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Abstract

The standard parameterization of the VERTEX COVER problem (Given an undirected
graph G and k ∈ N as input, does G have a vertex cover of size at most k?) has the solution
size k as the parameter. The following more challenging parameterization of VERTEX COVER

stems from the observation that the size MM of a maximum matching of G lower-bounds
the size of any vertex cover of G: Does G have a vertex cover of size at most MM +kµ? The
parameter is the excess kµ of the solution size over the lower bound MM .

Razgon and O’Sullivan (ICALP 2008) showed that this above-guarantee parameterization
of VERTEX COVER is fixed-parameter tractable and can be solved1 in time O⋆(15kµ). This
was first improved to O⋆(9kµ) (Raman et al., ESA 2011), then to O⋆(4kµ) (Cygan et al.,
IPEC 2011, TOCT 2013), then to O⋆(2.618kµ) (Narayanaswamy et al., STACS 2012) and
finally to the current best bound O⋆(2.3146kµ) (Lokshtanov et al., TALG 2014). The last two
bounds were in fact proven for a different parameter: namely, the excess kλ of the solution
size over LP , the value of the linear programming relaxation of the standard LP formulation
of VERTEX COVER. Since LP ≥ MM for any graph, we have that kλ ≤ kµ for YES instances.
This is thus a stricter parameterization—the new parameter is, in general, smaller—and the
running times carry over directly to the parameter kµ.

We investigate an even stricter parameterization of VERTEX COVER, namely the excess k̂
of the solution size over the quantity (2LP −MM). We ask: Given a graph G and k̂ ∈ N as

input, does G have a vertex cover of size at most (2LP −MM) + k̂? The parameter is k̂. It
can be shown that (2LP−MM) is a lower bound on vertex cover size, and since LP ≥MM

we have that (2LP −MM) ≥ LP , and hence that k̂ ≤ kλ holds for YES instances. Further,

(kλ− k̂) could be as large as (LP−MM) and—to the best of our knowledge—this difference
cannot be expressed as a function of kλ alone. These facts motivate and justify our choice
of parameter: this is indeed a stricter parameterization whose tractability does not follow
directly from known results.

We show that VERTEX COVER is fixed-parameter tractable for this stricter parameter k̂:

We derive an algorithm which solves VERTEX COVER in time O⋆(3k̂), thus pushing the enve-
lope further on the parameterized tractability of VERTEX COVER.

1The O⋆ notation hides polynomial factors.

http://arxiv.org/abs/1509.03990v1


1 Introduction

The input to the VERTEX COVER problem consists of an undirected graph G and an integer k,
and the question is whether G has a vertex cover—a subset S ⊆ V (G) of vertices such that every
edge in G has at least one end-point in S—of size at most k. This problem is among Karp’s
original list of 21 NP-complete problems [14]; it is also one of the best-studied problems in the
field of parameterized algorithms and complexity [5,15,18,24].

The input to a parameterized version of a classical decision problem consists of two parts:
the classical input and a specified parameter, usually an integer, usually denoted by the letter
k. A fixed-parameter tractable (FPT) algorithm [8, 10] for this parameterized problem is one
which solves the underlying decision problem in time f(k) · nc where (i) f is a computable
function of k alone, (ii) n is the size of the (classical) input instance, and (iii) c is a constant
independent of n and k. This running time is often written as O⋆(f(k)); the O⋆ notation hides
constant-degree polynomial factors in the running time. A parameterized algorithm which has
an FPT algorithm is itself said to be (in) FPT.

The “standard” parameter for VERTEX COVER is the number k which comes as part of the
input and represents the size of the vertex cover for which we look—hence referred to, loosely, as
the “solution size”. This is the most extensively studied parameterization of VERTEX COVER [1,
4, 5, 15, 22]. Starting with a simple two-way branching algorithm (folklore) which solves the
problem in time O⋆(2k) and serves as the de facto introduction-cum-elevator-pitch to the field,
a number of FPT algorithms with improved running times have been found for VERTEX COVER,
the current fastest of which solves the problem in O⋆(1.2738k) time [5]. It is also known that
unless the Exponential Time Hypothesis (ETH) fails, there is no algorithm which solves VERTEX

COVER in O⋆(2o(k)) time [13].

This last point hints at a fundamental drawback of this parameterization of VERTEX COVER:
In cases where the size of a smallest vertex cover (called the vertex cover number) of the input
graph is “large”—say, Ω(n) where n is the number of vertices in the graph—one cannot hope to
use these algorithms to find a smallest vertex cover “fast”. This is, for instance, the case when
the input graph G has a large matching, which is a set of edges of G no two of which share
an end-point. Observe that since each edge in a matching has a distinct representative in any
vertex cover, the size of a largest matching in G is a lower bound on the vertex cover number
of G. So when input graphs have matchings of size Ω(n)—which is, in a real sense, the most

common case by far (see, e.g.; [2, Theorem 7.14])—FPT algorithms of the kind described in the
previous paragraph take Ω(cn) time for some constant c, and one cannot hope to improve this
to the formO(co(n)) unless ETH fails. Put differently: consider the standard parameterization of
VERTEX COVER, and let MM denote the size of a maximum matching—the matching number—
of the input graph. Note that we can find MM in polynomial time [9]. When k < MM the
answer is trivially NO, and thus such instances are uninteresting, and when k ≥ MM , FPT
algorithms for this parameterization of the problem are impractical for those (most common)
instances for which MM = Ω(n).

Such considerations led to the following alternative parameterization of VERTEX COVER,
where the parameter is the “excess” above the matching number:

ABOVE-GUARANTEE VERTEX COVER (AGVC) Parameter: kµ
Input: A graph G and kµ ∈ N.
Question: Does G have a vertex cover of size at most MM + kµ?

The parameterized complexity of AGVC was settled by Razgon and O’Sullivan [25] in 2008;
they showed that the problem is FPT and can be solved in O⋆(15kµ) time. A sequence of faster
FPT algorithms followed: In 2011, Raman et al. [24] improved the running time to O⋆(9kµ),
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and then Cygan et al. [6,7] improved it further to O⋆(4kµ). In 2012, Narayanaswamy et al. [19]
developed a faster algorithm which solved AGVC in time O⋆(2.618kµ). Lokshtanov et al. [16]
improved on this to obtain an algorithm with a running time of O⋆(2.3146kµ ). This is currently
the fastest FPT algorithm for ABOVE-GUARANTEE VERTEX COVER.

The algorithms of Narayanaswamy et al. and Lokshtanov et al. in fact solve a “stricter” pa-
rameterization of VERTEX COVER. Let LP denote the minimum value of a solution to the linear

programming relaxation of the standard LP formulation of VERTEX COVER (See Section 2 for def-
initions.). Then LP is a lower bound on the vertex cover number of the graph. Narayanaswamy
et al. introduced the following parameterization2 of VERTEX COVER, “above” LP :

VERTEX COVER ABOVE LP (VCAL) Parameter: kλ
Input: A graph G and kλ ∈ N.
Question: Does G have a vertex cover of size at most LP + kλ?

The two algorithms solve VCAL in times O⋆(2.618kλ) and O⋆(2.3146kλ), respectively. Since
the inequality LP ≥ MM holds for every graph we get that VCAL is a stricter parameteriza-
tion of VERTEX COVER, in the sense that these algorithms for VCAL directly imply algorithms
which solve AGVC in times O⋆(2.618kµ ) and O⋆(2.3146kµ ), respectively. To see this, consider
an instance (G, kµ) of AGVC where MM is the matching number and V Copt is the (unknown)
vertex cover number of the input graph G, and let x = MM + kµ. The question is then whether
V Copt ≤ x. To resolve this, find the value LP for the graph G (in polynomial time) and set
kλ = x − LP . Now we have that V Copt ≤ x ⇐⇒ V Copt ≤ LP + kλ, and we can check if the
latter inequality holds—that is, we can solve VCAL—in O⋆(2.3146kλ ) time using the algorithm
of Lokshtanov et al. Now LP ≥ MM =⇒ (x − LP ) ≤ (x −MM) =⇒ kλ ≤ kµ, and so this
algorithm runs in O⋆(2.618kµ ) time as well.

