one for the estimation of αw:

ṙsim =−
1

Tr
(rsim − rw) + brδout (29)

rw =

t∫

to

1

Trw
(rm − rsim)dτ +Krw(rm − rsim). (30)

Again, the value rw is adapted such, that the difference
between the internally simulated value rsim and the mea-
sured value rm becomes small. In contrast to the previ-
ously introduced estimation scheme for αw, rw consists
of an integral component and a proportional component,
much similar to a conventional PI-controller. The intro-
duction of a proportional component is made possible by
the fact that the disturbance rw is incorporated in the
model inversion procedure only at the very end, in the
calculation of the feedforward rudder angle δff , with

δff =
1

br
ṙs +

1

Trbr
(rs − rw), (31)

making the inversion much less sensitive to noise in the
term rw and allowing for a more aggressive estimation. Fig.
10 shows the closed-loop simulation results for a constant

disturbance δoff = 10 and a time constant for the plant
model of TN

r = 44, representing a model error of 22sec. As
the estimation algorithm can be tuned more aggressively,
the control performance is increased strongly, even in case
of the previously introduced S-shaped track.

4. CONCLUSION

These results suggest that the methods presented here help
to enhance the performance of the investigated control
scheme. In fact, recent experimental results for a push tow
on the Rhine river confirm these results.

One important consequence of the employment of the pre-
sented estimation schemes for disturbances is that it makes
the incorporation of an integrating component in the
feedback-controller obsolete. As pointed out in section 2.3,
this integrating component was originally incorporated to
avoid steady state offsets in the output variable d, in the
presence of disturbances. In Pannocchia (2003) rigorous
conditions are presented for the design of disturbance mod-
els and their incorporation into the control scheme that
guarantee for offset-free control, in the presence of constant
disturbances and arbitrary model mismatch. An important
result in Pannocchia (2003) states that the number of
estimated disturbances should be equal to the number of
measurements to guarantee for zero-offset. As we assume
all states to be measurable, but only incorporate two
disturbances we hereby violate this condition. However,
the two differential equations for the two states ψ and
d, which we do not augment by integrating disturbances
merely represent kinematic relations and are therefore not
subject to disturbances or model errors. Therefore, an
estimation of disturbances in these states is not necessary.
In general, apart from enhancing control performance,
the employment of disturbance models is considered to
be advantageous over the employment of an output-error
integrating feedback component as no anti-windup code
is necessary. This is due to the fact that model error is
integrated, rather than output-error.
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