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Abstract

Influenza A viruses are human respiratory pathogens that infect 5–15% of the world’s
population in annual epidemics causing 3 to 5 million cases of severe illness and up to
500 000 deaths. In addition, new virus variants pose a continuous threat of sparking
pandemic outbreaks like the 1918 “Spanish flu” with an estimated 50 million victims
worldwide. The key to a successful fight against influenza viruses is a detailed under-
standing of their life cycle, which can guide the development of new antivirals and more
potent vaccines.
This work aims to develop mathematical models for influenza A virus infection that can

provide a quantitative description of virus replication inside an infected cell and of virus
growth in a host cell population. In particular, we focus on identifying bottlenecks of
virus production. These bottlenecks represent promising targets for anti-influenza drugs
and limit virus yields in vaccine production.
The first part of this work covers a model for the intracellular life cycle of influenza A

viruses. It comprises key steps of their replication, from virus entry to budding, with a
particular emphasis on the regulation of viral RNA synthesis. We find that two control
mechanisms are essential and sufficient for this model to capture the time course of viral
RNAs: (i) the stabilization of replicative intermediates (cRNA) by viral polymerases and
nucleoproteins (NP), which regulates the transition from viral transcription to genome
replication, and (ii) the shutdown of positive-strand RNA synthesis by the viral matrix
protein 1 (M1) facilitating the nuclear export of viral genome copies (vRNA). Simulations
also suggest that virus production is particularly sensitive to the rate of RNA synthesis,
the onset of nuclear export, and the speed of virus assembly/release. Thus, the model
provides valuable insights into the mechanisms that govern virus replication inside an
infected cell.
In the second part, we study the impact of molecular noise at the intracellular level.

Intriguingly, simulations suggest that the replication of influenza A viruses at this level
is particularly susceptible to stochastic fluctuations because of their segmented genome.
More precisely, the autocatalytic mechanism of viral RNA synthesis amplifies noise, which
can act independently on each segment causing large variations in the copy numbers of
viral genes. These differences can span several orders of magnitude and render many
cells low-productive. In addition, the random degradation of vRNAs in the beginning of
infection can lead to the loss of genome segments when cells are infected by only a few
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virions. Since an incomplete genome set prevents the release of infectious virus progeny,
stochastic effects can, thus, result in a large number of nonproductive cells, which has
also been found in experiments. Moreover, this observation provides evidence for the
hypothesis that multiple virions are needed to enter the same cell in order to ensure
productive infection. Taken together, noise in viral RNA synthesis may, hence, drive
cell-to-cell variability during infection.
In order to identify the steps of viral replication that are most susceptible to antiviral

drugs, we also developed a multiscale model of infection. It links the intracellular life cycle
of the virus to its spread between different host cells. This integrative modeling approach
captures a wide variety of experimental data across both levels including the time course
of viral RNAs inside infected cells and the infection dynamics in a cell population. It also
reveals that inhibitors of viral transcription, replication, and protein synthesis are very
effective in blocking virus production because they interrupt the autocatalytic mechanism
of viral RNA synthesis. Moreover, interference with nuclear export and assembly/release
can readily reduce virus titers. By contrast, targeting the steps of virus entry primarily
delays virus spreading but does not protect host cells from infection in vitro unless the drug
is highly effective. Multiscale modeling, hence, provides a systems-level understanding of
viral infection and therapy, and represents an ideal platform to include further levels of
complexity such as the immune system and the mechanisms of viral pathogenicity.
The last part of this work discusses defective interfering (DI) viruses, which can com-

promise virus production at the intracellular level and in a cell population. With respect
to intracellular replication, simulations suggest that DI RNAs rapidly outgrow the wild-
type segments assuming that they have an advantage in replication due to their length.
Moreover, the excessive production of subgenomic RNAs sequesters large amounts of
viral polymerases and NP proteins that are no longer available for full-length RNA syn-
thesis. Competition for these encapsidation factors may, hence, represent one mechanism
of DI RNA–induced interference. Our simulations also indicate that the production of
defective interfering particles (DIPs) heavily depends on the extend of their DI RNA’s
replication advantage, the initial amount of infecting virions, and the coinfection timing.
Modeling may, therefore, contribute to the design of production processes for defective
viruses with therapeutic potential. At the cell population level, we developed a simple
mathematical model which describes the continuous production of influenza vaccines.
This model shows that DIPs readily accumulate in such a system causing periodic drops
in virus titers and an overall low productivity. Unfortunately, these titer oscillations are
very robust against attempts to avoid them and stable virus production is only achieved
in a process that is completely devoid of DIPs. Defective viruses, thus, represent a major
obstacle to the continuous production of influenza A virus.
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Overall, the mathematical models presented here provide valuable insights into
influenza A virus replication both inside an infected cell and in a cell population.
Especially the multiscale description represent a major step forward in viral kinetic model-
ing as it reveals how intracellular processes drive virus spreading at the tissue scale. It can,
therefore, contribute to the fight against influenza by exposing the emergent properties
of the viral life cycle.
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Kurzfassung

Influenza-A-Viren lösen im Menschen eine akute Infektion der Atemwege aus, die als
Virusgrippe bezeichnet wird. Sie verursachen jährliche Epidemien bei denen 5–15% der
Weltbevölkerung infiziert werden. Dabei kommt es in drei bis fünf Millionen Fällen zu
einem schweren Krankheitsverlauf, der für bis zu 500 000 Patienten mit dem Tod endet.
Darüber hinaus können neue Influenzastämme zu Pandemien führen. Die sogenannte
„Spanische Grippe“ aus dem Jahr 1918 war ein solcher weltweiter Ausbruch, dem circa
50 Millionen Menschen zum Opfer fielen. Um Pandemien künftig zu verhindern und das
Virus wirksam zu bekämpfen, bedarf es eines umfassenden Verständnisses des viralen
Lebenszyklus.
Das Ziel dieser Doktorarbeit war die Entwicklung mathematischer Modelle, die eine

quantitative Beschreibung der Vermehrung von Influenza-A-Viren erlauben. Dabei
sollte sowohl die Replikation des Virus innerhalb einer einzelnen Zelle als auch
dessen Ausbreitung in einer Zellpopulation betrachtet werden. Insbesondere stand
die Identifizierung von Faktoren, welche die Produktion von Viruspartikeln auf
diesen beiden Ebenen begrenzen, im Fokus. Solche Faktoren sind nicht nur für die
Optimierung der Impfstoffproduktion von Bedeutung, sondern stellen auch vielver-
sprechende Angriffspunkte für die Entwicklung neuer antiviraler Medikamente dar.
Der erste Teil dieser Arbeit umfasst die Herleitung und Analyse eines Modells für die

intrazellulären Vorgänge der Virusvermehrung. Dabei wurden alle wichtigen Schritte vom
Eintritt des Virus in die Zelle bis zur Freisetzung von Tochterviren berücksichtigt. Das
entstandene Modell zeigt, dass zwei Regulationsmechanismen benötigt werden, um den
zeitlichen Verlauf der viralen RNA-Spezies korrekt wiedergeben zu können. Es handelt
sich hierbei zum Einen um die Stabilisierung von Replikationsintermediaten (cRNA)
durch virale Polymerasen und Nukleoproteine (NP), welche das Umschalten von viraler
Transkription zur Genomreplikation steuern und zum Anderen um das Abschalten der
Synthese positiv-strängiger RNAs durch das Matrixprotein (M1), wodurch der Export
von viralen Genomkopien aus dem Zellkern ermöglicht wird. Die Simulationen offen-
baren darüber hinaus eine starke Abhängigkeit der Virusproduktion von der Rate der
viralen RNA-Synthese, dem Zeitpunkt des nukleären Exports und der Geschwindigkeit
des Zusammenbaus und der Ausschleusung von Tochterviren. Somit kann das Modell
wertvolle Einblicke in den Verlauf der intrazellulären Virusreplikation liefern, die durch
Experimente allein nur schwer zu erlangen wären.
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Im nächsten Schritt wurde das erstellte Modell genutzt, um den Einfluss von stochas-
tischem Rauschen auf die intrazelluläre Replikation des Virus zu untersuchen. Dabei
zeigte sich, dass Influenza-A-Viren aufgrund ihres segmentierten Erbguts besonders
anfällig gegenüber zufälligen Fluktuationen sind. Insbesondere kann die Synthese viraler
RNAs Schwankungen verstärken und diese Schwankungen können unabhängig auf jedes
Genomsegment wirken. Dadurch kommt es zu großen Unterschieden in der Kopienzahl der
einzelnen viralen Gene. Diese Unterschiede können mehrere Zehnerpotenzen betragen und
dazu führen, dass ein Großteil der infizierten Zellen nur wenige Viren freisetzt. Zusätzlich
können aufgrund von stochastischen Phänomenen einzelne virale RNAs abgebaut wer-
den, bevor sie vervielfältigt wurden. Geschieht dies in der frühen Phase der Infektion in
einer Zelle, die nur von wenigen Viren infiziert wurde, kann es zum unwiederbringlichen
Verlust eines Genomsegments kommen. Als Folge ist die betreffende Zelle außerstande,
infektiöse Tochterviren zu produzieren. Diese Modellvorhersage steht im Einklang mit
Experimenten, in denen die meisten infizierten Zellen unproduktiv erscheinen. Sie legt
ebenfalls nahe, dass mehrere Viruspartikel eine einzelne Zelle infizieren müssen, um
eine produktive Infektion sicherzustellen. Zusammengenommen deuten die gewonnenen
Erkenntnisse darauf hin, dass stochastische Fluktuationen während der viralen RNA-
Replikation zu starken Unterschieden zwischen einzelnen infizierten Zellen führen können
und Schwankungen innerhalb dieser Zellen die Virusproduktion kompromittieren.
Mit dem Ziel, Angriffspunkte für neue antivirale Medikamente zu identifizieren, wurde

im zweiten Teil der Arbeit ein Multiskalen-Modell der Infektion entwickelt. Dieses Modell
verbindet die intrazellulären Vorgänge der viralen Replikation mit der Ausbreitung des
Virus in einer Population von Wirtszellen. Durch diesen integrativen Ansatz gelang
es, verschiedene experimentelle Daten auf beiden Ebenen zu reproduzieren. So kann
das Modell zum Beispiel die Anzahl der viralen RNA-Spezies innerhalb einer Zelle
nachbilden und gleichzeitig die Infektionsdynamik des Virus in einer Zellpopulation
wiedergeben. Darüber hinaus zeigt es, dass Inhibitoren der viralen Transkription,
Replikation und Proteinsynthese die Produktion von Tochterviren effektiv unterbinden
können. Dieser Effekt lässt sich vor allem auf eine Unterbrechung des autokatalytischen
Mechanismus der viralen RNA-Synthese zurückführen. Auch eine Blockade des nukleären
Exports von viralen Genomkopien sowie des Zusammenbaus und der Ausschleusung von
Tochterviren kann den Virustiter verringern. Im Gegensatz hierzu führen Medikamente,
welche die frühen Schritte des viralen Lebenszyklus stören, meist nur zu einer Verzögerung
der Infektion, da sie die Virusproduktion durch eine Zelle nicht entscheidend stören.
Das entwickelte Multiskalen-Modell vermittelt somit ein systematisches Verständnis der
Replikation von Influenza-A-Viren und es offenbart vielversprechende Ansätze zu deren
Bekämpfung.
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Im letzten Teil der Arbeit wurde der Einfluss von defekten Viruspartikeln (DIPs) auf
die intrazelluläre Replikation des Virus und dessen Produktion in einer Zellpopulation
betrachtet. Dabei legen Simulationen der intrazellulären Ebene nahe, dass defekte RNA-
Segmente (DI RNAs), von denen angenommen wird, dass sie aufgrund ihrer reduzierten
Länge einen Replikationsvorteil besitzen, schnell ein Vielfaches der Kopienzahl von
Wildtyp-RNAs erreichen. Durch diese exzessive Produktion von viralen RNAs wird die
Menge an freien viralen Polymerasen und NP-Proteinen drastisch reduziert. Da diese
Proteine jedoch auch zur Produktion vollständiger RNAs benötigt werden, behindern
DI RNAs auf diesem Wege die Synthese des Wildtyp-Virus. Die Simulationen zeigen
außerdem, dass die Produktion von DIPs zum Großteil vom Replikationsvorteil ihrer
DI RNA abhängt aber auch Faktoren wie die anfänglich vorhandene Menge an defek-
ten Partikeln und der Zeitpunkt der Koinfektion einer Zelle eine Rolle spielen. Die
gezeigten Analysen können somit dabei helfen, Produktionsprozesse für DIPs mit thera-
peutischem Nutzen zu entwickeln. Auf der Ebene der Zellpopulation wurde außerdem
ein Modell für die Beschreibung eines kontinuierlichen Prozesses für die Herstellung von
Influenzaimpfstoffen entwickelt. Es zeigt, dass DIPs in einem solchen System schnell akku-
mulieren können und dabei periodische Schwankungen im Virustiter verursachen. Leider
sind diese Produktivitätseinbrüche ungewöhnlich robust gegenüber Strategien zu deren
Vermeidung und eine stabile Ausbeute wird laut Modell nur erreicht, wenn der Prozess
völlig frei von DIPs betrieben wird. Defekte Viren stellen deshalb ein ernstes Hindernis
für die Produktion von Influenza-A-Viren mittels kontinuierlicher Verfahren dar.
Zusammenfassend vermitteln die im Rahmen dieser Arbeit entwickelten Modelle

wertvolle Einblicke in die Replikation von Influenza-A-Viren innerhalb einer einzelnen
Zelle und in einer Zellpopulation. Insbesondere das Multiskalen-Modell stellt einen
entscheidenden Meilenstein dar, da es Vorhersagen über den Einfluss von intra-
zellulären Faktoren auf die Virusausbreitung in Geweben ermöglicht. Dadurch kann
es einen wichtigen Beitrag zur Entwicklung neuer Anti-Influenza-Medikamente und zur
Verbesserung der Impfstoffproduktion leisten.
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M1 nucleotides number of nucleotides bound by on M1 molecule
NNuc

NEP nucleotides number of nucleotides bound by on NEP molecule
NNuc

NP nucleotides number of nucleotides bound by on NP molecule
PI – infection probability
Pj molecules/cell number of proteins of type j
Rj – stochastic reaction
RC molecules/cell number of naked cRNAs
RC

i molecules/cell number of naked cRNAs of segment i
RC

RdRp molecules/cell number of RdRp-cRNA complexes
RC

tot molecules/cell total number of cRNAs in a cell
rInf h−1 infection rate of target cells
rLys h−1 lysis rate of apoptotic cells
RM

i molecules/cell number of mRNA of segment i
rRel virions/(cell · h) virus release rate
rRel

D virions/(cell · h) DIP release rate



xvii

Symbol Unit Description

rSyn
M1 molecules/(cell · h) synthesis rate of M1 proteins
rSyn

mRNA7 molecules/(cell · h) synthesis rate of mRNAs of segment 7
RV molecules/cell number of naked vRNAs
RV

RdRp molecules/cell number of RdRp-vRNA complexes
RV

RdRp,i molecules/cell number of RdRp-vRNA complexes of segment i
RV

tot molecules/cell total number of vRNAs in a cell
SMθ – sensitivity coefficient
t h time
T cells/ml concentration of uninfected target cells
T0 cells/ml initial target cell concentration
Ta cells/ml concentration of apoptotic uninfected cells
Tin cells/ml target cell concentration in the feed
Tmax cells/ml maximum target cell concentration
V virions/ml concentration of virus particles
Vd virions/ml concentration of DIPs
Vd0 virions/ml initial concentration of DIPs
vij – state-change matrix of a stochastic model
Vs virions/ml concentration of STVs
Vs0 virions/ml initial concentration of STVs
V cyt molecules/cell complex of eight parental vRNPs in the cytoplasm
V cyt

Cplx molecules/cell complex of eight progeny vRNPs in the cytoplasm
V En virions/(cell or ml) number of virions in endosomes
V Ex virions/cell number of virions in the extracellular medium
V Rel virions/cell number of progeny virions
V Rel

tot virions/cell viral burst size
Vpcyt molecules/cell number of cytoplasmic vRNPs
Vpcyt

i molecules/cell number of cytoplasmic vRNPs of segment i
Vpcyt

M1 molecules/cell number of cytoplasmic M1-NEP-vRNP complexes
Vpcyt

M1,i molecules/cell cytoplasmic M1-NEP-vRNP complexes of segment i
Vpnuc molecules/cell number of nuclear vRNPs
Vpnuc

i molecules/cell number of nuclear vRNPs of segment i
Vpnuc

M1 molecules/cell number of nuclear M1-vRNP complexes
Vpnuc

M1,i molecules/cell nuclear M1-vRNP complexes of segment i
x – realization of the state vector of a stochastic model
X – state vector of a stochastic model
xi – measurement value at time point ti
y – vector of experimental observations
Y – stochastic variable
ys,c – model output of species s at condition c
yDs,c – measurement of species s at condition c
Z – stochastic variable
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Chapter 1

Introduction

Almost a century after the devastating influenza pandemic of 1918, which is considered
one of the most dramatic events in medical history [1] with an estimated 50 million victims
worldwide [2], influenza viruses continue to pose a serious hazard to human health [3].
According to the World Health Organization (WHO), the virus infects 5–15% of the
world’s population in its anual epidemics causing 3 to 5 million cases of severe illness
and 250 000 to 500 000 deaths each year [4]. In addition, human influenza viruses can
rapidly evolve and reassort with strains from other host organisms such that emerging
virus variants have the ongoing potential of starting the next deadly pandemic.
Influenza viruses are obligate intracellular parasites that infect a broad spectrum of host

species including poultry, pigs, horses, dogs, sea mammals, and humans [5]. Yet, their
main reservoir are wild aquatic birds from which they can spread easily to other species.
In humans, influenza viruses primarily infect the epithelial cells of the upper respiratory
tract causing a highly contagious disease characterized by high fever, dry cough, myalgia,
headache, sore throat, and rhinitis. Transmission occurs mainly via virus-containing
droplets that are expelled during coughs and sneezes, and through contaminated surfaces.
In healthy individuals infection with seasonal strains is usually mild and self-limiting with
most patients recovering within one to two weeks. But increased morbidity and mortality
can occur in risk groups like the young, elderly, and those with certain medical conditions
or a compromised immune system.
Every year, influenza viruses cause localized disease outbreaks. In temperate climates,

these seasonal epidemics typically occur during the winter months. They are caused by
a variety of influenza virus species and strains, which can change from season to season
with some strains dying out, while others are spreading rapidly. When seasonal influenza
viruses are antigenically similar to strains from previous years, pre-acquired immunity
in human hosts can reduce the severity of infection. By contrast, a pandemic outbreak
originates from a new virus variant for which the human population is immunologically
naïve leading to an uncontrolled worldwide spread and more severe illness. Historical data
indicate that influenza pandemics occur regularly at least once every 50–60 years [1] with
three major outbreaks in the last century alone claiming tens of millions of lives [6]. In
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2009, the first pandemic of the 21th century occurred. It resulted in more than 22 million
reported cases, the closing of schools, and the blocking of borders [7]. Recent estimates
put the number of victims between 123 000 and 203 000 worldwide [8].
Because of the high burden of influenza on public health and economy major resources

have been directed toward the development of treatment strategies in humans. These
efforts have resulted in two classes of antiviral drugs that are currently approved in many
countries [9]. However, viral resistance to these compounds occurs frequently making
vaccination the most effective method for mitigating the impact of influenza and for pre-
venting an infection. Since the virus strains in circulation change over time, the vaccine’s
composition is adapted annually requiring repeated vaccination to guarantee an optimal
protection. This and the rapidly evolving virus calls for flexible and efficient vaccine pro-
duction processes to facilitate a fast response to new strains and to accommodate large
increases in the demand for vaccines during a pandemic.
The key to a successful fight against seasonal and pandemic influenza is a deep un-

derstanding of the viral life cycle. For instance, finding new targets for antiviral drugs
requires information on how the virus replicates in its host cells and how it spreads
throughout infected individuals. Moreover, studying the immune response to infection
and the growth properties of virus strains can drive the development of better vaccines
and more efficient processes for their production thereby helping to provide protection
to more people. However, the inherent complexity of viral infection and of virus-host
interactions represents a major obstacle to achieving these aims.
With the advent of computational biology it became possible to model and simulate

complex cellular systems in order to understand their function. Such modeling approaches
hold the promise of moving biology from a phenomenological to a predictive science
through revealing the conserved design principles of biological processes [10]. In virology,
mathematical models have contributed tremendously to our understanding of infection
and the immune response over the past decades [11]. Theoretical studies of influenza
have, for instance, been used to inform public health decisions by describing the trans-
mission of the virus between infected hosts and its global spread [12, 13]. In addition,
many researchers have investigated influenza virus infection within infected humans and
animals or in cell culture [14, 15]. Also, viral replication inside a host cell has been the
subject of theoretical studies [16, 17]. While today’s models mostly focus on examining
host-pathogen interactions on each of these levels in isolation, multiscale approaches may
allow us to describe virus growth across different levels uncovering the emergent properties
of infection that only appear when the system is considered as a whole [18].
This work aims to develop such a multiscale model in order to describe the intracellular

life cycle of influenza A viruses and their growth at the cell population scale, with a
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particular emphasis on cell culture systems for vaccine manufacturing. With the help
of this model, we seek to identify bottlenecks for virus production, i.e., mechanisms that
limit the amount of virus particles an infected cell or a cell population releases. Alleviating
such bottlenecks may increase the efficiency of vaccine production and reduce costs, while
targeting them with specific inhibitors represents a promising approach for antiviral ther-
apy. Including the different scales of the viral life cycle in a single coherent model is
essential to finding these bottlenecks because it allows us to study which intracellular
processes are most susceptible to interference and how such perturbations influence virus
titers in cell culture and within a host. Therefore, three milestones were defined in this
work: (i) the development of a model for intracellular viral replication, (ii) the integration
of the intracellular model into a multiscale description of infection, and (iii) the in silico
analysis of defective interfering particles (DIPs), which can compromise virus production
at the intracellular and cell population level.
In the following, we first outline the basic characteristics of influenza A viruses and of

their life cycle, discuss different strategies to produce vaccines, and give a short intro-
duction to mathematical modeling (Chapter 2). We then present our models starting
with a description of intracellular virus replication followed by the multiscale model of
infection and an analysis of the replication of defective interfering viruses (Chapter 3).
Chapter 4 covers the results of our modeling efforts beginning with the intracellular level
and gradually moving toward a multiscale description. The chapter finishes with two
models of DIP growth. Finally, a general conclusion of the work is given in Chapter 5
and an outlook in Chapter 6.
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Chapter 2

Theoretical Background

The first section of this chapter provides an overview of influenza virus infection focusing
in particular on the molecular mechanisms of viral replication. Subsequently, influenza
vaccine production in mammalian cell culture and mathematical modeling approaches to
the description of infectious disease are introduced. The last section outlines important
theoretical aspects of model construction and analysis.