This leads us naturally to the next question: can we push this further? Is there an even
stricter lower bound for VERTEX COVER, such that VERTEX COVER is still fixed-parameter tractable
when parameterized above this bound? To start with, it is not clear that a stricter lower bound
even exists for VERTEX COVER: what could such a bound possibly look like? It turns out that we
can indeed derive such a bound; we are then left with the task of resolving tractability above
this stricter bound.

Our Problem. Motivated by an observation of Lovász and Plummer [17] we show—see Lemma 1—
that the quantity (2LP −MM) is a lower bound on the vertex cover number of a graph, and
since LP ≥ MM we get that (2LP −MM) ≥ LP . This motivates the following parameteriza-
tion of VERTEX COVER:

VERTEX COVER ABOVE LOVÁSZ-PLUMMER (VCAL-P) Parameter: k̂

Input: A graph G and k̂ ∈ N.
Question: Does G have a vertex cover of size at most (2LP −MM) + k̂?

Since (2LP −MM) ≥ LP we get, following similar arguments as described above, that VER-
TEX COVER ABOVE LOVÁSZ-PLUMMER is a stricter parameterization than VERTEX COVER ABOVE

LP. Further, (kλ − k̂) could be as large as (LP −MM) and—to the best of our knowledge—
this difference cannot be expressed as a function of kλ alone for the purpose of solving VERTEX

COVER. These facts justify our choice of parameter: VERTEX COVER ABOVE LOVÁSZ-PLUMMER

is indeed a stricter parameterization than both ABOVE-GUARANTEE VERTEX COVER and VERTEX

COVER ABOVE LP, and its tractability does not follow directly from known results.

2To be precise, Narayanaswamy et al. used the value ⌈LP ⌉ instead of just LP in their definition of VERTEX COVER

ABOVE LP, but this makes no essential difference.
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Our Results. The main result of this work is that VERTEX COVER is fixed-parameter tractable
even when parameterized above this stricter lower bound:

Theorem 1. VERTEX COVER ABOVE LOVÁSZ-PLUMMER is fixed-parameter tractable and can be

solved in O⋆(3k̂) time.

By the discussions above, this directly implies similar FPT algorithms for the two weaker
parameterizations:

Corollary 1. VERTEX COVER ABOVE LP can be solved in O⋆(3kλ) time, and ABOVE-GUARANTEE

VERTEX COVER can be solved in O⋆(3kµ) time.

Our Methods. We now sketch the main ideas behind our FPT algorithm for VERTEX COVER

ABOVE LOVÁSZ-PLUMMER; the details are in Section 3. Let k = (2LP −MM) + k̂ denote the
“budget”, which is the maximum size of a vertex cover in whose existence we are interested; we
want to find if there is a vertex cover of size at most k. At its core, our algorithm is a simple
branching algorithm which (i) manages to drop the measure k̂ by at least 1 on each branch, and
(ii) has a worst-case branching factor of 3. To achieve this kind of branching we need to find,
in polynomial time, constant-sized structures in the graph, on which we can branch profitably.
It turns out that none of the “local” branching strategies traditionally used to attack VERTEX

COVER—from the simplest “pick an edge and branch on its end-points” to more involved ones
based on complicated structures (e.g., those of Chen et al. [5])—serve our purpose. All of these
branching strategies give us a drop in k in each branch—because we pick one or more vertices
into the solution—but give us no control over how LP and MM change.

So we turn to the more recent ideas of Narayanaswamy et al. [19] who solve a similar
problem: they find a way to preprocess the input graph using reduction rules in such a way that
branching on small structures in the resulting graph would make their measure (k − LP ) drop
on each branch. We find that their reduction rules do not increase our measure, and hence that
we can safely apply these rules to obtain a graph where we can pick up to two vertices in each
branch and still have control over how LP changes. The branching rules of Narayanaswamy et
al., however, are not of use to us: these rules help control the drop in LP , but they provide no
control over how MM changes. Note that for our measure k̂ to drop we need, roughly speaking,
(i) a good drop in k, (ii) a small drop in LP , and (iii) a good drop in MM . None of the branching
strategies of Narayanaswamy et al. or Lokshtanov et al. (or others in the literature which we
tried) help with this.

To get past this point we look at the classical Gallai-Edmonds decomposition of the reduced
graph, which can be computed in polynomial time [9, 11, 12, 17]. We prove that by carefully
choosing edges to branch based on this decomposition, we can ensure that both LP and MM
change in a way which gives us a net drop in the measure k̂. The key ingredient and the most
novel aspect of our algorithm—as compared to existing algorithms for VERTEX COVER—is the
way in which we exploit the Gallai-Edmonds decomposition to find small structures—edges
and vertices—on which we can branch profitably. While this part is almost trivial to implement,
most of the technical effort in the paper has gone into proving that our choices are correct. See
Algorithm 1 for an outline which highlights the new parts, and Algorithm 2 on page 9 for the
complete algorithm.

2 Preliminaries

We use ⊎ to denote the disjoint union of sets. All our graphs are undirected and simple. V (G)
and E(G) denote, respectively, the vertex and edge sets of a graph G. G[X] is the subgraph of
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Algorithm 1 An outline of the algorithm for VERTEX COVER ABOVE LOVÁSZ-PLUMMER.

1: function VCAL-P((G, k̂))
2: Exhaustively apply the three reduction rules of Narayanaswamy et al. to (G, k̂).
3: Let (G, k̂) denote the resulting graph on which no rule applies.
4: if (G, k̂) is a trivial instance then

5: return True or False as appropriate.

6: Compute the Gallai-Edmonds decomposition V (G) = O ⊎ I ⊎ P of G.
7: if G[I ∪ P ] contains at least one edge {u, v} then

8: Branch on the edge {u, v}. k̂ drops by 1 on each branch.
9: else ⊲ Now P = ∅.

10: Branch on a vertex u ∈ O = V (G) and two of its neighbours v,w ∈ O:
11: When we pick both of v,w into the solution in one branch, k̂ drops by 1.
12: When we pick u into the solution in the other branch, k̂ may not drop. We find a

suitable edge in G′ = (G \ u) and branch on its end-points to make k̂ drop.

G induced by a vertex subset X ⊆ V (G): G[X] = (X,F ) ; F = {{v,w} ∈ E(G) ; v,w ∈ X}.
MM(G) is the matching number of graph G, and OPT (G) is the vertex cover number of G.
A matching M in graph G saturates each vertex which is an end-point of an edge in M , and
exposes every other vertex in G. M is a perfect matching if it saturates all of V (G). M is a near-

perfect matching if it saturates all but one vertex of V (G). Graph G is said to be factor-critical if
for each v ∈ V (G) the induced subgraph G[(V (G) \ {v})] has a perfect matching.

For X ⊆ V (G), N(X) is the set of neighbours of X which are not in X: N(X) = {v ∈
(V (G) \X) ; ∃w ∈ X : {v,w} ∈ E(G)}. X ⊆ V (G) is an independent set in graph G if
no edge in G has both its end-points in X. The surplus of an independent set X ⊆ V (G) is
surplus(X) = (|N(X)| − |X|). The surplus of a graph G, surplus(G), is the minimum surplus
over all independent sets in G. Graph G is a bipartite graph if V (G) can be partitioned as
V (G) = X ⊎ Y such that every edge in G has exactly one end point in each of the sets X,Y .
Hall’s Theorem tells us that a bipartite graph G = ((X ⊎ Y ), E) contains a matching which
saturates all vertices of the set X if and only if ∀S ⊆ X : |N(S)| ≥ |S|. König’s Theorem tells
us that for a bipartite graph G, OPT (G) = MM(G).

The linear programming (LP) relaxation of the standard LP formulation for VERTEX COVER

for a graph G (the relaxed VERTEX COVER LP for G for short), denoted LPV C(G), is:

minimize
∑

v∈V (G)

xv

subject to xu + xv ≥ 1 , {u, v} ∈ E

0 ≤ xv ≤ 1 , v ∈ V (G)

A feasible solution to this LP is an assignment of values to the variables xv ; v ∈ V (G) which
satisfies all the conditions in the LP, and an optimum solution is a feasible solution which mini-
mizes the value of the objective function

∑

v∈V (G) xv. We use w(x) to denote the value (of the
objective function) of a feasible solution x to LPV C(G), and LP (G) to denote the value of an
optimum solution to LPV C(G). OPT (G) and MM(G) are then the values of optimum solu-
tions to the integer programs corresponding to LPV C(G) and to its LP dual, respectively [3].
It follows that for any graph G, MM(G) ≤ LP (G) ≤ OPT (G). Our stronger lower bound for
OPT (G) is motivated by a similar bound due to Lovász and Plummer [17, Theorem 6.3.3]:

Lemma 1. For any graph G, OPT (G) ≥ (2LP (G) −MM(G)).
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Proof. Let S be a smallest vertex cover of graph G, and let H = ((S ⊎ (V (G) \ S)), F ) be the
bipartite subgraph of G with F = {u, v} ∈ E(G) ; u ∈ S, v ∈ (V (G) \ S). That is, the vertex set
of H is V (G) with the bipartition (S, (V (G)\S)), and the edge set of H consists of exactly those
edges of G which have one end-point in S and the other in (V (G)\S). Let T be a smallest vertex
cover of graph H. Then |T | = OPT (H) = MM(H), where the second equality follows from
König’s Theorem. Consider the following assignment y of values to variables yv ; v ∈ V (G):

yv =











1 if v ∈ (S ∩ T )
1
2 if v ∈ ((S ∪ T ) \ (S ∩ T ))

0 otherwise.

Observe that 0 ≤ yv ≤ 1 for each v ∈ V (G). We claim that y is a feasible solution to
LPV C(G). Indeed, since S is a vertex cover of G, every edge {u, v} ∈ E(G) must have at
least one end-point in S. If {u, v} ∩ (S ∩ T ) 6= ∅ then y assigns the value 1 to at least one of
yu, yv, and so we have that yu + yv ≥ 1. Otherwise, if {u, v} ⊆ (S \ (S ∩ T )) then y assigns the
value 1

2 to both of yu, yv, and so we have that yu + yv = 1. In the only remaining case, exactly
one of {u, v} is in S, and the other vertex is in (V (G) \ S). Without loss of generality, suppose
{u, v} ∩ S = {u}, v ∈ (V (G) \ S). Then {u, v} ∈ E(H) and u /∈ T , hence we get—since T is a
vertex cover of H—that v ∈ T . Thus {u, v} ⊆ ((S ∪ T ) \ (S ∩ T )), and so y assigns the value 1

2
to both of yu, yv and we have that yu+ yv = 1. Thus the assignment y satisfies all the conditions
in the LPV C(G), and hence is a feasible solution to LPV C(G). Thus w(y) ≥ LP (G).

Observe now that

w(y) =
|S|+ |T |

2
=

OPT (G) +OPT (H)

2
=

OPT (G) +MM(H)

2
≤

OPT (G) +MM(G)

2
,

where the first equality follows from the way we defined y, and the inequality follows from the
observation that the matching number of the subgraph H of G cannot be larger than that of G

itself. Putting these together we get that LP (G) ≤ w(y) ≤ OPT (G)+MM(G)
2 , which in turn gives

the bound in the lemma.

For any graph G there exists an optimum solution to LPV C(G) in which xv ∈ {0,
1
2 , 1} ; v ∈

V (G) [20]. Such an optimum solution is called a half-integral solution to LPV C(G), and we
can find such a solution in polynomial time [21]. Whenever we refer to an optimum solution
to LPV C(G) in the rest of the paper, we mean a half-integral solution. Given a half-integral
solution x to LPV C(G), we define V x

i = {v ∈ V (G) ; xv = i} for each i ∈ {0, 12 , 1}. For any
optimal half-integral solution x we have that N(V x

0 ) = V x
1 . Given a graph G as input we can,

in polynomial time, compute an optimum half-integral solution x to LPV C(G) such that for
the induced subgraph H = G[V x

1/2], setting all variables to the value 1
2 is the unique optimum

solution to LPV C(H) [21]. Graphs which satisfy the latter property must have positive surplus,
and conversely:

Lemma 2. [23] For any graph G, all-12 is the unique optimum solution to LPV C(G) if and only

if surplus(G) > 0.

In fact, the surplus of a graph G is a lower bound on the number of vertices that we can
delete from G, and have a guaranteed drop of exactly 1

2 per deleted vertex in LP (G):

Lemma 3. Let G be a graph with surplus(G) ≥ s. Then deleting any subset of s vertices from G
results in a graph G′ such that LP (G′) = LP (G)− s

2 .
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Proof. The proof is by induction on s. Let n = |V (G)|. The case s = 0 is trivially true. Suppose
s = 1. Then by Lemma 2 all-12 is the unique optimum solution to LPV C(G), and so LP (G) = n

2 .
Let v ∈ V (G), and let G′ = G[V (G)\{v}]. Then |V (G′| = (n−1). Since all-12 is a feasible solution

to LPV C(G′), we get that LP (G′) ≤ (n−1)
2 = LP (G) − 1

2 . If possible, let x′ be an optimum

solution for LPV C(G′) such that w(x′) < (n−1)
2 . From the half-integrality property of relaxed

VERTEX COVER LP formulations we get that w(x′) ≤ (n2 − 1). Now we can assign the value
1 to vertex v and the values x′ to the remaining vertices of graph G, to get a solution x such
that w(x) = n

2 = LP (G). Thus x is an optimum solution to LPV C(G) which is not all-12 , a
contradiction. So we get that LP (G′) = LP (G) − 1

2 , proving the case s = 1.

For the induction step, let s ≥ 2. Then by Lemma 2 all-12 is the unique optimum solution to
LPV C(G), and so LP (G) = n

2 . Let v be an arbitrary vertex in G, and let G′ = G[V (G) \ {v}].
Since deleting a single vertex from G cannot cause the surplus of G to drop by more than 1, we

get that surplus(G′) ≥ (s − 1) ≥ 1. So from Lemma 2 we get that LP (G′) = (n−1)
2 . Applying

the induction hypothesis to G′ and s− 1, we get that deleting any subset of s− 1 vertices from

G′ results in a graph G′′ such that LP (G′′) = LP (G′) − (s−1)
2 = (n−1)

2 − (s−1)
2 = (n−s)

2 . This
completes the induction step.

There is a matching between the vertex sets which get the values 0 and 1 in an optimal
half-integral solution to the LP.

Lemma 4. Let G be a graph, and let x be an optimal half-integral solution to LPV C(G). Let

H = ((V x
1 ⊎ V x

0 ), F ) be the bipartite subgraph of G where F = {u, v} ∈ E(G) ; u ∈ V x
1 , v ∈ V x

0 .

Then there exists a (maximum) matching of H which saturates all of V x
1 .

Proof. It is enough to show that for every X ⊆ V x
1 the inequality |N(X)| ≥ |X| holds in the

graph H, and the rest will follow by Hall’s Theorem. So let there exist some X ⊆ V x
1 such that

|N(X)| < |X| in H. Now consider a solution x∗ to LPV C(G) in which all the vertices of G
have same values as in x, except that all vertices in X ∪N(X) get the value 1

2 . It is not difficult

to verify that x∗ is a feasible solution to LPV C(G). Now w(x∗) = w(x) + |N(X)|−|X|
2 < w(x),

which is a contradiction since we assumed that x is a solution to LPV C(G) with the minimum
value. The lemma follows.