2.1. Influenza A virus infection

Influenza viruses are obligate intracellular parasites that hijack a cell’s biosynthetic ma-
chinery to reproduce. They belong to the family of Orthomyxoviridae and comprise three
different genera: the Influenzaviruses A, B, and C (reviewed in [19]). Among these types,
only the A and B variants cause annual epidemics in humans. In the rest of this work, we
solely focus on influenza A viruses because they are responsible for all pandemic outbreaks
recorded thus far.

2.1.1. Virus structure and morphology

Like other members of the Orthomyxoviridae, influenza A viruses possess a segmented
genome that comprises single-stranded RNA of negative polarity meaning that it is com-
plementary to mRNA and cannot directly serve as a template for protein translation [19].
To distinguish different human influenza viruses, their strains are named according to the
genus, location of isolation, number of the isolate, year of isolation, and subtype of the
surface proteins hemagglutinin (HA) and neuraminidase (NA). The common laboratory
strain A/PR/8/34 (H1N1), for instance, was the isolate number 8 in the year 1934 in
Puerto Rico and harbors the surface proteins of subtype one.

Virion structure Influenza A viruses are pleomorphic [20]. Their spherical particles
have a diameter of 80–120 nm, while the filamentous elongated form can reach more than
1 µm [21]. The virus particle or virion possesses a lipid envelope (Figure 2.1A), which is
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Figure 2.1.: Virus particle and genome structure. (A) Schematic diagram of a spherical
influenza A virus particle. The viral proteins are: PB, polymerase basic protein; PA, polymerase
acidic protein; HA, hemagglutinin; NP, nucleoprotein; NA, neuraminidase; M, matrix protein;
and NEP, nuclear export protein. (B) Genome segments of the influenza A/PR/8/34 strain.
Boxes represent the encoded proteins and lines at the termini symbolize the non-coding regions.
Introns of the spliced mRNAs of segments 7 and 8 are indicated by V-shapes. NS 1, nonstructural
protein 1. Figure adapted from [19]. (C) Scheme of an influenza viral ribonucleoprotein (vRNP).

derived from the host cell membrane, and contains three viral surface proteins: HA, NA,
and matrix protein 2 (M2). Underneath the lipid membrane matrix protein 1 (M1) forms a
layer, which separates the virus core from the envelope. The inside of the particle contains
the nuclear export protein (NEP, previously known as the nonstructural protein 2, NS2)
and eight genome segments. The genomic RNA of influenza A viruses (vRNA) does not
exist as naked RNA but forms viral ribonucleoproteins (vRNPs) with the RNA-dependent
RNA polymerase (RdRp) and the nucleoprotein (NP). The RdRp itself is a complex
comprising the polymerase basic proteins 1 and 2 (PB1 and PB2) and the polymerase
acidic protein (PA). While each vRNP contains only one copy of the RdRp, its vRNA is
encapsidated by multiple copies of NP [22, 23]. Note that inside the virus particle vRNPs
also interact with M1 proteins. In addition, virions contain a variety of host factors, which
might be incorporated non-specifically during particle assembly or have a certain function
in the viral life cycle [24].

Genome organization The genome of influenza A viruses comprises approxi-
mately 13 kb with the length of individual genome segments ranging between 890
and 2341 nucleotides (for A/PR/8/34 strain, [25]). Each of the eight segments encodes for
at least one viral protein (Figure 2.1B). Segments 1 to 3 provide the three polymerase sub-
units, which, together with the NP protein encoded by segment 5, comprise the minimal
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subset of viral proteins required for genome replication [26]. The two genes for the glyco-
proteins HA and NA are located on segment 4 and 6, respectively, while M1 and NS1 are
encoded by the two smallest genome segments 7 and 8. To increase the coding capacity
of their genome, influenza viruses use alternative splicing, which facilitates the synthesis
of M2 and NEP (reviewed in [27]). Furthermore, alternative open reading frames in seg-
ment 2 and ribosomal frameshifting in segment 3 give rise to additional proteins. Overall,
17 influenza A virus polypetides have been found so far and an 18th was predicted to
exist [27]. Some of these peptides are, however, only expressed by certain virus strains or
under laboratory conditions suggesting that they are not essential for virus replication.
The genomic RNAs of influenza A viruses exist as vRNPs (Figure 2.1C), whose struc-

ture has been extensively studied in the last decades (reviewed in [28, 29]). Early works
which used electron microscopy showed that vRNPs are rod-shaped with a width of 10 nm
and a length between 30 and 120 nm dependent on the length of the RNA segment [22].
They adopt a double-helical arrangement with the polymerase complex at one end and
a short loop of the NP-coated RNA strand folding back on itself at the other [23, 30].
The viral polymerase in a vRNP is bound to both the 5’ and 3’ termini of the RNA [31],
which are highly conserved among influenza A viruses [32]. Inside a virus particle, the
eight genome segments assume a “7+1” configuration with seven vRNPs forming a ring
around a central, core segment [33]. Recent evidence suggests that this structure is built by
RNA-RNA interactions of packaging signals near the polymerase end of the vRNPs [34].

2.1.2. The intracellular viral life cycle

Influenza A viruses preferentially infect epithelial cells of the respiratory tract, alveolar
macrophages, and dendritic cells. Unusual for an RNA virus, they replicate inside the
nucleus of their host cells and, thus, need to shuttle between different cellular compart-
ments. Figure 2.2 provides on overview of the intracellular viral life cycle, which is
discussed below.

Virus entry In order to initiate infection, influenza A viruses bind to neuraminic
acids (sialic acids) on the apical surface of polarized cells via their HA protein (reviewed
in [35]). Subsequently, they enter the cell by receptor-mediated endocytosis [36] using
three routes of internalization: (i) via clathrin-coated pits, (ii) through non-clathrin, non-
caveolae pathways, and (iii) by a dynamin-independent pathway that is characteristic of
macropinocytosis [19]. Once inside the cell, the virus is trafficked through the endosomal
network until the acidification in late endosomes triggers structural changes in the HA
protein (reviewed in [19, 35]). These changes allow the virus envelope to fuse with the en-
dosomal membrane. Endosomal acidification also triggers viral uncoating, i.e., the release
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Figure 2.2.: Scheme of the influenza A virus life cycle. For the sake of simplicity, only one
of the eight vRNPs is depicted and non-structural proteins were omitted. Solid arrows represent
synthesis or protein binding, while dashed arrows indicate transport processes. Different steps
are assigned by numbers (see text for details): 1, attachment; 2, endocytosis; 3, fusion in late
endosomes; 4, nuclear import; 5, transcription; 6, replication (cRNA synthesis); 7, protein
translation; 8, cRNA encapsidation; 9, replication (vRNA synthesis); 10, vRNA encapsidation;
11, M1 and NEP binding; 12, nuclear export; 13, virus assembly and budding.

of vRNPs from M1 proteins due to the action of protons that enter the virus interior via
the M2 ion channel. As a result, parental vRNPs that are free of M1 enter the host cell’s
cytoplasm.

Nuclear import of vRNPs The synthesis of influenza virus RNAs and their processing
depends on nuclear functions, which is why incoming vRNPs travel to the host cell’s
nucleus. Recent experimental evidence suggests that the eight genome segments colocalize
during their cytoplasmic transport and only separate once they reach the karyoplasm [37].
The vRNP complexes are considered too large for passive diffusion across the nuclear
membrane and, hence, rely on active, energy-driven transport mechanisms mediated by
nuclear transport receptors, the karyopherins (reviewed in [38–41]). The interaction with
these receptors requires a nuclear localization signal (NLS), which has been identified in
all vRNP-associated viral proteins [40]. Yet, only the NLS in NP is both necessary and
sufficient for the nuclear import of the viral genome [42, 43]. M1 proteins can mask this
NLS and pre-expressed M1 has been shown to prevent the import of parental vRNPs
suggesting that M1 is a crucial regulator of viral cytoplasmic-nuclear trafficking [44].
This is supported by the observation that newly assembled vRNPs, which associate with
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M1 proteins in the nucleus, travel to the cytoplasm and cannot shuttle back [45, 46].
Furthermore, a mildly acidic pH that disrupts M1 binding restores the ability of these
vRNPs to re-enter the nucleus [44]. Hence, the dissociation of M1 during uncoating allows
the parental vRNPs to enter the nucleus, whereas association of progeny vRNPs with
newly produced M1 controls their nuclear export (which is discussed later) and prevents
the re-import [45, 47].

Viral mRNA synthesis After their import, parental vRNPs spread throughout the nu-
cleus and operate as independent functional units [37, 48]. As such they, first, transcribe
viral mRNA via a primer-dependent mechanism (reviewed in [31, 49]) during which the
viral RdRp acts in cis, using the vRNA of its own vRNP as a template [50]. The primer is
obtained through a process known as cap-snatching, whereby the viral polymerase binds
to the cellular RNA polymerase II (Pol II, [51]) and cleaves the 5’ cap-structure as well
as 10–13 additional nucleotides from host cell pre-mRNAs [31]. During the elongation
of the transcript, the RdRp remains associated to the 5’ terminus of the vRNA while
the template is threaded through in a 3’→5’ direction resulting in steric hindrance at
the 5’ end. This causes the polymerase to slip and stutter over a stretch of five to seven
uridine residues [52, 53]. As a result, viral mRNAs are polyadenylated but also terminate
prematurely. Hence, the mRNAs of influenza A virus mimic cellular mRNA by having
a 5’ cap and a 3’ poly(A) tail. However, they represent an incomplete copy of the viral
genome.

Viral protein translation While transcription is a nuclear process, protein translation
occurs at cytoplasmic ribosomes. Thus, viral mRNAs take advantage of the cellular
mRNA trafficking machinery and shuttle out of the nucleus (reviewed in [54]). Once in the
cytoplasm, they interact with cellular translation initiation factors and begin to synthesize
viral proteins. At this stage, viral mRNAs have to compete with transcripts of cellular
origin for resources and, hence, have evolved several mechanisms to gain preferential access
to the translation machinery (reviewed in [55]). After their synthesis, the newly produced
viral proteins can either enter the nucleus where they participate in vRNP assembly
and other processes [39, 40], or they travel to the plasma membrane to form progeny
virions [56]. For the surface proteins (HA, NA, and M2) the latter step is preceded by
processing in the endoplasmic reticulum (ER) and the Golgi apparatus.

Transition from transcription to replication Genome replication requires a full-length
copy of the vRNA, which prevents viral mRNAs to serve as its template. Therefore,
vRNPs give rise to a second species of positive-strand RNA, the complementary
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RNA (cRNA). In contrast to mRNA, cRNA is generated by a primer-independent mech-
anism and neither receives a 5’ cap nor a 3’ poly(A) tail. Yet, both RNA species are
produced by vRNPs. Hence, there have to be mechanisms in place to coordinate the two
different initiation and termination strategies. How exactly this is achieved has been a
matter of controversial debate in the last decades (reviewed in [19, 31, 57]).
Early studies indicate that cRNA production requires an initial round of viral pro-

tein synthesis [58], which lead to the proposal that soluble NP (i.e. NP not associated
to vRNPs) mediates a switch in vRNP activity from early transcription toward late
replication [59] (Figure 2.3A). This switching hypothesis is supported by experiments
in which the synthesis of full-length cRNA (antitermination) depends on NP [61, 62]
and by temperature-sensitive NP mutants showing impaired cRNA production but nor-
mal mRNA accumulation at the non-permissive temperature [63, 64]. Yet, in another
study, overexpression of NP did not promote replication [65]. More recently, Vreede et al.
proposed a different mechanism suggesting that the binding of viral polymerases and
NP proteins protects nascent cRNA from degradation by cellular nucleases [60]. In this
scenario, vRNPs synthesize both positive-strand RNAs early on. However, cRNA does
not accumulate unless it is encapsidated (Figure 2.3B). This is in agreement with in vitro
experiments showing cRNA synthesis in the absence of free NP [66]. In addition to the
switching and stabilization hypotheses there have been reports that NP and the cellu-
lar minichromosome maintenance complex (MCM) interact with the viral polymerase to
facilitate promoter clearance thereby stimulating replication [67, 68]; that NEP exerts
regulatory control over viral RNA synthesis [69–72]; and that small viral RNAs (svRNAs,
22–27 nucleotide long RNAs that correspond to the 5’ end of each vRNA) can enhance

Figure 2.3.: Scheme of different hypotheses on the transition from transcription to
replication. (A) Switching hypothesis suggesting that polymerases in vRNPs act as transcrip-
tases early in infection. Accumulation of NP then switches their activity toward replication.
(B) Stabilization hypothesis suggesting that vRNPs engage in both transcription and replica-
tion (cRNA synthesis) early in infection. However, cRNA is rapidly degraded by cellular nucle-
ases unless viral polymerases and NP proteins stabilize it. Figure adapted from Vreede et al. [60].
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vRNA synthesis [73, 74].
Another hypothesis that has gained much attention in recent years suggests that the

polymerase which catalyzes transcription is physically different from the one that drives
replication, i.e., that mRNA synthesis occurs in cis, mediated by the resident polymerase
in a vRNP, while cRNAs are produced in trans by soluble polymerases [23, 50]. Although
the latter was (so far) only described for the production of vRNA it might explain how
the premature termination of cRNA is avoided. According to this model, the trans-acting
polymerase would not stay attached to the 5’ end of the vRNA template and would, thus,
not encounter steric hindrance [31, 57]. However, de novo cRNA synthesis from vRNPs
has been detected in the absence of soluble polymerases [66, 68] and pre-expression of a
catalytically inactive polymerase during an infection in the presence of a protein synthesis
inhibitor resulted in cRNA accumulation [60]. This indicates that vRNPs possess at least
some replication activity in cis. Clearly, more research is needed to fully understand the
regulation of viral RNA synthesis.
In the second step of replication newly produced cRNPs synthesize vRNA using a

primer-independent mechanism. As mentioned above, this process can be catalyzed by
soluble polymerases [50]. The resulting vRNAs are encapsidated by viral polymerases
and NP such that progeny vRNPs are formed in the nucleus. Note that apart from the
control of mRNA vs. cRNA synthesis there is also temporal regulation of viral RNA and
protein levels (reviewed in [19, 49]). For instance, NP and NS1 are found early during the
viral life cycle, whereas the transcription of HA and especially of M1 occurs later [75].

Nuclear export of vRNPs Following a successful round of replication the newly assem-
bled vRNPs can either participate in mRNA and cRNA synthesis or leave the nucleus
to form progeny virions. The latter occurs predominantly via a pathway involving the
cellular β-importin CRM1 (chromosome region maintenance 1 protein) and is thought to
be mainly directed by M1 and NEP (reviewed in [19, 38, 39, 71]).
Initial evidence for the role of M1 came from the observation that NP fluorescence, a

marker for vRNP localization, is confined to the nucleus of infected cells which lack M1
expression or were treated with antibodies that retained M1 in the cytoplasm [45]. This
was confirmed by a study showing that vRNP export is blocked in the presence of the
protein kinase inhibitor H7, which inhibits M1 production, but can be rescued by stable
expression of recombinant M1 [76]. Further support for the importance of M1 comes from
a virus that carries a defect which impairs M1 SUMOylation resulting in the accumulation
of vRNAs in the nucleus and a decrease in virus production [77]. In line with its function
during export, M1 has also been shown to associate with vRNPs by binding to NP [78],
and perhaps also to RNA [79], and may even promote vRNP formation [80]. However,
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interaction with the cellular export machinery requires a nuclear export signal (NES),
which has only recently been identified in M1 [81]. Yet, this NES seems to trigger a
CRM1-independent pathway and does not explain why vRNP export is impaired in the
presence of leptomycin B, a potent inhibitor of the CRM1-mediated export [82].
In order to resolve this discrepancy it was suggested that a second viral or cellular factor

may provide the interaction of M1-vRNP complexes with the cellular export machinery.
The NEP protein is thought to be this factor as it can bind to both the export receptor
CRM1 [83, 84] and the M1 protein [85, 86]. This observation lead to the “daisy chain”
model of vRNP export whereby M1 binds to vRNPs and to NEP, while NEP recruits
CRM1 (Figure 2.4) [71, 83, 85]. This model was recently challenged by the observation
that NEP can associate directly with PB1 and PB2 [87] and that it enhances the binding
affinity of M1 and vRNPs, which would otherwise be insufficient to establish detectable
levels of M1-vRNP complexes [88]. However, due to experimental limitations the daisy
chain model could not be ruled out entirely. Despite this ambiguity, NEP’s role in ex-
port is further supported by experiments in which the injection of anti-NEP antibodies
resulted in the nuclear retention of vRNPs [89]. Interestingly, the NEP-M1 binding inter-
face maps to the NLS in M1 suggesting that the interaction of both proteins may override
this import signal in favor of export [85]. NEP may, hence, act as a molecular timer for
nuclear trafficking such that a suboptimal splicing of segment 8 ensures a late accumula-
tion of NEP, which prevents the premature export of vRNPs [90]. Yet, nuclear export can
occur without detectable levels of NEP [76] and even in its complete absence [80] arguing
against such a regulatory function or at least suggesting that NEP is not required in high
quantities [59]. Note that besides M1 and NEP, the NP protein may also be involved
in nuclear export. It was suggested to contain an NES, can interact with CRM1, and

Figure 2.4.: Scheme of nuclear export. The export of vRNPs is mediated by the cellular
β-importin CRM1 and its cofactor, the small GTPase Ran. NEP provides the interaction with
the cellular export machinery and binds to M1, while M1 recruits the vRNP. Inset depicts
magnification.
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shuttles out of the nucleus in the absence of other viral proteins [59, 82, 91].
Since vRNPs direct the synthesis of mRNA and cRNA their export may have profound

consequences for viral RNA production. In this context, it has been hypothesized that
nuclear vRNPs comprises two distinct classes: one that actively engages in transcription
and replication and is not destined to leave the nucleus, and a second, inactive class
that is to be exported [92]. This would allow the vRNPs to transport across the nuclear
membrane in an ordered, condensed form (with a single polymerase bound to the 3’
and 5’ promoter), which can be found in virus particles. M1 proteins may be the factor
responsible for such an inactivation as they were shown to inhibit viral transcription and
lead to impaired virus replication upon overexpression [78, 93–97].

Particle assembly and release The last step in intracellular influenza virus replication
is the formation and release of progeny virions (reviewed in [56, 92, 98]). Influenza A
viruses bud from the apical surface of polarized cells [99] using membrane domains known
as lipid rafts, i.e., nonionic detergent-resistant microdomains with a high content of
sphingolipids and cholesterol. The viral membrane proteins HA and NA are directed
specifically to these domains after they have been processed in the ER and Golgi appa-
ratus, whereas the M2 protein is excluded from lipid rafts and may instead recruit to the
raft boundary [100–102]. Transport of the viral genome to the plasma membrane involves
Rab11, a marker for recycling endosomes, which colocalizes with vRNPs in the perinu-
clear region near the microtubule organizing center after their nuclear export [103, 104].
Hence, vRNPs may associate with recycling endosomes and “hitch a ride” to the cell
periphery. Furthermore, the virion structure suggests an important role of M1 during
particle assembly as it bridges the membrane proteins and the viral core. In this context,
M1 has been shown to bind to vRNPs, possess an intrinsic affinity to lipid membranes,
and was suggested to interact with the cytoplasmic tails of HA and NA facilitating its
association with lipid rafts [100, 105]. M1 may, hence, serve as a key player in the re-
cruitment, concentration, and assembly of viral and cellular components at the budding
site [56].
Once the components are present, particle assembly continues with the formation of

a bud, which requires an outward curvature of the host cell membrane. This process is
likely directed by several viral proteins since HA, NA, and M2 are all capable of forming
virus-like particles (VLPs) when expressed alone in cells [19, 98, 106]. After budding has
been initiated, the bud extends while the vRNPs are incorporated and the virus core is
formed. Finally, the M2 protein completes the process by inducing membrane curvature
and scission at the neck of the budding virion [107]. The release of mature particles also
requires the enzymatic activity of NA, which removes sialic acids from the cell surface
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and the viral envelope once the protein is expressed on the cell exterior. In absence of
this activity, the binding capacity of HA would retain virions at the plasma membrane
and cause virus aggregation.

Genome packaging In order to induce productive infection, a single virion must con-
tain at least one copy of each genome segment. Whether this is achieved by a random
incorporation of the eight different vRNPs or by a segment-specific packaging mechanism
has been disputed for many years (reviewed in [28, 108]). Combinatorial calculations
suggest that in order to be compatible with measurements of infectivity, purely ran-
dom packaging would require each virion to incorporate at least 10 vRNPs [108–110].
However, in electron microscopical studies most virions were found to package exactly
eight vRNPs [33]. Moreover, these genome segments form an ordered “7+1” configuration
in which a central, core segment is surrounded by seven other vRNPs [33, 34, 111, 112].
These results and the identification of specific packaging signals in the vRNAs (reviewed
in [108]) provide strong evidence for a specific packaging mechanism. Further support for
this hypothesis comes from the observation that defective interfering RNAs (DI RNAs),
i.e., vRNAs with large internal deletions, compete with their full-length counterparts for
packaging into virus particles in a segment-specific manner [113, 114]. In addition, recent
experiments reveal RNA-RNA interactions between the influenza virus genome segments,
which may facilitate the formation of the “7+1” vRNP complex [34, 111, 115]. Finally,
single-molecule FISH analysis demonstrates that the majority of virus particles packages
one copy of each vRNA [116]. Hence, it appears that there are mechanisms in place which
enable a segment-specific packaging of the complete genome set into each virion.

2.1.3. Inhibitors of viral replication

In recent years, the discovery of new antiviral agents for influenza therapy has received
much attention (reviewed in [117]). Generally, the compounds under investigation fall into
either of two categories depending on their target: (i) molecules that interfere with host
factors which are essential for viral infection and replication [118, 119], including pro- and
antiviral signaling cascades [120], and (ii) drugs that target the viral components (i.e.,
proteins and RNAs) themselves [121]. In the following, we briefly introduce some examples
of such inhibitors of virus growth.

Inhibition of virus entry Virus entry into the host cell is considered an excellent target
for anti-influenza drugs (reviewed in [122]). M2 ion channel inhibitors like amantadine
and rimantadine, for instance, were the first class of compounds approved for influenza
treatment. Both these adamantane derivatives prevent the influx of protons into the virus
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interior and, thus, block uncoating of the viral genome [123]. In addition, amantadine
may influence the pH regulation in the trans Golgi compartment, which interferes with the
transport of functional HA to the plasma membrane during late infection [124]. However,
in the last years almost all circulating virus strains have acquired resistance against M1
inhibitors limiting their effectiveness in clinical practice [125]. Besides targeting viral
uncoating, there have been numerous efforts to prevent adsorption of the virus to the cell
membrane. This can be achieved by providing decoy receptors that mimic sialic acids,
peptides which bind to HA, or neutralizing monoclonal antibodies against the globular
head domain of HA [117]. Moreover, the recombinant sialidase DAS181 (Fludase) can
prevent influenza A virus binding in cell culture and animals by enzymatically removing
sialic acids from host cells [125, 126]. Recently, it has also been tested successfully in a
phase II clinical trial [127].

NA inhibitors The second class of drugs currently approved for influenza treatment
are neuraminidase inhibitors. NA has two main functions during the viral life cycle.
It facilitates virus penetration of mucosal secretions (most likely by removing receptors
that would bind the virus [128]) and prevents the aggregation of progeny virus particles
during virus release by cleaving sialic acid residues from the host cell and the virions [19,
117]. Currently, two Food and Drug Administration (FDA)-approved NA inhibitors are
available (oseltamivir and zanamivir), while additional drugs are licensed in some Asian
countries or are under development [117]. As with adamantanes, some circulating virus
strains have already acquired resistance to NA inhibitors [129, 130].

Viral polymerase inhibitors Since its function is unique to the virus, the RNA-
dependent RNA polymerase represents another promising target for anti-influenza drugs.
Favipiravir (T-705), a purine analog, is one of the first compounds directed against the
RdRp to reach clinical trials (reviewed in [131]). It blocks the synthesis of viral RNAs,
is potent against influenza A, B and C viruses in vitro, and protects mice from lethal
influenza infection [131–133]. Similarly, inhibitors of the endonuclease activity of PA,
which interfere with viral mRNA synthesis, can impair virus replication [121, 134]. A
third approach involves the disruption of polymerase assembly from its three subunits (re-
viewed in [135]). In particular, short peptides which correspond to the PA-binding domain
of PB1 were shown to inhibit viral polymerase activity and virus growth [136, 137]. Note
that virus production can also be impaired through small molecules that interfere with
other viral proteins such as NP and NS1 [117].

Interference with signaling Finally, inhibition or stimulation of host cell signaling cas-
cades can affect virus replication. Potential targets include the Raf/MEK/ERK cascade,
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NF-κB signaling, the PI3K/Akt/mTOR pathway, and PKC. Compounds that inhibit such
essential host cell pathways are able to block influenza virus propagation [120], while the
stimulation of antiviral signaling, for instance by poly(I ·C), can protect mice from lethal
infection [117].

2.1.4. Defective interfering viruses

Influenza virus preparations comprise a heterologous population of virus particles with
different biological properties whose composition can change depending on the infection
conditions [138, 139]. For instance, during successive passages in embryonated chicken
eggs at high multiplicity of infection (MOI), i.e., a high initial number of infectious virions
per cell, von Magnus observed a drop in the ratio of infectious to noninfectious virus
particles [140]. He attributed this phenomenon, which became known as the von Magnus
effect, to the production of “incomplete” viruses. Later Huang and Baltimore coined the
term “defective interfering” (DI) particles for these viruses since they need a helper virus,
also referred to as the standard virus (STV), to reproduce and because they replicate at
the expense of this STV [141]. Defective interfering particles (DIPs) are formed by nearly
all viruses (reviewed in [142–145]) and although they were initially thought to only occur
under laboratory conditions, DIPs have since been identified in human infections [145,
146].

Structure of DI RNAs DI influenza viruses are deficient in one or more of the essential
viral genes due to large internal deletions in their genome segments (Figure 2.5A). The
defective segment retains the elements critical for replication and packaging, i.e., the 3’
and 5’ promoters, the adjacent non-coding regions, and parts of the coding region [108].

Figure 2.5.: Schematic diagram of the DI RNA structure. (A) Structure of a full-
length and DI RNA. In the authentic vRNA the open reading frame (ORF) is flanked by
the untranslated regions (lines) which contain the terminal promoter sequences (red boxes).
DI RNAs lack the internal region (V-shape). (B) Potential mechanism for DI RNA generation.
The viral polymerase reads the template along the path indicated by the numbers. Dissociation
and reattachment at number 2 and 4, respectively, deletes the internal sequence (dashed arrow).
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Yet, it is significantly shorter and, if at all, only encodes for a truncated form of the
protein(s). The deletion can vary in size and DIP preparations usually contain multiple
subgenomic RNAs that originate from different genome segments [147, 148]. However,
defects in the polymerase genes on segment 1–3 are most common [147, 149]. These poly-
merase DI RNAs retain on average 100–300 nt of sequence from each end of the vRNA
and can, thus, lack more than 80% of their original length [108, 143, 147]. The structure
of influenza DI RNAs suggests that they are generated by an erroneous replication event
during which the polymerase dissociates from the template and reattaches further down-
stream (Figure 2.5B and reference [143]). This process may be fostered by the double
helical arrangement of vRNPs, which places nucleotide positions that are far apart in
sequence space (such as the 3’ and 5’ ends) in close physical proximity [147].

Mechanism of interference Since DI RNAs contain the promoter elements of their full-
length parent they are thought to be recognized by the viral polymerase and replicate in a
similar fashion than the infectious genome. However, in order to form progeny virions, the
DI virus needs a functional copy of the missing protein(s), which is supplied by the STV
upon coinfection of a cell with both virus variants. In these coinfections, the DI RNA
acts as a competitive inhibitor of the STV and interferes with its replication. In general,
this interference is homotypic meaning that it acts on the parental virus from which the
DIP was derived reducing its infectious virus titer [144]. However, the molecular basis of
this inhibition is still not well understood (reviewed in [143]).
Northern blot analysis of high MOI infections in the presence of DIPs shows a preferen-

tial amplification of the subgenomic RNAs [113, 150] suggesting that interference occurs
at the stage of RNA synthesis. In particular, the production of cRNA has been indi-
cated as the source of the replication advantage [151]. The most likely reason for such
an advantage is the reduced length of DI RNAs, which may facilitate a faster synthesis
by the viral polymerase. More precisely, the polymerase may synthesize a specific, con-
stant number of nucleotides per unit time resulting in a copy number advantage of short
RNAs. Alternatively, vRNAs might contain yet unidentified regulatory elements which
are impaired or completely absent in DI RNAs [143]. Evidence in favor of a simple
length dependency comes from a dual reporter assay for RNA replication [152]. In this
system, two luciferase-encoding influenza virus-like RNAs interfered with each other,
with shorter reporter constructs showing an increased interference potential. In addi-
tion, authentic genome segments also interfered with luciferase expression showing a clear
trend of stronger inhibition by short segments [152]. Considering the length dependency
and the necessity for the terminal packaging signals, DI RNAs may, thus, have an optimal
length where they possess an advantage over their parental segment and are still being
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incorporated efficiently into newly assembled virus particles. However, RNA length does
not seem to be the only determinant of the interference potential since some subgenomic
RNAs do not accumulate to high levels in infected cells [113] and most DI RNAs origi-
nate from the polymerase segments although smaller segments should be more likely to
generate short RNAs [143]. Interference may, hence, involve additional characteristics of
the DI RNA.
One mechanism that could contribute to interference is the competition for a limiting

viral or cellular factor [144]. For instance, the DI and full-length RNAs of the vesicular
stomatitis virus (VSV) have been found to compete for the components of the viral
polymerase complex in an in vitro, cell-free RNA assay [153]. This has also been observed
for influenza virus-like RNAs in a mini-replicon system [152]. Besides the competition for
resources, peptides produced directly from the DI RNAs have been suggested to play a
role since the defective segments retain both the 5’ and 3’ ends of the vRNA template and
are, thus, able to direct mRNA transcription and translation [150, 154]. Yet, DI RNAs
do not seem to maintain a specific reading frame after the deletion and DIP preparations
that produce DI-specific polypeptides do not show an increased interference potential [143,
150]. Furthermore, the resulting peptides of influenza DI RNAs are short compared to the
authentic proteins suggesting that these truncated forms lose their function. In addition
to an advantage during replication, DI RNAs have also been shown to package more
efficiently into progeny virions. In particular, it has been observed that during coinfection
experiments the ratio of DI to full-length RNAs in virus particles is higher than the level
in infected cells [113, 114, 155]. These studies also suggest that, due to interference by
DI RNAs, coinfected cells almost exclusively release new DIPs.
In summary, the amplification of DI influenza viruses requires an inoculation with large

doses of STVs such that the cells are likely to become coinfected [140]. These coinfected
cells will mainly produce new DIPs reducing the infectious virus titer. This limits the
replication of DIPs in subsequent undiluted serial passages and the STV may reemerge
as the dominant virus species.

Therapeutic use Since DI RNAs efficiently interfere with STV growth they represent
an interesting strategy for antiviral therapy (reviewed in [144, 145]). In this context, DIPs
of influenza virus have been shown to impair virus growth in cell culture and can protect
mice from lethal infection [145, 156, 157]. Furthermore, coinfection with wild-type and
DI virus results in an activation of the immune response (including antibody production)
despite reduced disease symptoms [157–159]. Therefore, treatment with DIPs would not
compromise the protection against a rechallenge with the same virus. DIPs may, hence,
serve as a prophylactic and therapeutic antiviral.
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2.2. Influenza vaccine production

Despite the availability of antiviral drugs, vaccination is still the most effective way to
prevent and control influenza (reviewed in [6, 160, 161]). Today’s influenza vaccines largely
use a trivalent formulation composed of two influenza A strains and one influenza B strain.
They are updated annually to target the most representative virus subtypes in circulation.
While new techniques enable the production of recombinant HA for vaccination (e.g. in
baculovirus expression systems [6, 160]) most influenza vaccines still rely on inactivated
or live-attenuated virus particles, which have to be propagated in a suitable substrate
to produce the vaccine. Traditionally, this is done in embryonated hens’ eggs. However,
in the last decades cell culture-based processes have been established as a promising
alternative. Below, we briefly introduce both methods and discuss strategies to monitor
the production process.

Egg-based production Human influenza viruses were first isolated and propagated in
the 1930s and soon after the first vaccine was available [160, 161]. Early on it was realized
that embryonated chicken eggs provide a good substrate for most influenza strains and
in the 1960s, when high growth reassortant viruses became available, egg-based influenza
vaccines became a routine product. Since then production processes were constantly
optimized and in 1978 the first trivalent vaccine formulation was introduced [161]. Today,
more than 95% of the world’s influenza vaccines are produced in eggs [162]. The advan-
tages of egg-based production are essentially twofold: (i) as the process is established for
more than half a century there are less regulatory hurdles to overcome before the prod-
uct can be released and (ii) vaccine doses can be produced at relatively low costs [162].
However, the logistics of providing embryonated eggs of the required quality is complex
and egg-based production alone can hardly supply sufficient quantities of a vaccine on
short notice especially in case of a pandemic [162–164].

Cell culture-based production Cell culture-based production processes were developed
as an alternative to traditional influenza vaccine manufacturing in the mid 1990s [163].
They distinguish themselves from egg-based systems by their higher flexibility and plat-
form diversity (several cell lines with different growth characteristic are available), the
easier scale-up, a closed sterile production chain, and the potential for shorter response
times to new vaccine strains [162]. Today, several different cell lines are used or are being
evaluated for influenza vaccine production (reviewed in [165]). These include conventional,
continuous cell lines such as Vero, Madin-Darby Canine Kidney (MDCK), and PBS-1
cells as well as designer cell lines like PER.C6 R©, AGE1.CR R©, and EB14 R©/EB66 R© [165].
Especially the MDCK cell line is widely used by vaccine manufactures and research
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institutes [162, 165]. MDCK cells are, for instance, the substrate for the first cell culture-
derived human influenza vaccine, which was licensed in the Netherlands in 2001.
Typically, vaccine production is a two-stage process comprising cell-growth in large-

scale cultivation systems (e.g. stirred tank reactors, STRs) up to high cell density and
subsequent virus propagation using high-yield strains [165]. The actual manufacturing
process can differ depending on whether it uses adherent or suspension cell lines. In case
of adherent cells, the growth surface is either provided by the production vessel or by
the addition of microcarriers (small spheres suspended in medium), which enable high
cell concentrations and an easier scale-up [166]. Recent advances in cell culture-based
influenza vaccine production include high cell density cultivations and virus propagation
in designer cell lines using chemically defined media [167–169].

Process analytics In order to guarantee the vaccine’s quality and facilitate process
optimization various online and offline analytics are used in industry and academia. These
include a close control of cultivation conditions, for example, by monitoring temperature,
pH, and oxygen levels as well as the concentration of substrates for cell growth [170]. In
addition, the production of the virus is usually assayed by standard dilution methods (de-
scribed in [171, 172]) like the hemagglutination assay, the 50% tissue culture infective
dose (TCID50), and the plaque assay. Note that each of these methods quantifies a
different subpopulation of virus particles. The HA assay detects all hemagglutinating
particles, thus, providing a measure for the total particle count, which includes non-
infectious virus [173]. By contrast, the TCID50 and plaque assay quantify the replication
and propagation-competent viruses, respectively. For clinical samples and in virological
studies northern blotting, primer extension analysis, and real-time reverse transcription
polymerase chain reaction (RT-PCR) complement these standard tools as sensitive and
reliable methods for the quantification of viral RNA [60, 174, 175]. The latter technique
can also be adapted to analyze influenza virus replication during vaccine production [148].
Furthermore, Schulze-Horsel et al. developed a flow cytometric assay to investigate the
dynamics of virus propagation in cell culture in greater detail [176, 177]. In particular,
they stained cells for the viral NP and M1 proteins to monitor the infection status and
used a TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling)
protocol to distinguish apoptotic from non-apoptotic cells. Such methods provide deep
insights into infection dynamics, thereby facilitating the development of sophisticated
mathematical models [177].
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2.3. Mathematical models of viral infection

With the accumulation of ever larger amounts of experimental data in modern biology
mathematical models play an increasingly important role for data analysis and inter-
pretation. Modeling also holds the promise of moving biology from a phenomenological
to a predictive discipline by revealing the conserved design and engineering principles
of biomolecular systems [10]. In virology, mathematical models became popular in the
mid 1990s when groundbreaking works on the replication of the human immunodeficiency
virus (HIV) helped to develop new forms of antiviral therapy [178]. In this section, we
introduce some of these works and discuss how they have established the field of viral
dynamics [11] leading to the development of models for influenza virus infection.

2.3.1. Classification

Models of viral infection come in a variety of forms and use a diverse set of mathematical
techniques. By far, the most common type are dynamic, deterministic models which
comprise differential equations although numerous studies have also incorporated elements
of randomness. In the rest of this work, we primarily consider these types of models.
However, other theoretical approaches have also been proposed to describe infection. For
instance, boolean frameworks in which all species are defined as binary switches that
either exist in an active or inactive state can be helpful when quantitative aspects and the
system’s dynamics are not the main concerns [17]. In addition, cellular automaton models
have proven very successful in elucidating spatial features of infection, e.g., the spread of
viruses in cell culture or tissues [179–182]. Finally, agent-based models, i.e., models in
which discrete entities (e.g. individual cells, molecules, or viruses) interact with each other
according to a well-defined set of rules, lend themselves well to the analysis of multicellular,
heterogeneous systems such as the immune response and inflammation (reviewed in [183,
184]). Besides these technical aspects infection models can also be classified according
to the spatial (and temporal) scale they reflect. This includes models which focus on
the simulation of molecular interactions, intracellular virus replication, the within-host
kinetics of infection, and between-host virus spread. For vaccine production and antiviral
drug therapy the intracellular and within-host level are of particular interest.

2.3.2. Within-host models of infection

Within-host models of infection are typically used to extract crucial infection parameters
from (sparse) measurement data obtained in infected animals and humans as well as in
cell culture (reviewed in [178, 185]). In addition, these simple models can also reveal
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causative links between experimental observations and help to compare competing hy-
potheses on virus replication and the immune system. The standard model of within-host
viral dynamics describes the population sizes of susceptible target cells, infected cells, and
virus particles (Figure 2.6 and reference [11]). These models and their successors were
successfully applied to a variety of different viruses including HIV, hepatitis B and C
virus (HBV and HCV), and influenza virus (introduced below).

Models of HIV infection HIV was one of the first viruses for which within-host models
were established (reviewed in [186–188]). In a landmark study by Perelson et al. such
a model was combined with experimental data from infected individuals under antiviral
therapy revealing that the virus has a high turnover during infection [189, 190]. This sug-
gested that HIV would rapidly evolve drug resistance during monotherapy. Hence, these
early models contributed significantly to the development of modern day combination
treatment with multiple drugs of different classes. Subsequently, the theoretical studies
of HIV infection were extended to simulate further aspects of the immune system [191–
193], virus evolution [187, 194], novel antiviral agents and clinical trials [194, 195], as well
as viral reservoirs and virus persistence [186, 196]. Currently, modeling aims at combining
these different aspects to describe the entire life cycle of HIV from the initial infection to
the onset of AIDS in order to provide even more sophisticated forms of therapy [187].

Models of HBV and HCV infection Soon after the success of HIV modeling, within-
host models of HBV and HCV infection were developed (reviewed in [185, 197, 198]). In
particular, treatment of HBV with reverse transcriptase inhibitors and of HCV with inter-
feron, ribavirin, and protease inhibitors was subject to theoretical studies [185]. These
and other works increased our understanding of hepatitis virus infection and its inter-
action with the immune system during antiviral therapy. Nowadays, models of HCV

Figure 2.6.: Scheme of the standard model for within-host viral dynamics. Uninfected
target cells are constantly supplied, can die, or become infected. Infected cells produce progeny
virions and succumb to infection. New virus particles infect target cells or are removed/cleared
from the system. Figure adapted from [14].
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can also predict suitable dosing regimes for antiviral drugs and the optimal treatment
duration thereby supporting decision making in clinical studies [199–201]. In addition,
the traditional within-host model for HCV was recently extended by including the in-
tracellular level of virus replication in order to elucidate the effect of direct-acting anti-
virals (DAAs) [202, 203]. Such works provide the basis for multiscale descriptions of viral
dynamics (discussed below) which comprise both the single-cell and the multi-cell level,
i.e., the kinetics of intracellular replication and within-host infection.