We make critical use of the classical Gallai-Edmonds decomposition of graphs.

Definition 1 (Gallai-Edmonds decomposition). The Gallai-Edmonds decomposition of a graph
G is a partition of its vertex set V (G) as V (G) = O ⊎ I ⊎ P where:

• O = {v ∈ V (G) ; some maximum matching of G leaves v exposed}

• I = N(O)

• P = V (G) \ (I ∪O)

We now list a few of the many useful properties of Gallai-Edmonds decompositions.

Theorem 2. [9,11,12,17] The Gallai-Edmonds decomposition of a graph G is unique, and can

be computed in polynomial time in the size of G. Let V (G) = O ⊎ I ⊎ P be the Gallai-Edmonds

decomposition of G. Then the following hold:

1. Every component of the induced subgraph G[O] is factor-critical.

2. A matching M in graph G is a maximum matching of G if and only if:

6



(a) For each connected component H of the induced subgraph G[O], the edge set M ∩E(H)
forms a near perfect matching of H;

(b) For each vertex i ∈ I there exists some vertex i ∈ O such that {i, o} ∈M , and;

(c) The edge set M ∩ E(G[P ]) forms a perfect matching of the induced subgraph G[P ].

3. In particular: Any maximum matching M of G is a disjoint union of (i) a perfect matching

of G[P ], (ii) near-perfect matchings of each component of G[O], and (iii) an edge from each

vertex in I to a distinct component of G[O].

4. The Stability Lemma: For a vertex v ∈ V (G) let G−v = G[V (G) \ v]. Let O(H), I(H), P (H)
denote the three parts in the Gallai-Edmonds decomposition of a graph H.

• Let v ∈ O. Then O(G− v) ⊆ (O \ {v}), I(G− v) ⊆ I, and P (G− v) ⊇ P .

• Let v ∈ I. Then O(G− v) = O, I(G− v) = (I \ {v}), and P (G− v) = P .

• Let v ∈ P . Then O(G− v) ⊇ O, I(G− v) ⊇ I, and P (G− v) ⊆ (P \ {v}).

Corollary 2. Let V (G) = O ⊎ I ⊎ P be the Gallai-Edmonds decomposition of graph G. Then the

following hold:

1. If I ∪ P is an independent set in G, then P = ∅.

2. Let v,w ∈ O be two vertices which are part of the same connected component of the induced

subgraph G[O], and let G′ = G[(V (G) \ {v,w})]. Then MM(G′) ≤ (MM(G) − 1).

Proof. We prove each statement.

1. From the assumption, G[P ] contains no edges. By Theorem 2, G[P ] has a perfect match-
ing. Both of these can hold simultaneously only when P = ∅.

2. Let C be the connected component of G[O] which contains both v and w. From part
(3) of Theorem 2 we get that any maximum matching of graph G which exposes vertex
v contains a perfect matching of the subgraph C ′′ = C[(V (C) \ {v})]. Therefore, every
maximum matching of G which survives in G′′ = G[(V (G) \ {v})] contains a perfect
matching of C ′′. It follows that if we delete w ∈ V (C ′′) as well from G′′ to get G′, then
the matching number reduces by at least one, since no perfect matching of C ′′ can survive
the deletion of vertex w ∈ V (C ′′).

When the set I ∪ P is independent in a graph of surplus at least 2, we get more properties
for the set O:

Lemma 5. Let G be a graph with surplus(G) ≥ 2, and let V (G) = O ⊎ I ⊎ P be the Gallai-

Edmonds decomposition of graph G. If I ∪ P is an independent set in G, then:

1. There is at least one vertex o ∈ O which has at least two neighbours in the set O.

2. Let v ∈ O be a neighbour of some vertex o ∈ O. Let G′ = G[(V (G) \ {o})], and let V (G′) =
O′ ⊎ I ′ ⊎ P ′ be the Gallai-Edmonds decomposition of graph G′. Then the induced subgraph

G′[P ′] contains at least one edge.

Proof. We prove each statement.
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1. Each component of G[O] is factor critical (Theorem 2), and so has an odd number of
vertices. So to prove this part it is enough to show that there is at least one component in
G[O] which has at least two (and hence, at least three) vertices. Suppose to the contrary
that each component in G[O] has exactly one vertex. Then the set O is an independent
set in graph G. Since the set I ∪P is independent by assumption, we get from Corollary 2
that P = ∅. Thus G is a bipartite graph with O and I being two parts of the bipartition.
In particular, N(O) ⊆ I and N(I) ⊆ O both hold. But since surplus(G) ≥ 2 this implies
that both |I| ≥ (|O| + 2) and |O| ≥ (|I| + 2) hold simultaneously, which cannot happen.
The claim follows.

2. Observe that by the definition of the set O, we have that MM(G′) = MM(G). If G′[P ′]
contains no edge, then the fact that G[P ′] has a perfect matching (Theorem 2) implies
that P ′ = ∅. Together with the Stability Lemma (see Theorem 2) this implies that v ∈ O′

in graph G′. Then by the definition of the set O′ there is a maximum matching MM ′

of G′ which exposes the vertex v. But then the matching MM ′ together with the edge
{o, v} forms a matching in graph G of size MM(G′) + 1 = MM(G) + 1, a contradiction.
Therefore G′[P ′] must contain at least one edge.

3 The Algorithm

In this section we describe our algorithm which solves VERTEX COVER ABOVE LOVÁSZ-PLUMMER

in O⋆(3k̂) time. We start with an overview of the algorithm. We then state the reduction and
branching rules which we use, and prove their correctness. We conclude the section by proving
that the algorithm correctly solves VERTEX COVER ABOVE LOVÁSZ-PLUMMER and that it runs
within the stated running time.

3.1 Overview

The VERTEX COVER ABOVE LOVÁSZ-PLUMMER problem can be stated as:

VERTEX COVER ABOVE LOVÁSZ-PLUMMER (VCAL-P) Parameter: k̂

Input: A graph G and k̂ ∈ N.
Question: Let k = (2LP (G) −MM(G)) + k̂. Is OPT (G) ≤ k?

At its core the algorithm is a simple branching algorithm. Indeed, we employ only two basic
branching steps which are both “natural” for VERTEX COVER: We either branch on the two end-
points of an edge, or on a vertex v and a pair u,w of its neighbours. We set k̂ as the measure

for analyzing the running time of the algorithm. We ensure that this measure decreases by 1 in
each branch of a branching step in the algorithm. Since OPT (G) ≥ (2LP (G) −MM(G)) for
every graph G—See Lemma 1—and k ≥ OPT (G) holds—by definition—for a YES instance, it
follows that k̂ = (k +MM(G) − 2LP (G)) is never negative for a YES instance. Hence we can
safely terminate the branching at depth k̂. Since the worst-case branching factor is three, we

get that the algorithm solves VCAL-P in time O⋆(3k̂).

The algorithm—see Algorithm 2 on page 9—modifies the input graph G in various ways as
it runs. In our description of the algorithm we will sometimes, for the sake of brevity, slightly
abuse the notation and use G to refer to the “current” graph at each point in the algorithm.
Since the intended meaning will be clear from the context, this should not cause any confusion.
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Algorithm 2 The O⋆(3k̂) FPT algorithm for VERTEX COVER ABOVE LOVÁSZ-PLUMMER.

1: function VCAL-P((G, k̂, reduce)) ⊲ Initially invoked with reduce == True.
2: k ← (2LP (G) −MM(G)) + k̂
3: if reduce == True then ⊲ Do the preprocessing only if reduce is True.
4: while At least one of Reduction Rules 1, 2, and 3 applies to (G, k) do

5: Apply the first such rule to (G, k), to get (G′, k′).
6: G← G′, k ← k′

7: G← G′, k ← k′ ⊲ Renaming for brevity
8: k̂ ← k +MM(G) − 2LP (G) ⊲ Preprocessing ends.

9: if k̂ < 0 then ⊲ Check for the base cases.
10: return False

11: else if G has no vertices then

12: return True

13: Compute the Gallai-Edmonds decomposition V (G) = O ⊎ I ⊎ P of G.

14: if G[I ∪ P ] contains at least one edge {u, v} then ⊲ Branch on edge {u, v}.
15: G1 ← (G \ u), G2 ← (G \ v)
16: k ← (k − 1)
17: k̂1 = (k +MM(G1)− 2LP (G1)), k̂2 = (k +MM(G2)− 2LP (G2))
18: return (VCAL-P(G1, k̂1, T rue) ∨ VCAL-P(G2, k̂2, T rue))

19: else ⊲ Since I ∪ P is independent, P = ∅.

20: Choose a vertex u ∈ O and two of its neighbours v,w ∈ O.
⊲ Such vertices must exist.

21: G1 ← (G \ u) ⊲ Pick u in the solution.
22: k ← (k − 1)
23: k̂1 = (k +MM(G1)− 2LP (G1)),
24: if VCAL-P(G1, k̂1, False)==True then ⊲ No reduction rule will be applied now.
25: return True

26: else ⊲ Pick both v and w in the solution.
27: G2 ← (G \ {v,w})
28: k ← (k − 1) ⊲ Effectively reducing k by two.
29: k̂2 = (k +MM(G2)− 2LP (G2))
30: return VCAL-P(G2, k̂2, T rue)

The crux of the algorithm is the manner in which it finds in G a small structure—such as an
edge—on which to branch such that the measure k̂ drops on each branch. Clearly, picking an
arbitrary edge—say—and branching on its end-points will not suffice: this will certainly reduce
the budget k by one on each branch, but we will have no guarantees on how the values MM(G)
and LP (G) change, and so we cannot be sure that k̂ drops. Instead, we apply a two-pronged
strategy to find a small structure in the graph which gives us enough control over how the
values k,MM(G), LP (G) change, in such a way as to ensure that k̂ = (k+MM(G)− 2LP (G))
drops in each branch.
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First, we employ a set of three reduction rules which give us control over how LP (G)
changes when we pick a vertex into the solution and delete it from G. These rules have the
following nice properties:

• Each rule is sound—see subsection 3.2—and can be applied in polynomial time;

• Applying any of these rules does not increase the measure k̂, and;

• If none of these rules applies to G, then we can delete up to two vertices from G with an
assured drop of 0.5 per deleted vertex in the value of LP (G).

In this we follow the approach of Narayanaswamy et al. [19] who came up with this strategy to
find a small structure on which to branch so that their measure—which was (k − LP )—would
reduce on each branch. Indeed, we reuse three of their reduction rules, after proving that these
rules do not increase our measure k̂.

While these rules give us control over how LP (G) changes when we delete a vertex, they
do not give us such control over MM(G). That is: let G be a graph to which none of these
rules applies and let v be a vertex of G. Picking v into a solution and deleting it from G to
get G′ would (i) reduce k by 1, and (ii) make LP (G′) = LP (G) − 0.5, but will not result in a
drop in k̂ if it so happens that the matching number of G′ is the same as that of G. Thus for our
approach to succeed we need to be able to consistently find, in a graph reduced with respect to
the reduction rules, a small structure—say, an edge—on which to branch, such that deleting a
small set of vertices from this structure would reduce the matching number of the graph by at
least 1.

The search for such a structure led us to the second and novel part of our approach, namely
the use of the classical Gallai-Edmonds decomposition of graphs (Definition 1). We found that
by first reducing the input graph with respect to the three reduction rules and then carefully
choosing edges to branch based on the Gallai-Edmonds decomposition of the resulting graph,
we could make the measure k̂ drop on every branch. We describe the reduction and branching
rules in the next two subsections.

3.2 The Reduction Rules

Given an instance (G, k̂) of VERTEX COVER ABOVE LOVÁSZ-PLUMMER our algorithm first com-
putes the number k = (2LP (G) − MM(G) + k̂) so that (G, k) is the equivalent instance of
(classical) VERTEX COVER. Each of our three reduction rules takes an instance (G = (V,E), k)
of VERTEX COVER, runs in polynomial time, and outputs an instance (G′ = (V ′, E′), k′) of VER-
TEX COVER. We say that a reduction rule is sound if it always outputs an equivalent instance.
That is, if it is always the case that G has a vertex cover of size at most k if and only if G′ has
a vertex cover of size at most k′. We say that a reduction rule is safe if it never increases the
measure k̂. That is, if it is always the case that k′+MM(G′)−2LP (G′) ≤ k+MM(G)−2LP (G).

In the algorithm we apply these reduction rules exhaustively, in the order they are pre-
sented. That is, we take the input instance (G, k) and apply the first among Reduction Rule 1,
Reduction Rule 2, and Reduction Rule 3 which applies—see definitions below—to (G, k) to ob-
tain a modified instance (G′, k′). We now set G ← G′, k ← k′ and repeat this procedure, till
none of the rules applies to the instance (G, k). We say that such an instance is reduced with
respect to our reduction rules. The point of these reduction rules is that they help us push the
surplus of the input graph to at least 2 in polynomial time, while not increasing the measure k̂.

Reduction Rule 1. Compute an optimal solution x to LPVC(G) such that all-12 is the unique
optimum solution to LPVC(G[V x

1/2]). Set G′ = G[V x
1/2], k

′ = k − |V x
1 |.
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Reduction Rule 1 applies to (G, k) if and only if all-12 is not the unique solution to LPVC(G).

Reduction Rule 2. If there is an independent set Z ⊆ V (G) such that surplus(Z) = 1 and
N(Z) is not an independent set in G, then set G′ = G \ (Z ∪N(Z)), k′ = k − |N(Z)|.

Reduction Rule 2 applies to (G, k) if and only if (i) Reduction Rule 1 does not apply, and (ii) G
has a vertex subset Z with the properties stated in Reduction Rule 2.

Reduction Rule 3. If there is an independent set Z ⊆ V (G) such that surplus(Z) = 1 and
N(Z) is an independent set in G, then remove Z from G and identify the vertices of N(Z)—
that is, delete all of N(Z), add a new vertex z, and make z adjacent to all vertices of the set
(N(N(Z)) \ Z)—to get G′, and set k′ = k − |Z|.

Reduction Rule 3 applies to (G, k) if and only if (i) neither of the previous rules applies, and (ii)
G has a vertex subset Z with the properties stated in Reduction Rule 3.

All our reduction rules are due to Narayanaswamy et al. [19, Preprocessing Rules 1 and
2]. The soundness of these rules and their running-time bounds also follow directly from their
work. We need to argue, however, that these rules are safe for our measure k̂.

Lemma 6. [19] All the three reduction rules are sound, and each can be applied in time polyno-

mial in the size of the input (G, k).

It remains to show that none of these reduction rules increases the measure k̂ = k +
MM(G) − 2LP (G). That is, let (G = (V,E), k) be an instance of VERTEX COVER to which
one of these rules applies, and let (G′ = (V ′, E′), k′) be the instance obtained by applying the
rule to (G, k). Then we have to show, for each rule, that k̂′ = k′ + MM(G′) − 2LP (G′) ≤ k̂
holds. We establish this by examining how each rule changes the values k, MM and LP . In
each case, let x be an optimum half-integral solution to LPV C(G) such that all-12 is the unique
optimum solution to LPV C(G[V x

1/2]), and let LP (G) be the (optimum) value of this solution.

Also, let x′ be an optimum half-integral solution to LPV C(G′), and let LP (G′) be the value of
this solution.

Lemma 7. Reduction Rule 1 is safe.