Models of influenza virus infection In contrast to HIV, HBV, and HCV, influenza
viruses cause an acute, self-limiting infection in humans that is usually resolved within 10
days. Within-host models of influenza virus (reviewed in [14, 15]), thus, consider shorter
time scales than their counterparts for other viruses, for which treatment can occur over
several months or even years. Hence, they largely neglect long-term aspects such as
virus evolution and the regeneration and death of target cells [14]. Due to the short
duration of infection, mathematical models of influenza virus also frequently account
for the eclipse phase, i.e., the delay between the infection of a cell and the release of
progeny virions during which the cell amplifies the viral components [204, 205]. Usually,
this is done by considering a second, latent type of infected cell. While models that
do not account for the eclipse phase can capture viral titer data equally well than their
more complex counterparts, the latter are considered to provide more realistic parameter
estimates [205, 206].
In analogy to other viruses, early models of influenza virus kinetics focused on disease

progression in infected animals and humans [206–208]. Since then, one of the central
questions of influenza modeling has been the contribution of the immune system to viral
clearance. Surprisingly, it was found that virus titers can be described without taking
into account the innate or adaptive immune response by using models in which the avail-
ability (and death) of targets cells limits virus production [14]. Yet, destruction of the
complete respiratory epithelium upon infection is not apparent in vivo [209] and immuno-
compromised patients shed virus for longer periods [210] indicating an essential role of the
immune response. Hence, a rich body of literature on influenza models that incorporate
aspects of the immune response like the action of interferon [206, 209, 211], the cytotoxic
T-cell response [212–214], and virus-specific antibodies [211, 215, 216] exists. However,
in a comparative study that reviewed many of these models, none of them was able to
capture all available data making the incorporation of immune system dynamics an active
area of research [210].
Another important application of models for influenza virus infection is the simulation

of antiviral therapy. Modeling studies have, for instance, investigated the treatment of
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infection with amantadine [217] and neuraminidase inhibitors [206, 218, 219] and sug-
gested that combination therapy with different drugs may be necessary to prevent the
generation of drug-resistant viruses [220]. In addition, the emergence of resistance itself
and the associated fitness costs for the virus were subject to theoretical studies [218, 221].
Although these approaches have gained much attention in recent years they are currently
not as widely used as models of HIV and HCV treatment.
Besides the simulation of in vivo infection, modeling has also been used to describe

influenza virus growth in cell culture systems and during vaccine production. Such
in vitro experiments provide a unique view on virus replication since they take place
in a tightly controlled environment, allow for extensive sampling, and can be readily per-
turbed. An early model of cell culture-based influenza vaccine production was developed
by Möhler et al. [222] who showed that virus yields in this system strongly depend on the
initial target cell concentration, the rate of virus production, and the lifespan of infected
cells. Later, Schulze-Horsel et al. extended this work by considering the eclipse phase
and the onset of virus-induced apoptosis via delay differential equations (DDEs) [177].
This improved model was calibrated against high quality data from flow cytometry, which
allowed the authors to monitor the dynamics of infection and apoptosis in cell culture.
Schulze-Horsel et al. found that typical vaccine strains can differ in the rate of virus pro-
duction and apoptosis induction affecting their performance as vaccine producers. Flow
cytometric data on the infection status of cells were also used by Sidorenko and col-
leagues who developed a simple stochastic model of influenza virus infection [223, 224].
Here, infected cells could either accumulate or release virus particle equivalents thereby
changing the cell’s degree of infection, i.e., the intracellular amount of viral proteins. This
internal coordinate was compared with cytometric measurements of viral protein content
and simulations were shown to reflect most aspects of the fluorescence intensity distri-
bution observed in infected MDCK cells. A similar comparison was proposed in a study
by Müller et al. where the authors presented a deterministic population balance model
and found a transient multimodality in the degree of fluorescence in infected cell cul-
tures [225]. The fact that cell culture experiments can also be relevant to antiviral therapy
was demonstrated by Beauchemin and coworkers who estimated the efficacy of amanta-
dine in blocking viral infection using data from a hollow-fiber bioreactor system [217].
Such an approach can be a tremendous asset to drug development as it facilitates the
investigation of different dosing regimes and drug effects in a controlled environment
without interference by complex features of in vivo systems such as the immune response.
In addition, cell culture systems can provide the means to easily quantify and compare
different influenza virus strains with respect to indicators of viral fitness, pathogenicity,
and transmissibility without the ethical concerns associated with infections of animals or
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human volunteers [182, 226].

2.3.3. Models of intracellular virus replication

Although far less common than their within-host counterparts, intracellular models of
viral replication have been proposed for a number of eukaryotic viruses. Typically, these
models consider a single round of infection in an individual infected cell and cover the
steps from virus attachment to the release of progeny virions. Dee et al. developed one
of the first models of this type in order to estimate the kinetics of virus entry and RNA
synthesis for Semliki Forest virus [227]. Later, the same group established a similar
model for the trafficking of Baculovirus in insect cells [228]. This work provides a general
mathematical framework for the description of acid-dependent virus entry, which can be
applied to other viruses. Intracellular models of virus replication have also been proposed
for bacteriophages [229], the vesicular stomatitis virus [230, 231], HIV [232], HBV [233],
and HCV [234–237] with the primary aim to understand how these viruses hijack their
host cells to produce viral proteins and genomic information and to reveal new drug
targets.
For influenza A virus, Sidorenko et al. developed a description of the complete intra-

cellular viral life cycle [16]. This model was used to estimate the viral demand for cellular
resources like amino acids and nucleotides, and to identify potential targets for the opti-
mization of virus yields in vaccine production. However, at that time much less was
known about the viral life cycle and only a limited amount of data was available such
that the authors based their model on qualitative observations and literature parameters
only. More recently, Madrahimov et al. proposed a boolean model for influenza virus
replication focusing on the interaction of the virus with its host cell [17]. They could
show that blocking different host cell signaling pathways impairs virus replication. Yet,
boolean models only provide a limited picture of infection as they neglect both quanti-
tative and dynamic aspects. Hence, much work remains to be done in order to obtain a
comprehensive mathematical description of intracellular influenza A virus replication.

2.3.4. Multiscale modeling approaches

While intracellular models only consider a single infection cycle and neglect virus spread-
ing, cell-to-cell interactions, and the dynamics of the target cell population, within-host
models treat the infected cell as a black box. The latter approach impedes an anal-
ysis of antivirals which act on intracellular processes to combat within-host infection.
Hence, these forms of therapy require mathematical models that cover both scales. The
theoretical foundation for this type of infection model was developed by Haseltine and
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coworkers who not only showed that population balance equations provide the means to
combine the intracellular and the within-host (extracellular) level [238] but also proposed
a strategy to reduce the computational burden associated with their computation [239].
Later, Guedj et al. argued that describing the viral load data in HCV-infected patients
under treatment with the nonstructural 5A (NS5A) protein inhibitor daclatasvir requires
such a multiscale approach [203]. In this study, the classical model of within-host viral
kinetics was extended by accounting for the amplification, degradation, and secretion of
viral genomic RNAs. Guedj et al. and a later analysis of their model by Rong and col-
leagues showed that the viral load dynamics upon treatment can strongly depend on these
intracellular processes [203, 240, 241]. However, since their model only accounts for viral
genomic RNAs it is restricted to drugs that interfere with the viral genome neglecting the
complexity of intracellular HCV replication [237]. Yet, the model of Guedj et al. shows
that coupling a description of the intracellular viral life cycle to the within-host infec-
tion dynamics can provide new insights into antiviral therapy. Note that besides linking
the intracellular with the within-host level, multiscale models that connect within-host
and between-host kinetics have also been developed (reviewed in [242]). Handel et al.,
for instance, used such a model to investigate the fitness trade-offs for influenza virus
persistence at high versus low temperatures [243].
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2.4. Model construction and analysis

In general, mathematical models of infection can either follow deterministic rules or in-
clude elements of randomness. In this section, the construction, parameterization and
analysis of both model types is briefly outlined.

2.4.1. Construction of mathematical models

Traditionally, most modeling approaches in biology assume a deterministic behavior of
the system of interest meaning that it reaches the same final state given a specific set of
initial conditions. By contrast, stochastic models account for the inherent randomness of
biochemistry, which may affect the outcome of each individual experiment.

Deterministic models The most common type of deterministic model uses ordinary
differential equations (ODEs) to describe the change of a state variable over time.
For instance, the number of infected cells (I) in the standard model of viral dynam-
ics (Figure 2.6) is given by the following equation.

dI
dt = βTV − δI, (2.4.1)

where β and δ are the kinetic parameters for viral infection and cell death, respectively,
T is the number of target cells and V the amount of virus particles [14]. Equation (2.4.1),
thus, tracks the abundance of infected cells, which changes through the interaction of
viruses with uninfected target cells and by cell death. Note that the infection rate (βTV )
is described by mass action kinetics, i.e., it is proportional to the product of T and V .
We will abundantly make use of this principle in our models.

Stochastic models Deterministic descriptions like the one shown above intrinsically
neglect stochastic effects, which is usually justified when all state variables reach large
numbers such that small fluctuations even out. However, when the reactant species are
low in abundance the discrete nature of molecular populations and the randomness of
reaction events can prevail. For such systems stochastic simulation techniques are the
method of choice. For an excellent review on the underlying theory and the assumptions
made when using different model types the reader is referred to reference [244].
Stochastic modeling approaches differ in several aspects from their deterministic

counterparts. For instance, their state variables can only assume discrete numbers,
whereas the deterministic states are continuous. In addition, the reaction rates are re-
placed by probabilities per unit time, the propensity functions aj(x) [244]. Here, aj(x)dt
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denotes the probability that reaction Rj will occur in the time interval [t, t+dt) given that
the state vector of the system is X(t) = x. The change in the number of species i caused
by reaction j is provided by the state-change matrix, vij. For the number of infected cells
in the standard viral dynamic model one obtains:

X(t) = I(t), vij = [1,−1], and aj = [c1TV, c2I], (2.4.2)

where cj are stochastic reaction constants such that any randomly chosen pair of target
cell and virus particle establishes infection with probability c1dt and any infected cell
dies with probability c2dt in the next infinitesimal time dt. Considering the number of
possible combinations of cells and viruses the overall probability that a reaction occurs
in the system is c1TV dt and c2Idt, respectively. It turns out that the constants cj are
related to the deterministic rate constants.

c1 = β

Ω and c2 = δ,

where Ω is the constant system volume [244]. Note that for a stochastic model to be
an accurate representation, the system only has to be well-stirred, i.e., the positions of
individual molecules in Ω must be uniformly randomized and the molecule velocities ther-
mally randomized. The propensity functions then follow from the principles of molecular
physics [244]. By contrast, the deterministic rates are only approximate consequences of
these stochastic kinetics. Thus, in order for a deterministic model to be valid additional
preconditions (e.g. high species concentrations) must be met.

2.4.2. Model analysis techniques

Mathematical models often comprise tens or even hundreds of free parameters whose
assignment is a fundamental challenge in modeling. Typically, these parameters are either
measured directly or, more often, estimated by fitting the model to experimental data.
However, both methods can cause significant uncertainty in parameter values, which may
lead to an ill-defined model behavior and prevent predictions on the underlying biological
system. Thus, the concept of parameter identifiability is central to model construction.

Parameter sensitivity and identifiability In general, for a parameter to be identifiable
from a model fit to experiments, first and foremost, it needs to cause a change in the
model output of an observed state variable [245], i.e., the simulation of at least one of the
measured states has to be sensitive to the parameter. This can be tested by means of a
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local parameter sensitivity analysis using the sensitivity coefficient,

SMθ = δM (γ) /M (γ)
δθ/θ

, (2.4.3)

where M (γ) and δM (γ) denote a characteristic of the system output γ and the change
in that characteristic, respectively, due to the change δθ in the parameter θ [246]. For
the model response characteristic, M (γ), aspects like the area under the curve of the
output, differences in steady-state values, output after a specific amount of time, or period
and amplitude of oscillations have been used [246]. However, more frequently sensitivity
analysis is based on the weighted sum of squared residuals (SSR).

δM (γ)
M (γ) ≡

1
NcNs

∑
s,c

 1
Nt

∑
t

(
ys,c (θ, t)− ys,c (θ?, t)

σs

)2
 , (2.4.4)

where ys,c (θ, t) is the model output of the measured species s at experimental condition c
and time t given the original parameter θ, and ys,c (θ?, t) is the same output in response to
a change δθ in that parameter [247]. Here, this change is normalized to the maximum value
of species s across all conditions, σs. Alternatively, the standard deviation of each mea-
surement can be used if available. Also, the SSR is normalized with respect to the number
of measured time points (Nt), species (Ns), and experimental conditions (Nc). The sen-
sitivity coefficient provides a first indication of how well the parameter is defined by the
data set with low sensitivity pointing toward a poorly constrained parameter. However,
even if a parameter shows a high local sensitivity, correlations with other parameters and
parameter redundancies may nevertheless affect its identifiability [245]. Thus, increasing
the number of free parameters by choosing a more complex model also increases the chance
of encountering non-identifiable parameters. It is the quantity (and quality) of available
data that should, hence, constrain model complexity. Note, however, that despite subsets
of poorly constrained parameters, which seem to be a general characteristic of models in
systems biology, model fits and predictions can be surprisingly well defined [247].

Parameter confidence intervals As mentioned in the last paragraph many mod-
els in systems biology suffer from poorly constrained parameters, which is why
Gutenkunst et al. proposed to rather focus on model predictions than parameter
values [247]. These predictions can be well constrained by collective parameter fits despite
the fit yielding significant uncertainty in individual parameter values. If, however, the pre-
cise value of a parameter is of interest, a measure of confidence in its estimate is helpful.
Such parameter confidence bounds can be derived by several different methods, e.g., from
the Fisher-Information-Matrix [248] and the curvature of the likelihood function [245]. In
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addition, bootstrap algorithms are widely used to infer the accuracy of parameter esti-
mates [248, 249]. As bootstrapping is an easy and reliable method to derive confidence
bounds, we focus on this approach in the following.
In general, bootstrap methods use Monte Carlo sampling to obtain an estimate for the

statistical properties of an unknown probability distribution from random observations of
this distribution. For modeling, this means that we can sample the distribution of param-
eter estimates in order to derive confidence intervals for the parameters. As an example,
let us consider a set of experimental observations y = (x1, x2, . . . , xn), e.g., the final virus
titer in n independent experiments. We can now use a Monte Carlo approach to draw
a bootstrap sample, y? = (x?1, x?2, . . . , x?n), i.e., a random sample of size n drawn with
replacement from the original data, y, [249]. Note that for time series data we can obtain
the bootstrap sample in a similar way by drawing the new value at each time point ti
from a normal distribution N (xi, σ2

i ) (assuming that the measurement error follows a
normal distribution), where xi is the original measurement and σi its standard deviation.
Fitting the model to the bootstrap sample then results in a parameter estimate θ? (y?).
By repeating this process we obtain a distribution of parameter values from which we can
calculate the confidence interval. For instance, according to the percentile method, the
parameter confidence interval at significance level α is equivalent to the central interval
between the 100 ·α/2 and 100 · (1− α/2) percentiles of the bootstrap parameter distri-
bution [249]. For a more detailed review on the underlying theory the reader is referred
to references [248, 249].
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Chapter 3

Models and Methods

In this chapter, we first describe two mathematical models of intracellular virus repli-
cation, one of which uses a deterministic approach, while the other accounts for elements
of randomness. Based on the former, we then introduce a multiscale model of infection
that links the intracellular and the extracellular level. Finally, two descriptions of DIP
growth are presented.

3.1. Intracellular virus replication

3.1.1. Deterministic model

Our model of intracellular virus replication is loosely based on a similar description by
Sidorenko et al. [16]. However, we modified the equations for virus entry, neglected the
trafficking of viral mRNAs and proteins between the cytoplasm and the nucleus, and of
envelope proteins between the ER and the budding site. Furthermore, we included a
detailed description of RNP formation, the stabilization of cRNAs, and the regulation of
vRNP export from the nucleus. These modifications were implemented to improve the
agreement with recent insights into influenza virus biology (discussed in Section 4.1.3.1)
and to facilitate an estimation of critical infection parameters using quantitative data
on the intracellular viral life cycle. Our model was first published in the Journal of
Virology [250] and parts of the original publication are used hereafter.

Virus entry The main features of influenza A virus replication are shown in Figure 2.2,
which provides the basis for our model. First, virions bind to neuraminic acids (sialic
acids) on the cell surface and enter the cell via receptor-mediated endocytosis. Based
on experimental data, Nunes-Correia et al. proposed a kinetic model for these processes
including two different types of binding sites: high-affinity and low-affinity sites, which
might correspond to sialic-acid containing ligands and less-specific interactions, respec-
tively [251]. We made minor modifications to this model to account for the infection of a
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single cell and added an equation for virions in early endosomes.

dV Ex

dt = kDis
hi V

Att
hi + kDis

lo V Att
lo −

(
kAtt

hi Bhi + kAtt
lo Blo

)
V Ex, (3.1.1)

with Bn = Btot
n − V Att

n , n ∈ {hi, lo} , (3.1.2)

dV Att
n

dt = kAtt
n BnV

Ex −
(
kDis

n + kEn
)
V Att

n , (3.1.3)

dV En

dt = kEn
(
V Att

hi + V Att
lo

)
−
(
kFus + kDeg

En

)
V En, (3.1.4)

with kDis
n = kAtt

n

kEq
n

and kDeg
En = 1− FFus

FFus
kFus, 0 < FFus ≤ 1,

where V Ex, V Att
n , and V En are the numbers of virions in the extracellular medium, virions

attached to binding sites of type n (hi, high-affinity; lo, low-affinity), and virions in early
endosomes, respectively. Here, V Ex corresponds to the MOI, i.e., the initial number of
infectious virus particles per cell. These virions attach with rate kAtt

n to free binding
sites (Bn) of which there are Btot

n in total. By calculating Bn from the conservation
Equation (3.1.2), we followed the formalism of Nunes-Correia and coworkers [251]. Note
that this implies a fast recycling of receptors as binding sites become vacant as soon
as virions enter the cell. Also, in this notation each virion occupies one binding site
that may correspond to multiple receptors as virus-cell binding involves multivalent bond
formation [252]. Once attached, virions can either dissociate from the cell with rate
kDis

n , which follows directly from the equilibrium constant (kEq
n ), or enter the cell by

endocytosis with rate kEn. We assumed that kEn is the same for both binding sites, as
did Nunes-Correia and colleagues. Fusion of virions in endosomes occurs with rate kFus,
which includes the trafficking and acidification of early endosomes, the fusion of the viral
envelope with the endosomal membrane, and viral uncoating. It has been shown that
only a fraction of virions penetrate into the cytoplasm, while others presumably fail to
fuse [45, 253]. We, therefore, introduced the fraction of fusion-competent virions (FFus)
and calculated the degradation rate of virions in lysosomes (kDeg

En ) accordingly. For model
fits to experimental data on fusion (Figure 4.2A), the total number of fused virions can
be obtained by integrating kFusV En over time (equation not shown).

Viral RNA replication Following fusion, influenza viruses release parental vRNPs into
the cytoplasm. These vRNPs enter the nucleus [38, 47], where they start synthesizing
mRNA and, according to the stabilization hypothesis (Figure 2.3B), also cRNA [66].
However, nascent cRNA may be rapidly degraded by cellular nucleases unless it is stabi-
lized in cRNP complexes [60]. We assumed that vRNP formation stabilizes nascent vRNA
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in a similar fashion. For the majority of genome segments, the vRNAs (and cRNAs) of
different segments show similar levels throughout infection [174, 175]. Hence, we did not
explicitly distinguish between individual segments but rather consider their total num-
ber per cell. For obtaining the abundance of an arbitrary segment, this number can be
divided by eight, which we did when fitting the model to measurements of individual
genome segments. Later in infection, M1 and NEP proteins enter the nucleus and trigger
the nuclear export of vRNPs [39]. Since M1 binding inhibits the transcriptase activity of
vRNPs [93–95], M1-vRNP complexes in our model are no longer available as templates
for RNA synthesis. Thus, virus replication is described by the following equations:

dVpcyt

dt = 8kFusV En − kImpVpcyt, (3.1.5)

dVpnuc

dt = kImpVpcyt + kBind
NP PNPR

V
RdRp −

(
kBind

M1 PM1 + kDeg
Rnp

)
Vpnuc, (3.1.6)

dRC

dt = kSyn
C Vpnuc − kBind

RdRpPRdRpR
C − kDeg

R RC, (3.1.7)

dRV

dt = kSyn
V Cp − kBind

RdRpPRdRpR
V − kDeg

R RV, (3.1.8)

dRC
RdRp

dt = kBind
RdRpPRdRpR

C − kBind
NP PNPR

C
RdRp − kDeg

RRdRpR
C
RdRp, (3.1.9)

dRV
RdRp

dt = kBind
RdRpPRdRpR

V − kBind
NP PNPR

V
RdRp − kDeg

RRdRpR
V
RdRp, (3.1.10)

dCp
dt = kBind

NP PNPR
C
RdRp − kDeg

RnpCp, (3.1.11)

dVpnuc
M1

dt = kBind
M1 PM1Vp

nuc −
(
kExpPNEP + kDeg

Rnp

)
Vpnuc

M1 , (3.1.12)

dVpcyt
M1

dt = kExpPNEPVp
nuc
M1 − 8rRel − kDeg

RnpVp
cyt
M1. (3.1.13)

Upon fusion, each virion releases a complete set of eight vRNPs into the cyto-
plasm (Vpcyt), which enter the nucleus with rate kImp. Nuclear vRNPs (Vpnuc) then
synthesize mRNA, which is described in the next paragraph, and cRNA (RC) with
rate kSyn

C (Equation (3.1.7)). Similarly, the synthesis of vRNA (RV) is directed by
cRNPs (Cp) with rate kSyn

V (Equation (3.1.8)). We assumed that both types of nascent
RNA are degraded by nucleases with rate kDeg

R or bind to viral polymerases (PRdRp) with
rate kBind

RdRp. The resulting complexes of the viral polymerase with cRNA (RC
RdRp) and

vRNA (RV
RdRp) are only partially stabilized and, thus, degraded with the rate kDeg

RRdRp,
which is lower than that of nascent RNA. Binding of NP (PNP) with rate kBind

NP then
leads to cRNP and vRNP formation, respectively. We assumed that RNPs decay at a
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low rate (kDeg
Rnp), as the RNA in vRNPs is still sensitive to digestion in the presence of

an excess of RNases [254]. Note that this decay was omitted for incoming cytoplasmic
vRNPs (Equation (3.1.5)) to capture the constant vRNA level observed in cells treated
with the protein synthesis inhibitor cycloheximide [60]. During the late phase of infection,
M1 proteins (PM1) can bind to vRNPs with rate kBind

M1 to form M1-vRNP complexes in the
nucleus (Vpnuc

M1 ). Subsequent association of NEP (PNEP) facilitates their nuclear export,
which was combined in the rate kExp assuming that the actual transport process is fast.
Cytoplasmic NEP-M1-vRNP complexes (Vpcyt

M1) are then transported to the plasma mem-
brane where virus budding takes place. We lumped all processes of virus assembly and
budding into the virus release rate (rRel), which is described later.
When comparing the model to experimental RNA levels, we obtained the total number

of vRNAs (RV
tot) and cRNAs (RC

tot) by summation over all viral components that contain
the respective RNA species and are associated with the cell.

RV
tot = 8

(
V Att

hi + V Att
lo + V En

)
+ Vpcyt + Vpnuc +RV +RV

RdRp + Vpnuc
M1 + Vpcyt

M1, (3.1.14)

RC
tot = RC +RC

RdRp + Cp. (3.1.15)

The RNA level of an arbitrary genome segment (e.g. of segment 5 in Figure 4.5) was
calculated by dividing these total concentrations by eight.

Viral mRNA and protein synthesis Viral transcription takes place in the nucleus,
whereas translation occurs at cytoplasmic ribosomes. However, since the nuclear export
of mRNAs is fast [255], we assumed that newly synthesized mRNAs are readily available
for translation. In contrast to vRNA and cRNA, our model explicitly accounts for the
mRNAs of different genome segments, since measurements reveal significant differences in
their levels during infection [174, 175]. Protein synthesis in simulations is directly propor-
tional to these mRNA levels, as has been found experimentally [256]. For simplicity, we
only considered the net production of all structural proteins, neglecting their degradation,
and assumed that protein amounts in different cellular compartments are in equilibrium.
As more data become available, these assumptions can be dropped in favor of a more
complex model. Equations for mRNAs and proteins are the following:

dRM
i

dt = kSyn
M
Li

Vpnuc

8 − kDeg
M RM

i , i = 1, . . . , 8, (3.1.16)

dPPB1

dt = kSyn
P
DRib

RM
2 − kRdRpPPB1PPB2PPA, (3.1.17)

dPPB2

dt = kSyn
P
DRib

RM
1 − kRdRpPPB1PPB2PPA, (3.1.18)
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dPPA

dt = kSyn
P
DRib

RM
3 − kRdRpPPB1PPB2PPA, (3.1.19)

dPRdRp

dt = kRdRpPPB1PPB2PPA − kBind
RdRpPRdRp

(
RV +RC

)
− (NPRdRp − 8)rRel, (3.1.20)

dPNP

dt = kSyn
P
DRib

RM
5 −

LV

NNuc
NP

kBind
NP PNP

(
RV

RdRp +RC
RdRp

)
− (NPNP − 8 LV

NNuc
NP

)rRel, (3.1.21)

dPM1

dt = kSyn
P
DRib

(
1− FSpl7

)
RM

7 −
LV

NNuc
M1

kBind
M1 PM1Vp

nuc − (NPM1 − 8 LV

NNuc
M1

)rRel, (3.1.22)

dPNEP

dt = kSyn
P
DRib

FSpl8R
M
8 −

LV

NNuc
NEP

kExpPNEPVp
nuc
M1 − (NPNEP − 8 LV

NNuc
NEP

)rRel, (3.1.23)

dPHA

dt = kSyn
P
DRib

RM
4 −NPHAr

Rel, (3.1.24)

dPNA

dt = kSyn
P
DRib

RM
6 −NPNAr

Rel, (3.1.25)

dPM2

dt = kSyn
P
DRib

FSpl7R
M
7 −NPM2r

Rel, (3.1.26)

where RM
i and Pj are the numbers of mRNAs of segment i and of proteins of type j,

respectively. Experiments of Hatada et al. show a negative correlation between the length
of an mRNA and its level, i.e., smaller mRNAs are more abundant [174]. Because we
assumed that all mRNAs are degraded with the same rate (kDeg

M ), we used a length-
dependent mRNA synthesis rate (kSyn

M ) and scaled it with Li, denoting the length of
segment i’s unspliced mRNA (Equation (3.1.16)). This is in agreement with a transcrip-
tion mechanism in which the resident polymerase complex in a vRNP synthesizes mRNAs
in cis [50] and elongation is the rate-limiting step. We divided Vpnuc by eight, as only
this fraction of vRNPs encodes for a specific genome segment and its mRNA. To increase
protein translation, multiple ribosomes can bind to a single mRNA forming polysomes.
This was considered by using a length-dependent translation rate (kSyn

P ) and the average
distance between two adjacent ribosomes on an mRNA (DRib). Hence, protein produc-
tion is proportional to the speed with which ribosomes cover the distance DRib. New viral
polymerases (PRdRp) form from the three subunits with rate kRdRp and bind to vRNAs
and cRNAs with kBind

RdRp (Equation (3.1.20)). Measurements show that the number of poly-
merases in one virus particle (NPRdRp) is greater than the eight polymerases in a complete
set of vRNPs [25]. Therefore, the remaining amount was assumed to leave the cell during
budding. Similar terms were considered for NP, M1, and NEP, with NPj denoting the
number of proteins of type j in one virion. To calculate the amount of NP, M1, and NEP
bound in one NEP-M1-vRNP complex, we used the average length of a vRNA (LV) and
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the number of nucleotides bound by one protein (NNuc
NP , NNuc

M1 , and NNuc
NEP, respectively).

The surface proteins HA (PHA), NA (PNA), and M2 (PM2) only decrease due to budding.
We considered the splicing of mRNAs from segment 7 and 8 by introducing the factors
FSpl7 and FSpl8, which represent the fractions of mRNA that encode for M2 and NEP,
respectively.

Virus release When vRNPs and viral proteins reach the plasma membrane, progeny
virions are assembled and released from the cell. Since the precise mechanism is still not
well understood and kinetic data are lacking, we did not model budding in detail but
rather used a simple description.

dV Rel

dt = rRel = kRelVpcyt
M1
∏

j

Pj

Pj +KVRelNPj

, (3.1.27)

with j ∈ {RdRp,HA,NP,NA,M1,M2,NEP} ,

where V Rel is the number of progeny virions released from a cell. It has been shown that
vRNPs assume a “7+1” configuration in virus particles [34], which along with other evi-
dence supports a specific packaging mechanism of the viral genome [108]. The formation
of a complex containing the eight genome segments would involve multiple inter-segment
interactions [34] and may, therefore, represent a kinetic bottleneck. Hence, the overall
rate of virus release (rRel) in our model is proportional to the amount of cytoplasmic
vRNPs and to the virus release rate (kRel). Viral protein levels are assumed to scale this
rate by multiplication of Michaelis-Menten-like terms, which depend on the abundance of
each protein j in one virion (NPj), i.e., enough proteins for KVRel virions must be present
to reach half the maximal release rate. Note that we neglected the reinfection of a cell by
its own progeny virions. This is in agreement with the observation that neuraminidase
expression on the cell surface cleaves sialic acid and limits superinfection [257].
For all steps of the virus life cycle, we assumed that cellular resources, like amino

acids, nucleotides and ribosomes, as well as other host factors are abundant and do not
limit replication; an assumption which has been used by several previous authors for other
viruses [229, 231, 234] and which is in agreement with theoretical results for influenza [16].

Switching hypothesis The above model considers the stabilization of nascent cRNA as
the cause for the transition from transcription to replication. By contrast, the switching
hypothesis assumes that vRNPs solely engage in transcription during early infection and
that NP changes their activity toward replication at later stages (Figure 2.3A). However,
vRNPs can synthesize cRNA in the absence of NP in vitro, albeit at lower rates [66, 258].
When building an alternative model, we, thus, assumed that in the absence of viral
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proteins vRNPs not only transcribe viral mRNAs but also show residual cRNA synthesis.
Accumulation of NP proteins then enhances replication at the expense of transcription.
Hence, Equation (3.1.7) and (3.1.16) were modified in the following way to simulate
switching:

dRC

dt =
(
kRes

C + Fswtk
Syn
C

)
Vpnuc − kBind

RdRpPRdRpR
C − kDeg

R RC, (3.1.28)

dRM
i

dt = (1− Fswt)
kSyn

M
Li

Vpnuc

8 − kDeg
M RM

i , i = 1, . . . , 8, (3.1.29)

with Fswt = PNP

PNP +Kswt
,

where kRes
C denotes the residual cRNA synthesis in the absence of NP and kSyn

C the maxi-
mum rate by which replication can be enhanced through NP. Fswt is the switching factor,
which can vary between zero and one. At low NP levels Fswt is zero, mRNA synthesis
occurs at its maximum rate, and cRNA production at kRes

C . High NP concentrations cause
Fswt to become one, mRNA production to cease, and cRNA synthesis to occur at rate
kRes

C + kSyn
C . The switching constant (Kswt) controls how many NP proteins are required

to switch the vRNP activity toward replication. Furthermore, in this scenario the encap-
sidation of nascent RNA by polymerases and NP does not result in stabilization. Hence,
we assumed kDeg

R = kDeg
RRdRp = kDeg

Rnp.

Computation We solved Equations (3.1.1)–(3.1.29) numerically using the CVODE
routine from SUNDIALS [259] on a Linux-based system1. All model parameters and
initial conditions can be found in Table A.1–A.5 in the appendix. Model files and experi-
ments were handled in the Systems Biology Toolbox 2 [260] for MatLab (version 8.0.0.783
R2012b). We estimated parameters using the fSSm algorithm for stochastic global opti-
mization [261] and a least-squares objective function of the form:

χ2 (θ) =
∑
s,c

 1
Nt

∑
t

(
yDs,c (t)− ys,c (θ, t)

σs,c

)2 , (3.1.30)

where yDs,c (t) is the measurement of species s at experimental condition c and time t,
and ys,c (θ, t) the corresponding simulation value. The difference between both values was
weighted by the standard deviation of measurements (σs,c) where available and by the
number of measured time points (Nt) when multiple data sets were considered.
To assess parameter uncertainties, confidence intervals were calculated using a boot-

strap method [248, 249]. For data sets where no measurement errors were available, the
1Typical computation times are in the order of 0.02 s on a standard desktop computer (to simulate 12 h).
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model’s local sensitivity is provided instead. We calculated this sensitivity by quantifying
the change in model output in response to parameter perturbations by 1% around the
estimated value according to Equation (2.4.3) and (2.4.4). This local sensitivity shows
how much a given parameter affects simulation results with respect to the available mea-
surements indicating how accurate the parameter estimates are.

3.1.2. Stochastic model

Equations (3.1.1)–(3.1.27) serve as the basis for our stochastic simulation of intracellular
virus replication. However, we made minor modifications to this model to reduce com-
putational costs and to accommodate that, in a stochastic framework, molecule numbers
are discrete rather than continuous. An early implementation of our stochastic model was
developed by Sebastian Dorl as part of his bachelor thesis [262]. On the basis of this work,
we further extended the framework by explicitly accounting for the vRNAs and cRNAs
of different genome segments. In the following, we briefly outline all changes made to
the original model (Section 3.1.1). Note that none of these changes significantly affects
simulation dynamics in a deterministic setting (Figure A.1 in the appendix).

Model modifications In the deterministic model, the number of proteins bound in an
RNP follows from the average length of an RNA and the number of nucleotides bound by
one M1, NP and NEP protein, respectively (Equations (3.1.21)–(3.1.23)). For stochastic
simulations, we rounded these values for M1 and NP proteins to the next smaller integer
and assumed that each vRNP can only bind one NEP molecule. This yields discrete
numbers for protein binding. Furthermore, we assumed that a reaction can only occur if
all its substrates are available, e.g., virus release can only occur if viral proteins for at least
one virus particle are present. In addition, we neglected the formation of the polymerase
complex (Equation (3.1.20)) and the synthesis of its subunits (Equations (3.1.17)–(3.1.19))
in favor of a simpler description.

dPRdRp

dt = min
(
RM

1 , R
M
2 , R

M
3

) kSyn
P
DRib

−kBind
RdRpPRdRp

(
RV +RC

)
−(NPRdRp−8)rRel, (3.1.31)

where the synthesis rate of the viral polymerase is proportional to the least abundant of
the three mRNAs encoding its subunits. Implementing this change reduced the compu-
tational costs significantly as states with a high turnover that hover around zero, like the
polymerase subunits in the original model, require a high number of iterations in stoch-
astic algorithms. Further information on these modifications and an in-depth analysis of
the resulting model are provided in reference [262]. A list of the model’s reaction equations
can also be found in the appendix (Section A.2.1).
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Model extension In the deterministic model, we did not account for the cRNAs and
vRNAs of individual genome segments separately, but rather considered their total
number. This simplification does not alter the simulation results compared to a full
implementation (Figure A.1 in the appendix). However, in a stochastic setting noise may
affect each genome segment independently. We, thus, extended the equations for viral
RNAs by including the individual segments explicitly (see Section A.2.2 for the complete
set of reaction equations) and changed the virus release rate.

rRel = 8kRel min
(
Vpcyt

M1,i

)∏
j

Pj

Pj +KVRelNPj

, i = 1, . . . , 8, (3.1.32)

with j ∈ {RdRp,HA,NP,NA,M1,M2,NEP} ,

where i denotes the segment number. Hence, the release rate now depends on the least
abundant of the eight NEP-M1-vRNP complexes in the cytoplasm (Vpcyt

M1,i). We multi-
plied kRel by eight to obtain a rate that is comparable to the deterministic model, which
used the total number of vRNPs from all eight segments instead of the level from just a
single segment. In addition to these changes, we had to specify the step of virus entry
in which the eight genome segments separate. A recent study shows that the vRNAs
of incoming particles travel together until they reach the nucleus [37]. Thus, we modi-
fied Equations (3.1.5)–(3.1.6) and obtained:

dV cyt

dt = kFusV En − kImpV cyt, (3.1.33)

dVpnuc
i

dt = kImpV cyt + kBind
NP PNPR

V
RdRp,i −

(
kBind

M1 PM1 + kDeg
Rnp

)
Vpnuc

i , (3.1.34)

where V cyt represents the eight vRNPs traveling together through the cytoplasm. Once
inside the nucleus, they separate into the individual vRNPs (Vpnuc

i ).

Computation We simulated the stochastic model as a discrete jump Markov process
using the stochastic simulation algorithm (SSA), also known as the Gillespie algorithm (re-
viewed in [244]) and assumed that lumped reactions can also be modeled as a Markov
process. Since computational performance is of critical importance we implemented an
improved version of the algorithm, the sorting direct method [263]. In addition, an
approximation of the SSA, the τ -leaping method with efficient step size selection [264],
was used.
In order to obtain a representative sample of the system’s dynamics, we performed

3 000 simulation runs for each condition2. A higher number of runs does not result in
2Typical computation times are in the order of one week on a Linux cluster (to simulate 3000×12 h).
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a significant change of mean simulation values (Figure A.2 in the appendix). For some
simulation runs, the loss of segment 7 (encoding M1 and M2) or a low number of M1
proteins prevented an efficient negative regulation of RNA synthesis. This lead to an
exponential increase in RNA levels and hence computation time. We, thus, stopped sim-
ulations after 5 × 1010 iterations at the latest and disregarded such runs for all further
analysis except when calculating the probability of unsuccessful infections and segment
loss (Figure 4.17A, 4.18, 4.19A, and 4.22C). All model files were handled in MatLab (ver-
sion 8.0.0.783 R2012b) on a Linux-based system and simulations where performed via the
parallel computing toolbox on a Linux cluster.

Quantification of noise To quantify cellular noise in virus replication, we used the
coefficient of variation.

ηY ≡
σY
〈y〉 , (3.1.35)

where ηY denotes the noise in quantity Y with standard deviation σY and mean 〈y〉.
Furthermore, the total noise (ηtot) in two identically regulated cellular (or viral) quantities
Y and Z comprises an extrinsic component (ηext), which is global to a single cell but varies
from one cell to another, and an intrinsic component (ηint) corresponding to the inherent
stochasticity in biochemical reactions [265]. These forms of noise were defined as follows:

η2
int ≡

〈(y − z)2〉
2〈y〉〈z〉 , η2

ext ≡
〈yz〉 − 〈y〉〈z〉
〈y〉〈z〉 , η2

tot ≡
〈y2 + z2〉 − 2〈y〉〈z〉

2〈y〉〈z〉 , (3.1.36)

where y and z are the realizations of the quantities Y and Z, respectively, and angled
brackets denote means over these realizations [265]. As the vRNAs in stochastic sim-
ulations follow a log–normal distribution, we defined Y and Z in Equation (3.1.35)
and (3.1.36) as the decadic logarithm of the vRNA level. For instance, in Figure 4.13C,
Y is decadic logarithm of the mean vRNA level over all eight segments and Z the decadic
logarithm of the indicated segment.
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3.2. Virus infection across multiple scales

Our multiscale model of infection links the description of intracellular viral replication (see
Section 3.1.1) with a model of the transmission of viruses between host cells. In the follow-
ing, we first outline the extracellular part of the model before discussing the intracellular
level as well as the integrated modeling approach. The complete model was first pub-
lished in PLoS Computational Biology [266] and parts of the original publication are used
hereafter.

Model of the extracellular level We used an age-segregated infection model for adherent
cells, which follows from the general population balance [239], to describe the dynamics
of uninfected target cells (T ), infected cells (I), and their apoptotic counterparts (Ta and
Ia, respectively).

dT
dt = µT − rInfT − kApo

T T , (3.2.1)

∂I

∂t
+ ∂I

∂τ
= −

(
kApo

T + kApo
I (τ)

)
I (t, τ) , (3.2.2)

dTa

dt = kApo
T T − rInfTa − kLysTa, (3.2.3)

dIa

dt =
∫ ∞

0

(
kApo

T + kApo
I (τ)

)
I (t, τ) dτ + rInfTa − kLysIa, (3.2.4)

with µ =
[
µmax

Tmax

(
Tmax − T −

∫ ∞
0

I (t, τ) dτ
)]

+
,

where uninfected cells grow with the specific rate µ or undergo apoptosis with rate kApo
T .

Growth can occur with a maximum specific rate µmax to a maximum concentration of Tmax

cells assuming that all non-apoptotic cells occupy a finite surface area. The infection rate
is denoted rInf and will be discussed at the end of this section. In Equation (3.2.2),
infected cells have the age τ and undergo virus-induced apoptosis with an age-dependent
rate, kApo

I (τ). Since infection creates cells with age zero, we obtained the boundary
condition I (t, τ = 0) = rInfT . Apoptotic uninfected cells in Equation (3.2.3) can either
become infected or undergo cell lysis with rate kLys. The same lysis rate is used for
apoptotic infected cells.
Assuming that there are no infected cells in the beginning (I (t = 0, τ) = 0), we can

rewrite Equation (3.2.2) in terms of an algebraic equation.

I (t, τ) =

r
Inf (t− τ)T (t− τ) exp

(
− ∫ τ0 kApo

T + kApo
I (a) da

)
, t > τ ≥ 0,

0, τ > t ≥ 0,
(3.2.5)
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where I (t, τ) can be interpreted as the infection age density such that
∫ τ2
τ1
I (t, τ) dτ gives

the number of infected cells with age between τ1 and τ2. Equation (3.2.5) illustrates that
cells which have age τ at time t were infected at time t− τ . The integral term accounts
for the loss of cells due to apoptosis. Using Equation (3.2.5) instead of Equation (3.2.2),
thus, allows us to track the infection front precisely.
The equation for infectious virus particles (V ) in the extracellular space follows as:

dV
dt =

∫ ∞
0

rRel (τ) I (t, τ) dτ − kDeg
V V +

∑
n

[
kDis

n V Att
n − kAtt

c,n BnV
]
, (3.2.6)

with Bn = Btot
n (T + Ta)− V Att

n , kDis
n =

kAtt
c,n

kEq
c,n

and n ∈ {hi, lo} ,

where rRel denotes the age-dependent virus production rate. We assumed that virions
are degraded/cleared (or lose infectivity) with rate kDeg

V . The binding of virus particles
to target cells was modeled as described before (Section 3.1.1). In brief, we considered
two types of binding sites (Bn): high-affinity (n = hi) and low-affinity (n = lo) sites.
The virus attaches to or dissociates from these sites with rates kAtt

c,n and kDis
n , respectively,

whereby the latter rate follows from the equilibrium constant, kEq
c,n. The concentration of

free binding sites was calculated from their total number per cell (Btot
n ), the concentration

of target cells, and the concentration of attached virus particles (V Att
n ). In this notation

each virion occupies one binding site. Note that we did not consider binding to infected
cells as neuraminidase expression on the cell surface limits superinfection [257].
In order to account for drug effects on virus entry, we defined equations for the concen-

tration of attached virus particles (V Att
n ) on the surface of target cells (considering both

apoptotic and non-apoptotic target cells) as well as for virions in the endosomes of these
cells (V En).

dV Att
n

dt = kAtt
c,n BnV −

(
kDis

n + kEn
)
V Att

n −
(
rInf + rLys

)
V Att

n , (3.2.7)

dV En

dt = kEn
(
V Att

hi + V Att
lo

)
− kFusV En −

(
rInf + rLys

)
V En, (3.2.8)

where kEn and kFus denote the endocytosis and fusion rate, respectively. The first two
terms in Equation (3.2.7) account for virus binding and dissociation as well as for endo-
cytosis. The last term quantifies the loss of virions with cells that leave the compartment
of interest, i.e., with cells leaving the population of target cells by infection or cell lysis
with rate rInf and rLys, respectively. Equation (3.2.8) accounts for the endocytosis of
virions attached to both types of binding sites, the fusion of virions with the endosomal
membrane, and again the loss of particles due to infection and lysis of target cells.
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Since we considered a cell ’infected’ as soon as viral genome copies enter its cytoplasm,
the infection rate (rInf) follows from the fusion rate in Equation (3.2.8).

rInf = FInfk
FusV Enφ

(
(T + Ta)−1

)
, (3.2.9)

with φ
(
(T + Ta)−1

)
=

(T + Ta)−1 , T + Ta > 0,

0, T + Ta = 0,

where FInf corresponds to the infection efficiency, i.e., the number of cells which become
productively infected upon the fusion of one virion. This number cannot exceed one but
may become lower if several virions are required to cause productive infection. While
the first part of Equation (3.2.9) represents the number of cells that become infected
per hour, the fraction serves two purposes: substituted in Equation (3.2.7) and (3.2.8) it
provides the number of viruses per target cell and in Equation (3.2.1) and (3.2.3) it yields
the fraction of non-apoptotic and apoptotic target cells, respectively, to total target cells.
Similarly to rInf , the lysis rate of apoptotic target cells (rLys) can be derived.

rLys = kLysTa ·φ
(
(T + Ta)−1

)
. (3.2.10)

Model of the intracellular level The intracellular level of infection was essentially
modeled as described in Section 3.1.1. However, in contrast to the original description,
we modified the equation for the virus release rate.

rRel (τ) = kRel
max

Vpcyt
M1

Vpcyt
M1 + 8KVRel

∏
j

Pj

Pj +KVRelNPj

, (3.2.11)

with j ∈ {RdRp,HA,NP,NA,M1,M2,NEP} ,

where virus release depends on the abundance of progeny vRNPs in the cytoplasm (Vpcyt
M1)

and of structural viral proteins (Pj). In this context, KVRel denotes the number of virus
particles for which components must be present in order to reach half the maximum release
rate. In its new form, rRel can only increase up to a maximum rate of kRel

max assuming that
there is only a limited number of host factors available for virus budding. This change was
implemented to avoid unrealistically high virus production rates that occurred in some
drug treatment regimes.
For simulations in Figures 4.23D and 4.24A, the complete intracellular model was used

as described above. However, when coupling the model to the extracellular level, we
neglected virus entry and initialized the model with a complete set of eight vRNPs in
the cytoplasm. In these cases attachment, endocytosis, and fusion were considered at the
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extracellular level instead (Equation (3.2.7) and (3.2.8)).