Proof. From the definition of the rule we get that k′ = k − |V x
1 |. Now since x′ ≡ 1

2 is the unique
optimum solution to LPV C(G′), and G′ = G[V x

1/2], we get that LP (G′) = LP (G) − |V x
1 |, and

hence that 2LP (G′) = 2LP (G) − 2|V x
1 |. From Lemma 4 and the construction of the graph G′

we get that MM(G) ≥ MM(G′) + |V x
1 |, and hence that MM(G′) ≤ MM(G) − |V x

1 |. Putting
these together, we get that k̂′ ≤ k̂.

Lemma 8. Reduction Rule 2 is safe.

Proof. From the definition of the rule we get that k′ = k − |N(Z)|. We bound the other two
quantities.

Claim 1. LP (G′) ≥ LP (G)− |N(Z)|+ 1
2 .

Proof of the claim. Since Reduction Rule 1 did not apply to (G, k) we know that all-12 is the
unique optimum solution to LPV C(G). It follows from this and the construction of graph
G′ that LP (G′) =

∑

u∈V ′ x′(u) = LP (G) − 1
2(|Z| + |N(Z)|) + 1

2(|V
x′

1 | − |V
x′

0 |). Adding and

subtracting 1
2(|N(Z)|), we get LP (G′) = LP (G)−|N(Z)|+ 1

2(|N(Z)|− |Z|)+ 1
2 (|V

x′

1 |− |V
x′

0 |) =

LP (G)− |N(Z)|+ 1
2(|N(Z)|+ |V x′

1 |)−
1
2(|Z|+ |V

x′

0 |). Now since V (G′) = (V (G) \ (Z ∪N(Z)))

and V x′

0 ⊆ V (G′), we get that Z ∪ V x′

0 is an independent set in G, and that N(Z ∪ V x′

0 ) =
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N(Z) ∪ V x′

1 in G (Recall that N(V x
0 ) = V x

1 for any half-integral optimal solution x.). Since
surplus(G) ≥ 1—Lemma 2—we get that in G, |N(Z ∪ V x′

0 )| − |Z ∪ V x′

0 | ≥ 1, which gives
(|N(Z)| + |V x′

1 |)− (|Z|+ |V x′

0 |) ≥ 1, and so we get that 1
2 (|N(Z)|+ |V x′

1 |)−
1
2(|Z|+ |V

x′

0 |) ≥
1
2 .

Substituting this in the equation for LP (G′), we get that LP (G′) ≥ LP (G)− |N(Z)|+ 1
2 .

Now we bound the drop in MM(G).

Claim 2. MM(G′) ≤MM(G) − |Z|.

Proof of the claim. Consider the bipartite graph Ĝ obtained from the induced subgraph G[Z ∪
N(Z)] of G by deleting every edge which has both endpoints in N(Z). Observe that since
surplus(Z) = 1 in G, we get that |N(X)| ≥ |X| + 1 ∀X ⊆ Z, both in G and in Ĝ. Hence by
Hall’s Theorem we get that Ĝ contains a matching saturating Z, and hence that MM(Ĝ) = |Z|.
But from the construction of graph G′ we get that MM(G) ≥MM(G′)+MM(Ĝ). Substituting
for MM(Ĝ), we get that MM(G′) ≤MM(G) − |Z|.

Putting all these together, we get that k̂′ = k′ + MM(G′) − 2LP (G′) ≤ (k − |N(Z)|) +
(MM(G)− |Z|)− 2(LP (G)− |N(Z)|+ 1

2) = k+MM(G)− 2LP (G) + (|N(Z)| − |Z| − 1) = k+

MM(G)−2LP (G) = k̂, where the last-but-one equality follows from the fact that surplus(Z) =
1. Thus we have that k̂′ ≤ k̂.

Lemma 9. Reduction Rule 3 is safe.

Proof. From the definition of the rule we get that k′ = k − |Z|. We bound the other quantities.
Let z be the vertex in G′ which results from identifying the vertices of N(Z) as stipulated by the
reduction rule.

Claim 3. LP (G′) ≥ LP (G)− |Z|.

Proof of the claim. Suppose not. Then we get—from the half-integrality property of the relaxed
LP for VERTEX COVER—that LP (G′) ≤ LP (G) − |Z| − 1

2 . We show that this inequality leads
to a contradiction. We consider three cases based on the value of x′(z), which must be one of
{0, 12 , 1}. Recall that surplus(Z) = 1 and so |N(Z)| = |Z|+ 1.

Case 1: x′(z) = 1. Consider a function x′′ : V → {0, 12 , 1} defined as follows. For every vertex v
in V ′ \{z}, x′′ retains the value assigned by x′; that is, x′′(v) = x′(v). For every vertex v in
the set N(Z), set x′′(v) = 1 and for every vertex v in the set Z, x′′(v) = 0. It is not difficult
to check that x′′ is a feasible solution to the relaxed VERTEX COVER LP for G. But now
the value of this solution, w(x′′) = LP (G′)− x′(z) + |N(Z)| = LP (G′) − 1 + (|Z| + 1) ≤
LP (G)− 1

2 . Thus x′′ is a feasible solution for G whose value is less than that of the optimal

solution, a contradiction.

Case 2: x′(z) = 0. Now consider the following function x′′ : V → {0, 12 , 1}. For every vertex v
in V ′ \ {z}, x′′ retains the value assigned by x′: x′′(v) = x′(v). For every vertex v ∈ Z set
x′′(v) = 1 and for every vertex v ∈ N(Z), set x′′(v) = 0. It is again not difficult to check
that x′′ is a feasible solution to the relaxed VERTEX COVER LP for G. And the value of this
solution, w(x′′) = LP (G′) + |Z| ≤ LP (G)− 1

2 , again a contradiction.

Case 3: x′(z) = 1
2 . Consider again a function x′′ : V → {0, 12 , 1}, defined as follows. For every

vertex v in V ′ \ {z}, x′′—once again—retains the value assigned by x′: x′′(v) = x′(v).
For every vertex v ∈ (Z ∪ N(Z)), set x′′(v) = 1

2 . This is once again easily verified to
be a feasible solution to the relaxed VERTEX COVER LP for G, and its value is w(x′′) =
LP (G′) − x′(z) + 1

2(|Z| + |N(Z)|) = LP (G′) − 1
2 + 1

2 (|Z| + |Z| + 1) ≤ LP (G) − 1
2 , once

again a contradiction.
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Thus our contrary assumption leads to a contradiction in all possible cases, and this proves the
claim.

Now we bound the drop in MM(G).

Claim 4. MM(G′) ≤MM(G) − |Z|.

Proof. For an arbitrary vertex u ∈ N(Z), let Gu be the bipartite subgraph G[Z ∪ (N(Z) \ {u})],
which is an induced subgraph of G. Since surplus(Z) = 1 in G and only one vertex from N(Z)
is missing in Gu, we get that |N(X)| ≥ |X| ∀X ⊆ Z holds in Gu. Hence by Hall’s Theorem we
get that Gu contains a matching saturating Z, and hence that MM(Gu) = |Z|.

Now consider a maximum matching MM ′ of G′. Starting with MM ′ we can construct a
matching MM ′′ of size |MM ′| in the original graph G which saturates at most one vertex of
N(Z) and none of Z, as follows: There is at most one edge in MM ′ which saturates the vertex
z. If there is no edge in MM ′ which saturates the vertex z, then we set MM ′′ = MM ′. It is not
difficult to see that MM ′′ saturates no vertex in Z ∪ N(Z). If there is an edge {z, v} ∈ MM ′,
then we pick an arbitrary vertex u ∈ N(Z) such that {u, v} is an edge in G—such a vertex must
exist since the edge {z, v} exists in G′. We set MM ′′ = (MM ′ \ {{z, v}}) ∪ {{u, v}}. It is not
difficult to see that MM ′′ is a matching in G which saturates exactly one vertex—u ∈ N(Z)—in
Z ∪N(Z).