Integrated simulation approach In order to ease the computational burden and allow
for a more intuitive interpretation of simulation results, we assumed that the extracellular
level has little or no influence on intracellular events, i.e., that each infected cell behaves
the same independent of the time of infection and the extracellular environment. As
shown by Haseltine and colleagues, this assumption permits the selective decoupling of
both levels and reduces the model’s complexity significantly [239]. It also allows us to first
solve the intracellular level in order to obtain the virus release rate, rRel, as a function
of the infection age, τ . This rate can then be used in Equation (3.2.6) to simulate the
extracellular level.
The intracellular submodel was solved numerically using the CVODE routine from

SUNDIALS [259] on a Linux-based system. Its parameters can be found in Table B.1
in the appendix. Model files and experiments were handled in the Systems Biology
Toolbox 2 [260] for MatLab (version 8.0.0.783 R2012b). We then used Euler’s method with
a step size of ∆t = 0.05 h to solve the extracellular model (Equations (3.2.1) and (3.2.3)–
(3.2.10)). Table B.2 provides the necessary parameters and the initial conditions are listed
in Table B.3 in the appendix. The integrals in Equations (3.2.1), (3.2.4), and (3.2.6) were
approximated in each step by substituting Equation (3.2.5) for I (t, τ) and using the
rectangle rule with a step size of ∆t = 0.05 h. To further reduce computational costs,
the integral in Equation (3.2.5) was evaluated prior to simulation following the same
approach3. The method was checked for numerical accuracy against simulations using
smaller step sizes and by comparison to a discrete version of Equation (3.2.2) with a large
number of age classes.

Parameter estimation Model parameters were estimated by fitting the complete intra-
cellular submodel (including the equations for virus entry) to experimental virus titers per
cell and to the levels of vRNA, cRNA and mRNA measured during single-cycle, high MOI
infection (Figure 4.24A). Simultaneously, the reduced model (excluding virus entry) was
coupled to the extracellular equations using the same parameters and the complete multi-
scale model was fitted to the time courses of uninfected and infected cells, their apoptotic
counterparts, and the virus titer during multi-cycle, low MOI infection (Figure 4.24B).
Estimation was performed using the fSSm algorithm for stochastic global optimiza-
tion [261]. In particular, the algorithm was used to simultaneously minimize the least
squares prediction error of all measured state variables (see Equation (3.1.30)), whereby
the error of each variable was normalized to its respective maximum measurement

3Typical simulation times for the complete model are in the order of 0.5 s on a desktop computer (to
simulate 72 h).
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value (e.g. the deviation between measured and simulated vRNA level was weighted by the
maximum of the measured vRNA level). The summed errors of the intracellular and extra-
cellular part of the model were then divided by the number of measurements, respectively,
and added to attain an overall measure of fit quality. Since experiments indicated that
our quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR)
detects free viral RNAs from the seed virus supernatant, which may adhere to cells but
cannot enter them, we applied the first measurement value as an offset to all simulation
values of viral RNAs. Bootstrap confidence intervals were determined as described in
reference [249] considering the standard deviations in Figure 4.24A as well as a 20% error
for cell counts and 0.3 log for virus titers in Figure 4.24B.

Simulation of drug treatment In order to simulate drug treatment with efficacy ε, para-
meters in the model which correspond to the drug’s target (Table B.4 in the appendix)
were perturbed by 1 − ε. Treatment was assumed to occur at constant efficacy starting
from 0 hours post infection (hpi). For results in Figures 4.28A and 4.29C, the reduced
intracellular model was simulated first to determine the virus release rate (rRel). The total
amount of virus particles produced by an average infected cell over its lifetime (V Rel

tot ), i.e.,
the viral burst size, was then calculated by considering cell death.

V Rel
tot =

∫ ∞
0

rRel (τ) exp
(
−
∫ τ

0
kApo

T + kApo
I (a) da

)
dτ . (3.2.12)

Cell culture and virus infection For a detailed description of the multi-cycle experi-
ments (Figure 4.24B) the reader is referred to reference [267] from which the data were
adopted. Single-cycle infections (Figure 4.24A) were carried out by our coworkers as
described in reference [266]. To correctly account for the loss of intracellular viral com-
ponents due to virus release, the total amount of virus particles leaving an average in-
fected cell was determined using the hemagglutination assay as described previously by
Kalbfuss et al. [268]. Titer measurements in log10 HA units (HAU) per test volume can
be converted into hemagglutinating particles per ml according to the following equation.

cvirus = 2× 107 · 10(log10 HAU/100 µl), (3.2.13)

where we assumed that at least one virus particle per erythrocyte (present at
2× 107 cells/ml) is required to cause agglutination [173].
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3.3. Defective interfering viruses

Here, two mathematical models for the growth of DI viruses are presented. The first
focuses on the replication of DI RNAs inside an infected cell, whereas the second describes
the accumulation of DIPs in a continuous production system for influenza A virus.

3.3.1. Intracellular DI RNA replication

An early version of our model for DI RNA replication was developed as part of the bachelor
thesis of Helene Kaffka [269]. It represents an extension of the deterministic description
of intracellular virus replication (Equations (3.1.1)–(3.1.27)). We used the work of Kaffka
as a basis for the model presented hereafter but explicitly accounted for the vRNAs and
cRNAs of individual genome segment. This results in a more general description that can
account for DI RNAs from different genome segments. In the following, we focused on a
DI RNA derived from segment 3 (encoding PA). A version of the model that describes a
DI RNA of segment 4 (encoding HA) can be found in the appendix (Section C.2).

Virus entry Virus entry was essentially modeled as described in Equations (3.1.1)–
(3.1.4). Note that here V Ex, V Att

n and V En denote the STV only, and similar equations had
to be added for DIPs (see Section C.1 in the appendix for a complete list of equations).
Furthermore, we replaced Equation (3.1.5) by

dV cyt

dt = kFusV En − kImpV cyt, (3.3.1)

and added

dDcyt

dt = kFusDEn − kImpDcyt, (3.3.2)

where V cyt and Dcyt denote cytoplasmic complexes that contain all eight genome seg-
ments including either the full-length or the defective segment 3, respectively. These
complexes were implemented based on recent experimental findings indicating that all
genome segments co-localize during virus entry until they reach the nucleus [37].

Viral RNA replication Upon nuclear import, the eight genome segments separate and
begin their independent replication. The equations for nuclear vRNPs are the following:

dVpnuc
k

dt = kImpV cyt + kImpDcyt + kBind
NP PNPR

V
RdRp,k −

(
kBind

M1 PM1 + kDeg
Rnp

)
Vpnuc

k , (3.3.3)

for k = 1, 2, 4, . . . , 8 and



3.3. Defective interfering viruses 46

dVpnuc
3

dt = kImpV cyt + kBind
NP PNPR

V
RdRp,3 −

(
kBind

M1 PM1 + kDeg
Rnp

)
Vpnuc

3 , (3.3.4)

dVpnuc
9

dt = kImpDcyt + kBind
NP PNPR

V
RdRp,9 −

(
kBind

M1 PM1 + kDeg
Rnp

)
Vpnuc

9 , (3.3.5)

where k = 1, . . . , 8 are the full-length segments and k = 9 denotes the defective segment 3.
Viral RNA synthesis and encapsidation were modeled as described in Equations (3.1.7)–
(3.1.12). However, we assumed that DI RNAs have a replication advantage over wild-
type (wt) segments during cRNA synthesis due to their reduced length.

dRC
9

dt = (FAdv + 1) kSyn
C Vpnuc

9 − kBind
RdRpPRdRpR

C
9 − kDeg

R RC
9 , (3.3.6)

where FAdv denotes the factor with which the synthesis of the DI cRNA exceeds the
production of its full-length counterpart. Note that whether this advantage occurs in
cRNA or vRNA synthesis does not affect simulation result [269]. As a first approximation
we chose the following.

FAdv =
(
LV

3
LV

9
− 1

)
, (3.3.7)

where LV
3 and LV

9 are the length of the full-length and defective segment 3 vRNA, respec-
tively. By using Equation (3.3.7), we assumed that a DI RNA replicates twice as fast as
its cognate full-length RNA if it comprises half the length.

Viral mRNA and protein synthesis Similar to the original model, viral mRNAs are
produced by vRNPs in the nucleus.

dRM
i

dt = kSyn
M
Li

Vpnuc
i − kDeg

M RM
i , i = 1, . . . , 8, (3.3.8)

where vRNPs of segment i synthesize their corresponding mRNA. Note that we neglected
mRNA synthesis by the defective segment as such mRNAs would most likely not encode
for functional proteins. The kinetics of viral protein dynamics were modeled as described
in Equations (3.1.17)–(3.1.26) with two exceptions: (i) the release of both, STVs and DIPs
drains the pool of M1, HA, NA and M2 proteins, and (ii) following the model of Kaffka,
virus budding does not require additional RdRp, NP and NEP proteins, i.e., proteins that
are not bound in vRNPs [269]. The latter change was implemented as DI RNA synthesis
can deplete the pool of NP and RdRps. We assumed that virus release can still occur in
this regime and that free viral polymerases, NP, and NEP proteins are not essential for
budding.



3.3. Defective interfering viruses 47

Virus release To account for a proposed competition between full-length and DI RNAs
during virus assembly, we included a segment-specific packaging mechanism based on
experimental work by Fournier et al. [34] and the model of Kaffka [269]. In particu-
lar, we assumed that cytoplasmic vRNPs (Vpcyt

M1) form complexes that comprise all eight
genome segments including either the full-length or defective segment 3 (V cyt

Cplx and Dcyt
Cplx,

respectively).

dVpcyt
M1,k

dt = kExpPNEPVp
nuc
M1,k − kCplxVpcyt

M1,3
∏
k

Vpcyt
M1,k

− kCplxVpcyt
M1,9

∏
k

Vpcyt
M1,k − kDeg

RnpVp
cyt
M1,k, (3.3.9)

for k = 1, 2, 4, . . . , 8 and

dVpcyt
M1,3

dt = kExpPNEPVp
nuc
M1,3 − kCplxVpcyt

M1,3
∏
k

Vpcyt
M1,k − kDeg

RnpVp
cyt
M1,3, (3.3.10)

dVpcyt
M1,9

dt = kExpPNEPVp
nuc
M1,9 − kCplxVpcyt

M1,9
∏
k

Vpcyt
M1,k − kDeg

RnpVp
cyt
M1,9, (3.3.11)

dV cyt
Cplx

dt = kCplxVpcyt
M1,3

∏
k

Vpcyt
M1,k − rRel − kDeg

RnpV
cyt
Cplx, (3.3.12)

dDcyt
Cplx

dt = kCplxVpcyt
M1,9

∏
k

Vpcyt
M1,k − rRel

D − kDeg
RnpD

cyt
Cplx, (3.3.13)

where kCplx is the complex formation rate and rRel and rRel
D denote the release rates of

STVs and DIPs, respectively. The amount of released virus particles is described by the
following equations.

dV Rel

dt = rRel = 8kRelV cyt
Cplx

∏
j

Pj

Pj +KVRelNPj

, (3.3.14)

dDRel

dt = rRel
D = 8kRelDcyt

Cplx
∏

j

Pj

Pj +KVRelNPj

, (3.3.15)

with j ∈ {HA,NA,M1,M2} ,

where V Rel and DRel are progeny STVs and DIPs, respectively. We multiplied kRel by
eight to obtain a similar release rate than in the original model that used the total amount
of cytoplasmic vRNPs instead of a complex containing all eight genome segments (see
Equation (3.1.27)).
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Coinfection probability Assuming that the infection of a cell by a virus particle is a
random process, the infection probability (PI) follows a Poisson distribution.

PI = 1− e−aMOI , (3.3.16)

where MOI denotes the multiplicity of infection, i.e., the average number of infectious
virus particles per cell, and a is a constant defining the infection efficiency [270]. Since the
MOI considers infectious particles only, we obtain a = 1. The probability of coinfecting
a cell with an STV and a DIP (PCI) follows as the joint probability.

PCI =
(
1− e−MOISTV

) (
1− e−MOIDIP

)
, (3.3.17)

where MOISTV and MOIDIP are the numbers of infectious STVs and DIPs per cell,
respectively.

Computation Parameter values and initial conditions for the model can be found in
Table C.1 and C.2 in the appendix. The model files were handled in the Systems Biology
Toolbox 2 [260] for MatLab (version 8.0.0.783 R2012b) and simulation were conducted
using the CVODE routine from SUNDIALS [259] on a Linux-based system4.

3.3.2. DIP growth during continuous virus infection

In order to analyze oscillations in virus titers which were observed in a continuous system
for influenza A virus production, we developed a segregated mathematical model for the
replication of DIPs and STVs in a cell population. This model is based on an existing
description of a batch process proposed by Kirkwood and Bangham [271] and was first
published in PLoS One [148]. Parts of the original publication are used hereafter.

Model in the presence of DIPs Our model for DIP replication focuses on three key
components: the number of uninfected cells, infected cells, and virus particles. The
concentration of uninfected target cells (T ) is given by the following equation.

dT
dt = µT − kInf (Vs + Vd)T +D (Tin − T ) , (3.3.18)

where Vs and Vd denote the concentrations of STVs and DIPs, respectively. We assumed
that cells grow exponentially with rate constant µ and become infected by virus particles
with rate kInf , which is the same for both virus types. The last term in Equation (3.3.18)
accounts for the continuous feed of cells with concentration Tin and their harvest with D

4Typical simulation times are in the order of 0.6 s on a standard desktop computer (to simulate 12 h).
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denoting the virus reactor’s dilution rate. Here, ideal mixing is assumed. With respect
to the roughly constant concentration of cells observed in the cell reactor, we chose Tin to
be independent of time. In general, Tin may vary in the initial phase of cultivation to a
certain degree until the cell reactor reaches steady state.
The population of infected cells was subdivided into cells infected with STVs (Is) and

DIPs (Id) as well as into coinfected cells (Ic).

dId

dt = kInfVdT −
(
kInfVs − µ

)
Id −DId, (3.3.19)

dIs

dt = kInfVsT −
(
kInfVd + kApo

)
Is −DIs, (3.3.20)

dIc

dt = kInf (VsId + VdIs)− kApoIc −DIc. (3.3.21)

The first term in Equation (3.3.19) and (3.3.20) accounts for the infection of target cells
by both viruses. Similarly, infection of Is and Id by DIPs and STVs, respectively, yields
coinfected cells in Equation (3.3.21). Since DIPs do not replicate in the absence of an STV,
we assumed that DIP infection alone does not interfere with normal cellular processes.
Hence, DIP-infected cells may continue to grow giving rise to infected daughter cells,
an assumption already used by Kirkwood and Bangham [271]. Furthermore, Id cannot
revert back to the uninfected state by virus degradation. In cells infected with the STV or
coinfected with both types of particles replication takes place resulting in virus-induced
apoptosis with rate kApo. Again, the last term in Equations (3.3.19)–(3.3.21) accounts
for the dilution of the reactor content. To keep the model simple, we neglected that DIPs
may not interfere with STV replication after it is well advanced. Kirkwood and Bangham
accounted for this by introducing further subclasses of cells which track the infection age,
i.e., the time that has elapsed since the cell was infected [271]. However, such subclasses
severely increase the dimensionality of the model and impair a mathematical analysis.
Finally, the concentration of STVs (Vs) and DIPs (Vd) is the following.

dVs

dt = kProdIs −
(
kInf

FInf
(T + Id + Is + Ic) + kDeg

V +D

)
Vs, (3.3.22)

dVd

dt = kProdIc + fkProdIs −
(
kInf

FInf
(T + Id + Is + Ic) + kDeg

V +D

)
Vd, (3.3.23)

where STV-infected cells produce primarily STVs with rate kProd and a small fraction
of DIPs (f). By contrast, coinfected cells exclusively release DIPs. Furthermore, free
virus particles are taken up by all four cell types or degrade with rate kDeg

V . For the sake
of simplicity, we assume that the uptake of one virion is sufficient to cause productive
infection such that the infection efficiency is FInf = 1.
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Model in the absence of DIPs As was proven in reference [148], the system in
Equations (3.3.18)–(3.3.23) reduces to a three dimensional model of virus growth if the
seed virus is free of DIPs (Vd (t = 0) = 0), no DIP-infected or coinfected cells are present
in the beginning (Id (t = 0) = Ic (t = 0) = 0), and cells infected by STVs do not generate
DIPs de novo (f = 0):

dT
dt =µT − kInfVsT +D (Tin − T ) , (3.3.24)
dIs

dt =kInfVsT −
(
kApo +D

)
Is, (3.3.25)

dVs

dt =kProdIs −
(
kInf (T + Is) + kDeg

V +D
)
Vs. (3.3.26)

Computation For both the full model and the reduced version, we chose parameters
and initial conditions according to Table 4.5 (and Table C.3 in the appendix). We solved
the models numerically using the CVODE routine from SUNDIALS [259] on a Linux-
based system5. Model files were handled in the Systems Biology Toolbox 2 [260] for
MatLab (version 8.0.0.783 R2012b).

5Typical simulation times are in the order of 0.01 s on a standard desktop computer (to simulate 18 days).
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Chapter 4

Results and Discussion

With respect to the hierarchical nature of influenza virus infection the following chapter
was divided into three parts starting with the intracellular level and gradually moving
toward virus growth in cell culture. In the first section, we use deterministic and stochastic
modeling approaches to elucidate the intracellular life cycle of influenza A viruses. We
then build on these models to develop a multiscale description of infection which links
intracellular replication with the dynamics of the host cell population. The last section
is devoted to the synthesis of DI RNAs inside an infected cell and DIP production in
continuous cell culture.

4.1. The intracellular life cycle of influenza A virus

The analysis of intracellular virus replication is key to a systems-level understanding of
viral infection because it is the level where the virus synthesizes its genome and proteins to
assemble the smallest carrier of infection, the virion, and where it most intimately interacts
with its host. It is also the level where state-of-the-art antiviral agents counteract the
disease. Thus, we developed a model of the intracellular life cycle of influenza A viruses
as a first step toward a more comprehensive description of infection. Traditionally, such
models follow a deterministic formalism, which we also use in the first part of this section.
In the second part, we then turn toward stochastic simulation techniques to account for
the inherent randomness of biochemical reactions.

4.1.1. Dynamics of intracellular virus replication

For the development of our model, we followed a top-down approach such that we only
included the key steps of intracellular influenza A virus replication and neglected details
where data are lacking. In this way, the resulting model becomes less complex, easier to
interpret and, most importantly, has fewer unknown parameters, whose estimation would
be difficult in the absence of measurements. The main features of the final model are
depicted in Figure 2.2 on page 7. In the following, we discuss in detail the simulation of
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virus entry, the transition from transcription to genome replication, nuclear export, and
virus release. Note that in the rest of this section parts of the original research article on
our intracellular model were used [250]. Copyright of these passages lies with the Journal
of Virology (Copyright c© American Society for Microbiology, [Journal of Virology, 86,
2012, 7806-7817, 10.1128/JVI.00080-12]).

Virus entry Intracellular virus replication starts with the binding of virus particles to
the cell surface. We modeled this process based on the work of Nunes-Correia et al. who
performed experiments and theoretical studies on the adsorption of influenza A virus to
MDCK cells [251]. In agreement with their findings, our model considers two types of
binding sites, high-affinity and low-affinity sites, which, according to Nunes-Correia et al.,
might correspond to sialic acid-containing ligands and less specific interactions, respec-
tively. In their study, Nunes-Correia and colleagues calculated the rates of virus attach-
ment to these sites. However, they did so for binding at 4 and 20◦C only. To obtain
the binding rates at 37◦C, we tuned our model to experiments showing that the equi-
librium of binding is reached after 20min (Figure 4.1A and reference [251]). Note that
viruses which attach to high-affinity sites reach the equilibrium faster than their counter-
parts that interact with low-affinity sites. The resulting parameter estimates for virus
adsorption can be found in Table 4.1. Despite adjusting the binding rates, our descrip-
tion of virus adsorption still yields the steady state binding characteristics determined by
Nunes-Correia et al. and is in good agreement with their experiments (Figure 4.1B).