If the matching MM ′′, constructed as above, does not saturate any vertex of N(Z), then
we choose u to be an arbitrary vertex of N(Z). If MM ′′ does saturate a vertex of N(Z), then
we set u to be that vertex. In either case, the union of MM ′′ and any maximum matching of
the induced bipartite subgraph Gu is itself a matching of G, of size MM(Gu) + MM(G′) =
|Z|+MM(G′). It follows that MM(G) ≥ |Z|+MM(G′), which implies MM(G′) ≤MM(G)−
|Z|.

Putting all these together, we get that k̂′ = k′+MM(G′)−2LP (G′) ≤ (k−|Z|)+(MM(G)−
|Z|)− 2(LP (G) − |Z|) = k +MM(G) − 2LP (G) = k̂. Thus we have that k̂′ ≤ k̂.

Observe that if surplus(G) = 1 then at least one of Reduction Rule 2 and Reduction Rule 3
necessarily applies. From this and Lemma 2 we get the following useful property of graphs on
which none of these rules applies.

Lemma 10. None of the three reduction rules applies to an instance (G, k) of VERTEX COVER if

and only if surplus(G) ≥ 2.

Summarizing the results of this section, we have:

Lemma 11. Given an instance (G, k̂) of VERTEX COVER ABOVE LOVÁSZ-PLUMMER we can, in time

polynomial in the size of the input, compute an instance (G′, k̂′) such that:

1. The two instances are equivalent: G has a vertex cover of size at most (2LP (G)−MM(G))+k̂
if and only if G′ has a vertex cover of size at most (2LP (G′)−MM(G′)) + k̂′;

2. k̂′ ≤ k̂, and surplus(G′) ≥ 2.

3.3 The Branching Rules

Let (G = (V,E), k) be the instance of VERTEX COVER obtained after exhaustively applying the
reduction rules to the input instance, and let k̂ = k+MM(G)−2LP (G). Then surplus(G) ≥ 2.
If k̂ < 0 then the instance (G, k̂) of VCAL-P is trivially a NO instance (See subsection 3.1),
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and we return NO and stop. In the remaining case k̂ ≥ 0, and we apply one of two branch-
ing rules to the instance to reduce the measure k̂. Each of our branching rules takes an in-
stance (G, k̂) of VCAL-P, runs in polynomial time, and outputs either two or three instances
(G1, k̂1), (G2, k̂2)[, (G3, k̂3)] of VCAL-P. The algorithm then recurses on each of these instances
in turn. We say that a branching rule is sound if the following holds: (G, k̂) is a YES instance
of VCAL-P if and only if at least one of the (two or three) instances output by the rule is a YES
instance of VCAL-P. We now present the branching rules, prove that they are sound, and show
that the measure k̂ drops by at least 1 on each branch of each rule.

Before starting with the branching, we compute the Gallai-Edmonds decomposition of the
graph G = (V,E). This can be done in polynomial time [17] and yields a partition of the vertex
set V into three parts V = O ⊎ I ⊎ P , one or more of which may be empty—see Definition 1.
We then branch on edges in the graph which are carefully chosen with respect to this partition.
Branching Rule 1 applies to the graph G if and only if the induced subgraph (G[I ∪P ]) contains
at least one edge.

Branching Rule 1. Branch on the two end-points of an edge {u, v} in the induced subgraph
(G[I ∪ P ]). More precisely, the two branches generate two instances as follows:

Branch 1: G1 ← (G \ {u}), k1 ← (k − 1), k̂1 ← k1 +MM(G1)− 2LP (G1)

Branch 2: G2 ← (G \ {v}), k2 ← (k − 1), k̂2 ← k2 +MM(G2)− 2LP (G2)

This rule outputs the two instances (G1, k̂1) and (G2, k̂2).

Branching Rule 2 applies to graph G if and only if Branching Rule 1 does not apply to G.

Branching Rule 2. Pick a vertex u ∈ O of G which has at least two neighbours v,w ∈ O.
Construct the graph G′ = G \ {u} and compute its Gallai-Edmonds decomposition O′ ⊎ I ′ ⊎ P ′.
Pick an edge {x, y} in G′[P ′]. The three branches of this branching rule generates three instances
as follows:

Branch 1: G1 ← (G \ {v,w}), k1 ← (k − 2), k̂1 ← k1 +MM(G1)− 2LP (G1)

Branch 2: G2 ← (G′ \ {x}), k2 ← (k − 2), k̂2 ← k2 +MM(G2)− 2LP (G2)

Branch 3: G3 ← (G′ \ {y}), k3 ← (k − 2), k̂3 ← k3 +MM(G3)− 2LP (G3)

This rule outputs the three instances (G1, k̂1), (G2, k̂2), and (G3, k̂3).

Note that in the pseudocode of Algorithm 2 we have not, for the sake of brevity, written out
the three branches of the second rule. Instead, we have used a boolean switch (reduce) as a
third argument to the procedure to simulate this behaviour.

Lemma 12. Both branching rules are sound, and each can be applied in time polynomial in the

size of the input (G, k).

Proof. We first prove that the rules can be applied in polynomial time. Recall that we can
compute the Gallai-Edmonds decomposition of graph G in polynomial time [17].

Branching Rule 1: Follows more or less directly from the definition of the branching rule.

Branching Rule 2: It is not difficult to see that the applicability of this rule can be checked
in polynomial time. If the rule does apply, then the set P is empty and the set I is an
independent set in G (Corollary 2). By Lemma 5, there is at least one vertex in the set O
which has at least two neighbours in O. Hence vertices u, v, w of the kind required in the
rule necessarily exist in G. From Lemma 5 we also get that an edge {x, y} of the required
kind also exists. Given the existence of these, it is not difficult to see that the rule can be
applied in polynomial time.
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We now show that the rules are sound. Recall that a branching rule is sound if the following
holds: any instance (G, k̂) of VCAL-P is a YES instance if and only if at least one of the instances
obtained by applying the rule to (G, k̂) is a YES instance.

Branching Rule 1: The soundness of this rule is not difficult to see since it is a straightfor-
ward branching on the two end-points of an edge. Nevertheless, we include a full argu-
ment for the sake of completeness. So let (G, k̂) be a YES instance of VCAL-P, and let
(G1, k̂1), (G2, k̂2) be the two instances obtained by applying Branching Rule 1 to (G, k̂).
Since (G, k̂) is a YES instance, the graph G has a vertex cover, say S, of size at most
k = 2LP (G) −MM(G) + k̂. Then (S ∩ {u, v}) 6= ∅. Suppose u ∈ S. Then S1 = S \ {u})
is a vertex cover of the graph G1 = G \ {u}, of size at most k1 = (k − 1). It follows that
for k̂1 = k1 + MM(G1) − 2LP (G1), (G1, k̂1) is a YES instance of VCAL-P. A symmetric
argument gives us the YES instance (G2, k̂2) of VCAL-P for the case v ∈ S.

Conversely, suppose (G1, k̂1) is a YES instance of VCAL-P where G1 = G \ {u}, k1 =
(k − 1), k̂1 = k1 +MM(G1)− 2LP (G1). Then graph G1 has a vertex cover, say S1, of size
at most k1 = (k − 1). S = S1 ∪ {u} is then a vertex cover of graph G of size at most k,
and so (G, k̂), where k̂ = k + MM(G) − 2LP (G) is a YES instance of VCAL-P as well.
An essentially identical argument works for the case when (G2, k̂2) is a YES instance of
VCAL-P.

Branching Rule 2: It is not difficult to see that this rule is sound, either, since it consists of
exhaustive branching on a vertex u. We include the arguments for completeness. So
let (G, k̂) be a YES instance of VCAL-P, and let (G1, k̂1), (G2, k̂2), (G2, k̂2) be the three
instances obtained by applying Branching Rule 2 to (G, k̂). Since (G, k̂) is a YES instance,
the graph G has a vertex cover, say S, of size at most k = 2LP (G) −MM(G) + k̂. We
consider two cases: u ∈ S, and u /∈ S. First consider the case u /∈ S. Then all the
neighbours of u must be in S. In particular, {v,w} ⊆ S. It follows that the set S \ {v,w}
is a vertex cover of the graph G1 = (G \ {v,w}), of size at most k1 = (k − 2). Hence we
get that for k̂1 = k1 +MM(G1)− 2LP (G1), (G1, k̂1) is a YES instance of VCAL-P.