Figure 4.1.: Virus attachment to the cell surface. Virus binding was simulated according
to the experimental setup of Nunes-Correia et al. and compared to their measurement data and
simulation results [251]. In brief, R18-labeled influenza virus (A/PR/8/34 (H1N1)) was added
to MDCK cells at various concentrations in the presence of endocytosis inhibitors and incubated
at 37◦C. Virus-cell binding was determined by dequenching of the label. (A) Simulated amount
of extracellular virus (V Ex), virus bound to high-affinity sites (V Att

hi ), and virus bound to low-
affinity sites (V Att

lo ) for an infection at an MOI of 2460. Binding was assumed to be in equilibrium
when V Ex reaches 95% of its steady state level. (B) The amount of free virions in the medium
and virus bound to both types of binding sites in steady-state for different MOIs.
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Table 4.1.: Parameter estimates for virus entry.

Parameter Value Local sensitivitya (%)

FFus (–) 0.51 0.44
kAtt

hi (sites · h)−1 8.09× 10−2 3.06× 10−4

kAtt
lo (sites · h)−1 4.55× 10−4 4.35× 10−6

kEn (h−1) 4.80 4.46× 10−2

kFus (h−1) 3.21 1.32× 10−2

aNormalized change in model output in response to parameter perturba-
tions by 1% (see Equation (2.4.3) and (2.4.4)).

Once bound to the plasma membrane, virions can enter the cell via receptor-mediated
endocytosis where they migrate through the cytoplasm within endosomes. The acidifi-
cation in late endosomes then triggers viral fusion with the endosomal membrane. We
used R18-labeling data obtained by Stegmann et al. [272] to calibrate these steps in
our model (Figure 4.2A). Based on these experiments, the first fusion events occur within
5min after adsorption with most of the fusion-competent viruses escaping from endosomes
within 80min. Yet, half of the adsorbed virus particles fail to fuse and are degraded in
lysosomes. We considered this in our model by defining the fraction of fusion-competent
viruses, FFus. Note that the high sensitivity of FFus indicates an accurate estimation of
this parameter from R18-labeling experiments (Table 4.1). By linking the binding and
fusion experiments, we were able to infer the dynamics of virus entry (Figure 4.2B). At

Copyright c© American Society for Microbiology, [Journal of Virology, 86, 2012, 7806-7817, 10.1128/JVI.00080-12]

Figure 4.2.: Fusion with endosomes and virus entry dynamics. (A) Model fit (lines)
to data (circles) for the fusion of R18-labeled influenza virus (strain NIB26) with endosomes
in MDCK cells adopted from Stegmann et al. [272]. In brief, virus was added to MDCK cells
at 0◦C for 1 h to allow for virus adsorption, cells were washed, and warm buffer (37◦C) was
added. The percentage of fused to total cell-associated virus is shown. (B) Simulated amount
of extracellular virions in the medium (V Ex), virions in endosomes (V En), and vRNPs in the
nucleus (Vpnuc) for an infection at an MOI of 10 in the absence of viral protein synthesis and
vRNP degradation.



4.1. The intracellular life cycle of influenza A virus 54

an MOI of 10 most extracellular virions enter the cell within 1 h. During this process, the
number of available binding sites is not a limiting factor. Subsequently, a peak in endo-
somal virus particles occurs around 20min post infection. After approximately 90min,
half of the parental vRNPs have reached the nucleus, while the rest was degraded within
fusion-incompetent viruses.

Stabilization hypothesis Once in the nucleus, vRNPs first transcribe viral mRNAs
whereas cRNA accumulation is only observed after an initial round of viral protein syn-
thesis [58]. Vreede et al. proposed that this transition to genome replication results from
the stabilization of nascent cRNA by viral polymerases and NP proteins, which prevents
the degradation by cellular nucleases (see Figure 2.3B). We included this mechanism
into our model and tested whether it can capture published data from two experimental
studies [60, 66]. In these works, Vreede et al. obtained the time course of mRNA, cRNA,
and vRNA under various experimental conditions by semi-quantitative NA gene-specific
primer extension analysis. To use the data for modeling, we performed a densitometric
analysis1 and normalized each data point to the vRNA signal (at the same time point),
which Vreede and coworkers assumed to be constant in their experiments. This provided
us with the level of mRNA and cRNA relative to vRNA.
One key observation in favor of cRNA stabilization is the synthesis of both mRNA

and cRNA by virion-derived vRNPs in vitro, i.e., in the absence of de novo synthe-
sized viral proteins and cellular nucleases [66]. Our model can reproduce this observa-
tion (Figure 4.3A) and allows us to estimate the kinetic parameters of the processes
involved. As expected in the absence of nucleases, simulations yield a low degradation
rate of cRNA (kDeg

R in Table 4.2) indicating its stability under in vitro conditions. By
contrast, degradation of viral mRNAs (kDeg

M ) occurs more rapidly, which results from the
observation that mRNAs reach steady state after 12 h (Figure 4.3A). However, estima-
tion of this rate might be biased by the assumption that mRNA synthesis occurs at a
constant rate throughout the experiment. This might not be the case due to the loss of
enzymatic activity or the depletion of precursors, such as cap sources, which would also
yield a constant mRNA level but at a much lower degradation rate.
To resemble the in vivo situation more closely, we next analyzed infection experiments

in 293T cells from literature [60]. Vreede et al. conducted these experiments in the pres-
ence of cycloheximide, which inhibits de novo viral protein synthesis and, hence, prevents
cRNA stabilization. To rescue cRNA accumulation, four viral proteins were expressed in
different combinations prior to infection: wild-type NP, PA, and PB2 as well as a catalyti-
cally inactive PB1 (PB1a, containing the PB1-D445A/D446A mutation). A trimeric poly-

1Quantification of band intensities against background was performed using the ImageJ software.
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Figure 4.3.: Simulation of the cRNA stabilization hypothesis. Experiments yielding
NA gene-specific mRNA (◦) and cRNA levels (� and open bars) were conducted by Vreede et al.
using primer extension analysis [60, 66]. (A) Model fit to data of an in vitro polymerase assay
using virion-derived vRNPs [66]. (B,C) Model fit to infections of 293T cells with influenza
A/WSN/33 at an MOI of 5 [66]. In brief, protein synthesis during infection was inhibited and
plasmids expressing NP, PA and PB2 (B), or NP, PA, PB2 and PB1a (C) were transfected prior
to infection. (D) Same as in C except that various amounts of plasmids expressing PA, PB2 and
PB1a (RdRp), NP, and empty vector (–) were transfected prior to infection. Bars represent the
cRNA level at 2 hpi. PB1a, catalytically inactive mutant PB1-D445A/D446A.

merase complex with PB1a does not synthesize viral RNAs yet still stabilizes cRNA [60].
For model calibration, we fitted all available infection experiments simultaneously using
the same parameter set, and we only changed the initial conditions according to the ex-
perimental setup (see Table A.2 in the appendix). Figure 4.3B shows the time course
of cRNA and mRNA in the presence of NP proteins but absence of complete viral poly-
merases (the PB1 subunit was omitted in the experiment). While mRNAs accumulate
within a few hours, cRNAs are rapidly degraded in the simulation, which agrees well
with the experimental observation. According to Vreede et al. the increase in cRNA at
6 hours post infection (hpi) is due to a minor breakthrough of cycloheximide inhibition
and is, thus, not reflected in the model [60]. In support of a degradation by cellular
nucleases, parameter estimation yields a much higher cRNA degradation rate in infec-
tion experiments than in the in vitro assay (kDeg

R in Table 4.2). By contrast, the rate
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Table 4.2.: Parameter estimates for the transition from transcription to genome replication
based on a model that accounts for the stabilization hypothesis.

Parameter Value Local sensitivity
in vitroa cell cultureb in vitroa cell cultureb

kBind
NP (molecule · h)−1 – 3.01× 10−4 – 7.16× 10−3

kBind
RdRp (molecule · h)−1 – 1c – 6.62× 10−7

kDeg
M (h−1) 0.37 0.33 0.13 1.37× 10−2

kDeg
R (h−1) 0.06 36.36 1.76× 10−2 1.21× 10−5

kDeg
RRdRp (h−1) – 4.25 – 1.16× 10−2

kSyn
C (h−1) 0.03 0.76 8.78× 10−2 5.31× 10−2

kSyn
M (h−1) 0.21d 0.96d 0.18 8.01× 10−2

aModel fit presented in Figure 4.3A.
bModel fit presented in Figure 4.3B–D.
cWe can only estimate the lower bound of this rate since polymerase binding is in saturation in experi-
ments.
dFor better comparison the synthesis rate of an mRNA of average length is shown. In the model, tran-
scription is proportional to the actual mRNA length of each segment and a length specific synthesis
rate (here 350 and 1630 nucleotides · h−1, respectively).

of mRNA degradation (kDeg
M ) hardly changes between both setups. Note, however, that

for high values of cRNA degradation, which are required to compensate for the ongoing
replication activity of vRNPs, kDeg

R becomes increasingly insensitive. Hence, an accurate
estimation of this rate requires separate experiments. In the presence of NP proteins
and complete viral polymerases stabilization takes place resulting in an accumulation of
cRNA in the model and the experiment (Figure 4.3C). As the expression of a catalyti-
cally inactive polymerase complex should not affect transcription, the simulated mRNA
levels in Figure 4.3B and C are the same and correspond well to the averages from these
two independent experiments. Figure 4.3D shows the cRNA level in response to different
combinations of pre-expressed viral proteins. In the absence of the viral RdRp, the model
yields only low levels of cRNA regardless of the expression of NP proteins (Figure 4.3D,
columns 1 and 2). These residual amounts are due to the ongoing synthesis of cRNA by
vRNPs, which is in equilibrium with cRNA degradation. However, such low levels may be
below the detection limit of the primer extension assay and may, therefore, not appear in
experiments. The expression of polymerases in the absence of NP results in an accumula-
tion of cRNA to intermediate levels (Figure 4.3D, column 3). Note that the model requires
the formation of an RdRp-cRNA complex that is more stable than nascent cRNA (com-
pare kDeg

R and kDeg
RRdRp in Table 4.2) to correctly reproduce this scenario. Finally, in the

presence of both RdRp and NP, cRNPs are formed providing an even higher protection
from degradation (Figure 4.3D, column 4). Furthermore, simulation results and mea-
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surements agree in that an increased concentration of viral polymerases does not yield
higher cRNA levels, whereas an increase in NP protein concentration does (Figure 4.3D,
columns 4 to 7). Hence, in these experiments, polymerase binding is in saturation indi-
cating a high affinity of the RdRp to nascent cRNA. By contrast, binding of NP is the
rate-limiting step of cRNA stabilization given the experimental conditions. In summary,
our model can capture the time course of cRNA and mRNA under various experimental
conditions as well as the qualitative response of cRNA levels to different combinations
and amounts of pre-expressed viral proteins.

Switching hypothesis An alternative hypothesis on the transition to genome replica-
tion proposes that NP proteins facilitate a switch from early translation to late replication
by regulating vRNP activity directly (see Figure 2.3A, reviewed in [59]). We implemented
a simple version of this mechanism into our model such that NP enhances cRNA synthesis
at the expense of mRNA production. In addition, viral protein binding no longer affects
RNA stability in these simulations. A key argument against the switching hypothesis is
the synthesis of cRNA by virion-derived vRNPs in vitro in the absence of non-vRNP-
associated NP proteins [66]. However, our estimation yields a very low rate of cRNA
synthesis in this in vitro experiment (kSyn

C in Table 4.2). We, therefore, hypothesized that
vRNPs might posses a residual replication activity, i.e., that they can synthesize small
amounts of cRNA in absence of NP, and that the expression of NP merely increases this
activity. With such a leaky cRNA production our switching model can reproduce the in
vitro data (Figure 4.4A). We then turned toward the infection experiments and fitted the
model simultaneously to all available data sets (parameters can be found in Table A.4 in
the appendix). In the presence of NP proteins, simulations show similar cRNA dynamics
regardless of whether the viral polymerase is expressed (Figure 4.4B and C). This results
from the assumption that NP proteins are the sole regulator of vRNP activity. Because NP
is present in both experiments at similar concentrations cRNA synthesis is equivalent and
simulations attempt to match the averages from these two data sets. However, this model
prediction stands in sharp contrast to the experiments in which cRNA accumulates upon
polymerase expression. A similar observation can be made from the response of cRNA
levels to different combinations of pre-expressed viral proteins (Figure 4.4D). Although
the model qualitatively agrees with the measurements with respect to changes in NP con-
centration, e.g., expression of NP in the presence of RdRp increases cRNA levels (compare
column 3 and 4) and an increased NP level results in stronger cRNA accumulation (com-
pare columns 5 to 7), it cannot reproduce the response to RdRp expression. For instance,
simulations predict the same cRNA concentration in the absence of NP proteins whether
the polymerase is present or not (compare column 1 and 3). These levels result from the
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Figure 4.4.: Simulation of the switching hypothesis. Same as in Figure 4.3 except that
the switching hypothesis was simulated. (A) In vitro polymerase assay using virion-derived
vRNPs [66]. (B,C) Infections of 293T cells with influenza A/WSN/33 at an MOI of 5 [66] in the
absence (B) and presence (C) of a catalytically inactive viral polymerase complex. (D) Same
as in C except that various amounts of plasmids expressing the viral RdRp, NP protein, and
empty vector (–) were transfected prior to infection.

residual replication activity we implemented to fit Figure 4.4A. However, cRNA was not
detected in experiments where the viral polymerase is absent. Similarly, polymerase ex-
pression increases cRNA accumulation in the experiments but not in the model (compare
column 2 and 4). Overall, our simple implementation of the switching hypothesis, thus,
captures the effect of differential NP expression on cRNA levels, albeit only qualitatively,
but it cannot correctly reproduce the response to changes in RdRp concentration. We,
hence, use a model of the stabilization hypothesis in the following.

Nuclear export and shutdown of RNA(+) synthesis As the infection advances, newly
produced vRNPs leave the nucleus to travel to the plasma membrane where they are
packaged into progeny virions. In our model, two viral proteins are the main regulators
of this process, M1 and NEP. While M1 was shown to bind directly to vRNPs through
interaction with NP and possibly also with RNA, NEP links the complex to the cellular
exportin CRM1 in a “daisy chain” by binding to an NLS on M1 (see Figure 2.4 on page 11
and reference [71]). Somewhere along this process, vRNPs have to stop transcription and
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replication in order to enter the cytoplasm (and later the virus particles) in an inactive
form [92]. We assumed that M1 binding is the step that inactivates vRNPs because M1
proteins are known to inhibit viral transcription [93–95, 97]. Once bound to the M1-
vRNP complex, NEP can then facilitate the export of vRNPs from the nucleus in our
simulations. Using this mechanism as well as cRNA stabilization and the virus entry
dynamics described in the beginning allowed us to recover the dynamics of all three
viral RNA species during infection (Figure 4.5A and B). Simulation results show an
early increase in mRNA levels within the first hour post infection when vRNPs reach
the nucleus. In the following, viral protein synthesis facilitates the transition to genome
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Figure 4.5.: Viral RNA dynamics during infection. (A,B) Model fit (lines) to the
vRNA (4), mRNA (◦), and cRNA (�) levels of segment 5 (encoding NP) during three in-
dependent infections of MDCK cells with influenza A/WSN/33 at an MOI of 10 after 1 h of
virus adsorption at 4◦C. Data were determined by Kawakami et al. using strand-specific real-
time RT-qPCR [175]. (C) Model prediction for the accumulation of unbound M1 proteins (PM1)
and vRNPs engaged in RNA synthesis (Vpnuc). (D) Comparison of model predictions to data
of Shapiro et al. for the synthesis rates of M1 (♦) and mRNAs (×) of segment 7 (encoding the
M proteins) [75]. In brief, BHK-21 cells were infected with influenza A virus (WSN strain) at
an MOI of 10 to 20 and virus was allowed to adsorb for 1 h at 4◦C. Protein and mRNA levels
were determined by pulse chase experiments. In simulations, rSyn

M1 and rSyn
mRNA7 correspond to the

synthesis rates of M1 proteins (first term in Equation (3.1.22)) and mRNAs of segment 7 (first
term in Equation (3.1.16) with i=7), respectively. Data points and simulations are given in
percent of their maximum.
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replication around 1.5 hpi marked by an accumulation of both cRNA and vRNA in the
model and in experiments. At approximately 3.5 to 4 hpi, the mRNA level shows a distinct
peak (Figure 4.5A) caused by the inactivation and subsequent nuclear export of progeny
vRNPs, which can no longer serve as templates for positive-strand RNAs. For the same
reason, cRNA production slows down during late infection (Figure 4.5B). Finally, the
level of viral genome copies increases throughout infection as their template, the cRNA,
remains in the nucleus at nearly constant levels. These dynamics are in general agreement
with experiments using different influenza A virus strains, cell lines, and experimental
assays [75, 174, 255, 273].
Our model proposes that the RNA dynamics during late infection are mainly governed

by a shutdown of positive-strand RNA synthesis due to the inactivation of vRNPs in
preparation for nuclear export. In particular, M1 proteins accumulate to high levels start-
ing around 2 hpi (Figure 4.5C). Subsequently, they bind to vRNPs causing a reduction in
the number of active vRNPs from 2.5 hpi onward, which impairs the synthesis of cRNA
and mRNA. Yet, in our model, some vRNPs remain active, even at late times, and produce
low amounts of RNAs. Since cRNAs are stabilized in cRNPs this residual vRNP activity
suffices to keep the cRNA level roughly constant. By contrast, the higher rate of mRNA
degradation causes a decline in mRNA levels during late infection. To provide further
evidence that the inactivation of vRNPs by M1 proteins determines late RNA dynamics,
we compared our simulation results to measurement data not used for model construction.
Figure 4.5D illustrates the simulated synthesis rates of M1 proteins and mRNAs of seg-
ment 7 along with experimental data obtained by Shapiro and colleagues [75]. Although
these experiments were conducted in BHK-21 cells our model correctly predicts the syn-
thesis kinetics. In particular, mRNA synthesis peaks at 2.5 hpi (preceding the peak in
mRNA levels shown in Figure 4.5A) and its decrease coincides with a strong increase in
M1 protein production. However, the experiments show a complete shutdown of mRNA
synthesis, while transcription barely falls below 20% in our simulations. This might be
related to the depletion of host factors not accounted for in the model or the sensitivity of
the experimental procedure. In summary, the proposed model is in good agreement with
quantitative data on viral RNA levels during infection and qualitative features of RNA and
protein synthesis. Furthermore, simulations suggest a prominent role of nuclear export in
the shutdown of positive-strand RNA synthesis, which shapes late RNA dynamics.
Table 4.3 summarizes all parameter estimates we obtained from the data in Figure 4.5A

and B. Note that we re-estimated the rates of mRNA and cRNA synthesis, which are also
provided in Table 4.2 for the experiments in Figure 4.3. We found an increase in both
these rates after re-estimation that was especially pronounced for mRNA production (com-
pare kSyn

M in Table 4.2 and 4.3). This difference might be cell line-dependent (experiments
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Table 4.3.: Parameter estimates for viral RNA synthesis during late infection.

Parameter Value 95% CIa

kBind
M1 (molecule · h)−1 1.39× 10−6 (0.57− 2.63)× 10−6

kDeg
Rnp (h−1) 0.09 0b − 0.16
kSyn

C (h−1) 1.38 0.65-2.76
kSyn

M (h−1) 147c 54-225
kSyn

V (h−1) 13.86 6.39-20
a95% confidence intervals provided by 3 000 bootstrap replicates [249].
bEstimates reached the lower parameter bound of 9× 10−4 h−1.
cSynthesis rate of an mRNA of average length using a length specific rate of 2.5 · 105 nucleotides ·h−1.

for Table 4.2 are from 293T cells whereas parameters in Table 4.3 are for infections of
MDCK cells), or it may be caused by the data quality. While 293T experiments were
assayed by semi-quantitative primer extension analysis, the real-time RT-qPCR method
used for MDCK cell infections facilitates an exact quantification of RNA levels. The latter
data set should, hence, yield more accurate parameter estimates. For these data, we also
find a tenfold higher rate of vRNA synthesis compared to cRNA production (compare kSyn

V

and kSyn
C in Table 4.3).

RNA dynamics in the switching model The RNA measurements obtained by
Kawakami et al. provide an opportunity to revisit our implementation of the switch-
ing hypothesis and compare it against a second, independent data set, i.e., against ex-
periments that were not used to develop the stabilization hypothesis. When fitting the
model to RNA levels, we again observe significant deviations from the data especially for
cRNA (Figure 4.6). More specifically, the cRNA level in the simulation is much lower
than in experiments. However, the model can capture the dynamics of vRNA and mRNA
for most data points. Surprisingly, parameter estimation yields a very insensitive switch
for the model fit in Figure 4.6 such that the transition to genome replication did not
occur (data not shown and Table A.5 in the appendix). This results in an insufficient
cRNA synthesis which is balanced by a higher rate of vRNA production. Upon closer
inspection, we find that a sensitive switch cannot reproduce the simultaneous accumula-
tion of mRNA and cRNA between 2 and 4 hpi that was observed in experiments (data
not shown). This is due to our implementation of switching, which permits an increase
in replication only at the expense of transcription. Because of the poor agreement with
data, we use a model of the stabilization hypothesis in the rest of this manuscript.
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Figure 4.6.: Viral RNA dynamics in the switching model. Same as in Figure 4.5A and B
except that the switching hypothesis was simulated. (A,B) Model fit (lines) to the vRNA (4),
mRNA (◦), and cRNA (�) levels of segment 5 (encoding NP) during three independent infec-
tions measured by Kawakami et al. [175]. Note that, for the fit, the residual vRNP activity (kRes

C )
was fixed to the value determined from data in Figure 4.4 and the increase in cRNA synthesis
by NP was limited to kSyn

C < 103 h−1. The cRNA level in B never exceeds 30molecules/cell.