Now consider the case u ∈ S. Then the set S′ = S \ {u} is a vertex cover of the graph
G′ = G \ {u}, of size at most k − 1. Since {x, y} is an edge in the graph G′, we get that
(S′ ∩ {x, y}) 6= ∅. Suppose x ∈ S′. Then S2 = (S′ \ {x}) is a vertex cover of the graph
G2 = G′\{x}, of size at most k2 = (k−2). It follows that for k̂2 = k2+MM(G2)−2LP (G2),
(G2, k̂2) is a YES instance of VCAL-P. A symmetric argument gives us the YES instance
(G3, k̂3) of VCAL-P for the case y ∈ S.

Conversely, suppose (G1, k̂1) is a YES instance of VCAL-P where G1 = G \ {v,w}, k1 =
(k − 2), k̂1 = k1 + MM(G1) − 2LP (G1). Then graph G1 has a vertex cover, say S1, of
size at most k1 = (k − 2). S = S1 ∪ {v,w} is then a vertex cover of graph G of size at
most k, and so (G, k̂) where k̂ = k +MM(G) − 2LP (G), is a YES instance of VCAL-P as
well. Essentially identical arguments work for the cases when (G2, k̂2) or (G3, k̂3) is a YES

instance of VCAL-P.

Our choice of vertices on which we branch ensures that the measure drops by at least one
on each branch of the algorithm.

Lemma 13. Let (G, k̂) be an input given to one of the branching rules, and let (Gi, k̂i) be an

instance output by the rule. Then k̂i ≤ (k̂ − 1).
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Proof. Recall that by definition, k̂ = k +MM(G) − 2LP (G). We consider each branching rule.
We reuse the notation from the description of each rule.

Branching Rule 1: Consider Branch 1. Since u ∈ (I ∪ P ), every maximum matching of graph
G saturates vertex u (Theorem 2). Hence we get that MM(G1) = (MM(G) − 1). Since
surplus(G) ≥ 2 we get—from Lemma 3—that LP (G1) = (LP (G) − 1

2). And since k1 =

(k−1) by definition, we get that k̂1 = k1+MM(G1)−2LP (G1) = (k−1)+(MM(G)−1)−
2(LP (G)− 1

2) = k +MM(G)− 2LP (G)− 1 = (k̂ − 1). An essentially identical argument

applied to the (symmetrical) Branch 2 tells us that k̂2 = (k̂ − 1).

Branching Rule 2: Consider Branch 1. Since {u, v, w} ⊆ O and v,w are neighbours of vertex
u, we get that vertices v and w belong to the same connected component of the induced
subgraph G[O] of G. It follows (Corollary 2) that MM(G1) ≤ (MM(G) − 1). Since
surplus(G) ≥ 2 and G1 = G \ {v,w} we get—from Lemma 3—that LP (G1) = (LP (G)−
1). And since k1 = (k − 2) by definition, we get that k̂1 = k1 + MM(G1) − 2LP (G1) ≤
(k − 2) + (MM(G) − 1)− 2(LP (G) − 1) = k +MM(G) − 2LP (G)− 1 = (k̂ − 1).

Now consider Branch 2. Since u ∈ O we get—from the definition of the Gallai-Edmonds
decomposition—that MM(G′) = MM(G). Now since x ∈ P ′ we get— Theorem 2—that
MM(G2) = (MM(G′)− 1) = (MM(G) − 1). Since surplus(G) ≥ 2 and G2 = G \ {u, x}
we get—from Lemma 3—that LP (G2) = (LP (G)−1). And since k2 = (k−2) by definition,
we get that k̂2 = k2 +MM(G2)− 2LP (G2) = (k − 2) + (MM(G)− 1)− 2(LP (G)− 1) =
k + MM(G) − 2LP (G) − 1 = (k̂ − 1). An essentially identical argument applied to the
(symmetrical) Branch 3 tells us that k̂3 = (k̂ − 1).

3.4 Putting it All Together: Correctness and Running Time Analysis

The correctness of our algorithm and the claimed bound on its running time follow more or less
directly from the above discussion.

Proof of Theorem 1. We claim that Algorithm 2 solves VERTEX COVER ABOVE LOVÁSZ-PLUMMER

in O⋆(3k̂) time. The correctness of the algorithm follows from the fact that both the reduction
rules and the branching rules are sound—Lemma 6 and Lemma 12. This means that (i) no
reduction rule ever converts a YES instance into a NO instance or vice versa, and (ii) each
branching rule outputs at least one YES instance when given a YES instance as output, and all

NO instances when given a NO instance as input. It follows that if the algorithm outputs YES or
NO, then the input instance must also have been YES or NO, respectively.

The running time bound follows from three factors. Firstly, all the reduction rules are safe,
and so they never increase the measure k̂—see Lemma 7, Lemma 8, Lemma 9, and Lemma 11.
Also, each reduction rule can be executed in polynomial time, and since each reduction rule
reduces the number of vertices in the graph by at least one, they can be exhaustively applied in
polynomial time. Secondly, each branch of each branching rule reduces the measure by at least
1—Lemma 13—from which we get that each path from the root of the recursion tree—where
the measure is the original value of k̂—to a leaf—where the measure first becomes zero or less—
has length at most k̂. Further, the largest branching factor is 3, which means that the number

of nodes in the recursion tree is O(3k̂). Thirdly, we know that the computation at each node in
the recursion tree takes polynomial time. This follows from Lemma 12 for the nodes where we
do branching. As for the leaf nodes: Since we know that the measure will never be negative
for a YES instance (Lemma 1), since we can check for the applicability of each branching rule
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in polynomial time, and since each branching rule reduces the measure by at least one, we can
solve the instance at each leaf node in polynomial time.

4 Conclusion

Motivated by an observation of Lovász and Plummer, we derived the new lower bound 2LP (G)−
MM(G) for the vertex cover number of a graph G. This bound is at least as large as the
bounds MM(G) and LP (G) which have hitherto been used as lower bounds for investigating
above-guarantee parameterizations of VERTEX COVER. We took up the parameterization of the
VERTEX COVER problem above our “higher” lower bound 2LP (G) − MM(G), which we call
the Lovász-Plummer lower bound for VERTEX COVER. We showed that VERTEX COVER remains
fixed-paramter tractable even when parameterized above the Lovász-Plummer bound. The main

result of this work is an O⋆(3k̂) algorithm for VERTEX COVER ABOVE LOVÁSZ-PLUMMER.
The presence of both (−2LP (G)) and MM(G)—in addition to the “solution size”—in our

measure made it challenging to find structures on which to branch; we had to be able to con-
trol each of these values and their interplay in order to ensure a drop in the measure at each
branch. The main new idea which we employed for overcoming this hurdle is the use of the
Gallai-Edmonds decomposition of graphs for finding structures on which to branch profitably.
The main technical effort in this work has been expended in proving that our choice of ver-
tices/edges from the Gallai-Edmonds decomposition actually work in the way we want. Note,
however, that the branching rules themselves are very simple; it is only the analysis which is
involved.

The most immediate open problem is whether we can improve on the base 3 of the FPT
running time. Note that any such improvement directly implies FPT algorithms of the same
running time for ABOVE-GUARANTEE VERTEX COVER and VERTEX COVER ABOVE LP. Tempted by
this implication, we have tried to bring this number down but, so far, in vain. Another question
which suggests itself is: Is this the best lower bound for vertex cover number above which
VERTEX COVER is FPT? How far can we push the lower bound before the problem becomes
intractable?
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