Virus release and the bottlenecks for virus production After having developed a
model of intracellular influenza A virus replication, we were interested in what viral
or cellular factor(s) limits the production of progeny virions, i.e., whether there is a
bottleneck for virus replication. In infection experiments with influenza A/WSN/33 each
MDCK cell releases up to 104 progeny virions based on HA titers (data not shown). We
tuned our model such that it reflects this cell-specific yield (Figure 4.7A). In simula-
tions, the first virus particles leave the cell after 3 to 4 hpi when progeny vRNPs enter
the cytoplasm. Thereafter, virus release increases due to the accumulation of vRNPs and
viral proteins (Figure 4.7B). The differences in protein concentration in Figure 4.7B arise
due to two reasons: (i) budding viruses require different amounts of each protein, and
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Figure 4.7.: Dynamics of virus release and viral protein accumulation. (A) Model
prediction for the level of cytoplasmic vRNPs (Vpcyt) and the cumulative number of released
progeny virions (V Rel) based on the model fit in Figure 4.5. (B) Level of unbound M1 (PM1),
NP (PNP), and viral polymerase complexes (PRdRp) for the simulation presented in Figure 4.5.
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(ii) mRNAs of small genome segments accumulate to higher levels in our model based
on data obtained by Hatada et al. [174]. Similar differences in protein abundance have
been observed experimentally by quantitative proteomics [274]. Interestingly, neither the
pool of cytoplasmic vRNPs (Figure 4.7A) nor of viral proteins (Figure 4.7B) becomes
depleted by virus release. Hence, cells might be able to release even more virus particles.
To elucidate which intracellular process would be the most promising target to achieve
higher cell-specific virus yields with respect to cell culture-based vaccine production, we
performed a local sensitivity analysis. To this end, each model parameter was perturbed
by 15% around its estimated value and virus production was monitored (Figure 4.8A)2. In
simulations, an increase in the rate of cRNA or vRNA synthesis enhances virus production
by up to 35%. This results from an increase in viral RNA and protein levels (Figure 4.8B,
number 1). In particular, the increase in the number of cytoplasmic vRNPs drives virus
production in our model as we assumed that virus release is proportional to vRNP abun-
dance (see Equation (3.1.27)). In this context, targeting RNA synthesis is especially
promising because viral RNAs engage in an autocatalytic reaction where vRNAs pro-
duces cRNAs, which in turn provide the template for new vRNAs. A small increase
in the RNA synthesis rate can, thus, cause a large increase in RNA levels. Another
target for process optimization is the negative regulation of vRNP activity during nu-
clear export. In our simulations, delaying this negative feedback by impairing M1 protein
binding, the synthesis of mRNAs, or viral protein prodution increases virus yields. Again,
this results primarily from an enhanced production of cRNA and vRNA (Figure 4.8B,
number 2). Note, however, that impairing viral mRNA and protein synthesis beyond
a certain threshold will eventually prevent virus release when proteins become a limit-
ing factor (data not shown). Finally, enhancing virus assembly/release can also increase
cell-specific virus yields (Figure 4.8B, number 3). In summary, the model suggests that,
based on the abundance of viral components alone, cells have the potential to produce
more virus paricles. In additon, viral RNA replication, the inactivation of vRNPs during
nuclear export, and virus assembly/release are promising targets for the optimization of
vaccine production in cell culture.

2Table A.6 in the appendix shows which parameters correspond to the mechanisms listed in Figure 4.8
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Figure 4.8.: Increase in cell-specific virus yield through intracellular perturbations.
(A) Predicted increase in the cumulative number of progeny virions 12 hpi given a perturba-
tion of the indicated mechanisms by 15%. Colors indicated whether the rate/mechanism was
enhanced or impaired. Numbers in circles correspond to the examples shown in B. (B) Time
courses of selected viral components in response to perturbations. Columns correspond to com-
ponents depicted in the scheme. Dashed and solid lines are time courses in the unperturbed
and perturbed model, respectively. All components were normalized to their maximum in the
unperturbed model.
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4.1.2. Stochastic fluctuations in viral RNA synthesis

In contrast to deterministic models, like the description of intracellular virus replication
presented in the previous section, stochastic simulation techniques take into account that
molecules come in whole numbers and that biochemical reactions exhibit some degree of
randomness (reviewed in [244]). Such stochastic effects can play a role especially when
molecule counts are low, e.g., when a single virus particle initiates infection by delivering
a single copy of its genome into a host cell. To elucidate whether noise can lead to
deviations from the deterministic kinetics of intracellular virus replication, we developed
a stochastic version of our model, whose analysis is provided in the following section.

Model structure The stochastic model accounts for the same reactions and mechanisms
that were included in its deterministic counterpart (see Figure 2.2 on page 7). However,
it considers the discreteness and stochasticity of these processes. More precisely, in stoch-
astic simulations reactions are discrete, random events whose average occurrence is equiv-
alent to the deterministic reaction rate; yet, each individual event is probabilistic and
leads to a discrete change in species concentrations (Figure 4.9). Hence, the model con-
siders the inherent randomness of molecular dynamics at the microscopic scale. In the
following, we restrict our analysis to stochastic simulations of the first 12 h of infection.
This was done for two reasons. Namely, because the parameter values of the deterministic
model (on which the stochastic reaction constants are based) were estimated from data
that only covered 12 h, and because the model does not account for cell death, which
would terminate intracellular virus replication in an experimental setting.

The effect of genome segmentation The results of a deterministic model can be con-
sidered as the behavior of an infected cell averaged over a large population, whereas a
stochastic simulation represents a single random walk through the possible system states,

Figure 4.9.: Example of a stochastic simulation run. The number of virus particles
attached to the cell surface was simulated using either a deterministic or a stochastic model.
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Figure 4.10.: Comparison of the deterministic and stochastic simulation. An infection
at an NIVC of 10 was simulated using either the deterministic model of intracellular virus
replication or its stochastic implementation. (A) Cumulative number of released virus particles
in the deterministic model (circles) and the mean of stochastic simulations (line). (B) Histogram
of the cumulative number of released virus particles in stochastic simulations at 12 hpi. The
dashed line indicates the deterministic result.

i.e., the response of a specific single cell to infection. We can, hence, compare the average
of multiple stochastic runs to the deterministic model. If we find that both are similar and
that the individual stochastic trajectories do not deviate significantly from one another,
we can conclude that microscale randomness does not influence viral replication [244].
Stochastic simulations of an infection at a high initial number of infectious viruses per
cell (NIVC)3, where the effect of noise should be small, do indeed match the determin-
istic result (Figure 4.10A and Figure A.3 in the appendix). However, the number of
released virus particles shows substantial variation (with an average infected cell yield-
ing 9013±555 virions/cell) indicating that stochastic effects do play a role (Figure 4.10B).
These variations are mainly caused by noise in virus entry [262]. For an in-depth analysis
of the results, the reader is referred to a bachelor thesis which was supervised as part of
this work [262].
Although Figure 4.10 provides some initial evidence for the influence of stochastic

effects the underlying model (Section A.2.1 in the appendix) oversimplifies the synthesis of
viral genome segments. In particular, it assumes that all eight genome segments maintain
similar vRNA (and cRNA) levels throughout infection. While this was found for the cell
population average in experiments [174, 175], and may hence be justified for deterministic
simulations, segment levels in individual cells may very well differ. We, therefore, dropped
the assumption of equimolar segment levels during viral replication in subsequent stochas-

3In the following, we use the NIVC instead of the MOI because the MOI typically refers to cell pop-
ulation experiments where it describes the overall ratio of infectious viruses per target cell. In such
experiments, the actual number of viruses that infect a cell is a statistical property with some cells
absorbing more viruses than others. By contrast, the NIVC should emphasize that in stochastic sim-
ulations each cell receives the same number of extracellular virions, which carry a full complement of
eight functional vRNPs. Hence, the NIVC also corresponds to the number of infecting genomes.
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tic simulations. Note that in the beginning of infection segment levels are still equimolar
since infecting virions contain one copy of each segment in our simulations. Intriguingly,
once the model accounts for an independent synthesis of genome segments, cells produce
on average significantly lower numbers of virus particles (Figure 4.11A). In addition, we
observe a much wider distribution of cell-specific virus yields and a bias toward lower
productivity with an average cell producing 3064 ± 2914 virions/cell (Figure 4.11B). In
the model, virus release primarily depends on the number of cytoplasmic vRNPs avail-
able for packaging. Since the vRNP level can vary between different genome segments
but virions require one copy of each segment, the level of the least abundant cytoplasmic
vRNP restricts virus production in our simulations (see Equation (3.1.32)). Hence, cell-
specific virus yields correlate strongly with the level of the least abundant vRNA in each

Figure 4.11.: Virus production in a stochastic model that accounts for an inde-
pendent genome segment synthesis. An infection at an NIVC of 10 was simulated using
a stochastic model in which genome segments replicate independently, i.e., the vRNAs (and
cRNAs) of different genome segments are not constrained to the same level. (A) Cumulative
number of released virus particles in the deterministic model (circles) and the mean of stochastic
simulations (line). (B) Histogram of the cumulative number of released virus particles in stoch-
astic simulations at 12 hpi. The dashed line indicates the deterministic result. (C) Correlation
between the cumulative number of released virus particles and the level of the least abundant
genome segment in stochastic simulations at 12 hpi. (D) vRNA level of an arbitrary genome
segment in the deterministic model (circles) and the median of stochastic simulations (lines)
considering the average over all genome segments and the level of the least abundant segment
in a cell.
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cell (Figure 4.11C). On average this level is much lower than the vRNA level in the de-
terministic simulation, which is why we observe an impaired virus release (Figure 4.11D).
Yet, the total vRNA level, averaged over all eight genome segments, is slightly higher in
the stochastic model due to the reduced depletion by virus release. Overall, the simula-
tions reveal significant deviations from the deterministic model and a strong influence of
noise due to the independent synthesis of genome segments. Furthermore, stochastic fluc-
tuations reduce cell-specific virus yields compared to a model that constrains the vRNAs
(and cRNAs) of different genome segments to the same level.

Stochastic fluctuations in genome segment levels Having identified the indepen-
dent synthesis of viral genome segments as a major source of noise, we next analyzed
how stochastic effects influence vRNA levels. In our simulations, the vRNA of seg-
ment 1 follows a log-normal distribution around the deterministic result (Figure 4.12A).
Interestingly, segment 1 levels differ by up to four orders of magnitude in individual
cells. We observe similar fluctuations for all eight genome segments except for seg-
ment 7 (Figure 4.12B). In our model, segment 7 is the only segment that exerts negative
control over RNA synthesis. It encodes for the M1 protein, which inactivates vRNPs
during nuclear export. This negative feedback loop reduces noise by shutting down the
synthesis of RNAs when segment 7 levels (and thus M1) reach a certain threshold.
According to Elowitz et al., the noise that causes cell-to-cell variability (which we

observe for the vRNA levels in infected cells) can be divided into two components [265]:
(i) extrinsic factors such as cell cycle stage, cell size, or protein content, which are global

Figure 4.12.: Fluctuations in genome segment levels. The stochastic model of virus
replication was used to simulate an infection at an NIVC of 10. (A) Distribution of vRNA levels
of segment 1 and 7 (encoding PB2 and the M proteins, respectively) at 12 hpi. The dashed
line indicates the deterministic result. (B) Fluctuations in the vRNA levels of all eight genome
segments at 12 hpi. On each box, horizontal edges are the lower and upper quartile, the central
line is the median and the whiskers cover all vRNA levels within 1.5 inner quartile range of the
lower and upper quartile, respectively. The horizontal dashed line indicates the deterministic
result.



4.1. The intracellular life cycle of influenza A virus 69

to a single cell but vary between different cells and (ii) intrinsic factors, i.e., the inherent
randomness of biochemistry, that can cause variations in identically regulated genes within
a cell even though global factors are the same. Although we do not explicitly accounted
for extrinsic factors, viral proteins such as NP and M1, or the timing of virus entry would
affect all genome segments in a cell equally and may, hence, appear to cause extrinsic
noise. By contrast, the independent synthesis of genome segments can cause differences
between the segments inside a cell and, thus, constitutes an intrinsic factor. For the
vRNA level of segment 1 and 2 (encoding PB2 and PB1, respectively) we find both,
differences within cells and differences between them (Figure 4.13A). If extrinsic factors
were the primary source of genome segment variations, vRNA levels would be strongly

Figure 4.13.: Noise in genome segment levels. The stochastic model of virus replication
was used to simulate an infection at an NIVC of 10. If not otherwise indicated, the amount
of viral components at 12 hpi is shown. (A) Total number of vRNAs of segment 1 and 2. The
black X represents the vRNA level in the deterministic model. Circles mark the two examples
shown in D. Arrows indicate the contribution of extrinsic noise and intrinsic noise. (B) Pearson’s
linear correlation coefficient between the vRNA levels of different segments. (C) Noise in the
vRNA levels of the indicated segments with respect to the mean vRNA level in a cell (see
Equation (3.1.36)). (D) Early vRNA dynamics of segment 1 and 2 for the two cells indicated
in A (I, upper panel; II, lower panel).
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correlated, whereas strong intrinsic noise would result in the absence of correlation. We
observe a weak correlation between the vRNAs of segment 1 and 2 as well as between
the other segments, again indicating the presence of extrinsic as well as intrinsic noise
sources (Figure 4.13B). Note that segment 7 shows an even weaker correlation to the
other vRNAs because of its overall low variability and the negative regulation of RNA
synthesis via M1. Elowitz et al. proposed a method to quantify the noise in two genes
and to discriminate its extrinsic and intrinsic components ([265]). Applied to our results,
this method confirms the presence of both types of noise (Figure 4.13C). Hence, factors
like viral protein content and virus entry timing can cause extrinsic noise in stochastic
simulations although classical extrinsic factors such as the cell cycle are not accounted for.
Also note that the noise in segment 7 levels is again reduced, whereas the other vRNAs
show only marginal differences.
Next, we analyzed at which moment during infection the levels of individual genome

segments start to differ. Based on experimental evidence [37], the vRNPs of incoming
virions in our model travel together through the cytoplasm until they reach the nucleus.
After nuclear import, they start to replicate independently and we begin to see differ-
ences in their abundance (Figure 4.13D). While small in the beginning, these differ-
ences grow rapidly over the course of the next hours. In fact, noise is almost exclusively
generated in the early phase of infection where viral transcription and replication take
place (Figure 4.14). Later in infection, when nuclear export impairs the synthesis of
positive-strand RNAs, noise levels start to decrease again.
Finally, we investigated whether viral proteins are also subject to stochastic fluctuations.

Indeed, similar to viral genome copies, HA and NP protein levels differ by up to four or-
ders of magnitude between individual cells (Figure 4.15A). By contrast, M1 shows a much
narrower distribution due to its regulatory role. Furthermore, we observe a strong corre-

Figure 4.14.: Amplification of noise during virus replication. The noise in vRNA
levels of different genome segments was calculated over the course of an infection at an
NIVC of 10 through dividing the standard deviation of log10 vRNA levels by their mean (see
Equation (3.1.35)).
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Figure 4.15.: Fluctuations in viral protein levels. The stochastic model of virus replication
was used to simulate an infection at an NIVC of 10. (A) Total number of NP and M1 proteins
against unpackaged HA at 12 hpi. Black Xs mark the protein levels in the deterministic model.
(B) Pearson’s linear correlation coefficient between viral proteins and vRNA levels at 12 hpi.

lation between viral proteins and their encoding genome segments suggesting that most of
the noise in protein levels results from fluctuations in vRNA abundance (Figure 4.15B).
Note that the inhibitory effect of M1 causes a negative correlation to all genome segments,
i.e., higher M1 levels impair RNA synthesis, which is superimposed onto the positive cor-
relation between vRNA and protein levels observed in general. Taken together, these
results suggest that infected cells differ in their content of viral genome segments due to
the inherent noise of biochemical reactions. This noise is amplified by the autocatalytic
mechanism of viral RNA replication, propagates to viral protein levels, and impairs virus
release.

Nonproductive infections at low initial virus numbers So far, we have only consid-
ered infections at a high NIVC where stochastic effects should be weak. Nevertheless, we
observed a strong influence of noise and significant differences between the deterministic
model and the stochastic simulations. For low concentrations of infecting virions these
differences are even more pronounced (Figure 4.16A). Note that one virus particle per cell
is the lowest feasible initial condition in a stochastic model since it accounts for whole num-
bers of viruses only. In our simulations, such low numbers of infecting virions result in a
35-fold reduction in the number of virus particles an average infected cell releases (compar-
ing stochastic results for an NIVC of 10 and 1, respectively). By contrast, the deterministic
results barely change. Interestingly, this reduction is not primarily due to an impaired
virus release from productively infected cells, which only accounts for a 2.6-fold decrease
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Figure 4.16.: Increasing differences in virus production at low NIVCs. (A) Cumulative
number of released virus particles at 12 hpi in the deterministic model and the mean of stochastic
simulations at different NIVCs. (B) Histogram of the cumulative number of released virus
particles at 12 hpi in stochastic simulations at an NIVC of 10 (upper panel) and 1 (lower panel).
The fraction of all productive cells is shown. (C) Fraction of productive cells at an NIVC of 1
and 10.

with some cells producing as much virus as observed at a high NIVC (Figure 4.16B).
Instead a significant proportion of cells becomes nonproductive (Figure 4.16C). In par-
ticular, at an NIVC of 10, most of the cells release progeny virions, whereas less than
10% of the cells are productively infected when only one virion is added initially. These
nonproductive infections only occur in the stochastic model. In deterministic simulations
the average infected cell produces virus progeny.
Further analysis points to virus entry as a major source of abortive infections. From

the experiment in Figure 4.2 on page 53, we estimated that 49% of all virus particles
fail to fuse with endosomes. Hence, adding only one virion per cell leaves half of the
cells with virues that do not reach the cytoplasm (Figure 4.17A). Note that a higher
number of parental virions can increase the chance of successful virus entry. Currently,
viral fusion is the only step of entry that can fail in our model. If other mechanisms are
also error prone, these would add to the overall probability of an abortion during virus
entry, which decreases the number of productive infections at low NIVCs according to
the corresponding binomial distribution function. For instance, if the chance of a virion
to enter successfully is only 25% and 5 virions per cell are added, the probability of an
abortion during entry is F (k = 0;n = 5, p = 0.25) = (1− 0.25)5 ≈ 24%.
Although abortive virus entry is a key reason for nonproductive infections in our model

it only accounts for roughly half of the observed failures to produce virus progeny. In most
of the rest of nonproductive cells one (or more) of the viral genome segments is absent at
12 hpi. In particular, there are cells in which incoming vRNPs are degraded before they
can replicate (Figure 4.17B). In the model, the probability of losing a particular genome
segment follows from the ratio of vRNP replication and degradation, which was estimated
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Figure 4.17.: Failed fusion and segment loss cause nonproductive infections.
(A) Fraction of cells in which virus entry failed (bars) for different NIVCs. The black dots
and lines correspond to the binomial cumulative distribution function F (k;n, p), where k = 0
is the number of particles entering successfully, n the number of trials, i.e., the indicated NIVC,
and p = 0.51 the percentage of entry success for one virion. (B) Early vRNA dynamics in
two cells (upper and lower panel, respectively) that were infected at an NIVC of 1 and did not
produce virus progeny in the first 12 hpi although virus entry was successful.

from data in Figure 4.5 on page 59. With one genome set entering the nucleus this prob-
ability is between 15 and 18% (with a mean of 16%) in our simulations (Figure 4.18A).
In addition, the conditional probabilities for genome segment loss are largely indepen-
dent from one another, e.g., the loss of segment 5 (encoding NP) does not significantly
increase the chance of losing another segment. This suggests an important role of pri-
mary transcription (the synthesis of mRNA from parental vRNPs) in our model since
the loss of segments essential for replication, like those encoding for the viral polymerase

Figure 4.18.: Probability of genome segment loss. (A) Probability of segment loss for an
infection at an NIVC of 1. Colors and numbers correspond to the probability that the indicated
segment is absent in a cell at 12 hpi although virus entry was successful. Diagonal elements
show the probability that segment i = j is missing, whereas off-diagonal elements correspond to
the conditional probability that segment j is absent given the loss of segment i. (B) Fraction of
cells which are nonproductive because one or more viral genome segments are absent at 12 hpi
although virus entry was successful. Black dots and lines correspond to the binomial cumulative
distribution function F (k = 0;n, 25%) .
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and NP protein, would otherwise impair genome replication. Reduced genome synthesis
would then tip the balance toward segment degradation increasing the chance of losing
another segment. Intriguingly, genome segment loss is a major challenge for the virus at
low NIVCs although any given segment replicates successfully with a probability above
80%. This is due to the fact that all eight segments are required for the cell to produce
infectious virus progeny. Hence, even among cells that successfully underwent fusion a
large proportion is rendered nonproductive (Figure 4.18B). More presicely, given an av-
erage chance of segment replication of 1 − 0.16 = 84%, production of all eight segments
occurs in only 0.848 ≈ 25% of the cases. Again, increasing the number of infecting virions
per cell can mitigate this problem.
In summary, at low NIVCs the production of infectious virus progeny by individ-

ual cells is unreliable due to the abortion of virus entry and the loss of genome seg-
ments (Figure 4.19A). The latter also results in distinct cell populations with respect to
viral protein content (Figure 4.19B). Cells that lose a specific genome segment show a
reduction in the expression level of the corresponding protein(s) by three orders of magni-
tude whereby the residual protein level mainly results from primary transcription. Hence,
stochastic effects can cause significant variation in single cell trajectories and substantial
deviations from the observed cell population average especially at low NIVCs.

Noise reduction by segment-specific regulation In the previous paragraphs, we ob-
served that viral RNA replication amplifies stochastic fluctuations but also that negative
feedback regulation can suppress noise. In our model, M1 proteins provide such a negative

Figure 4.19.: Success of infection. (A) Probability that an infected cell does not release
infectious virus progeny until 12 hpi for different NIVCs. Cells were divided into infections where
virus fusion failed and where one or more viral genome segments are absent. (B) Number of
unpackaged NA against HA proteins at 12 hpi for an infection at an NIVC of 1.
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Figure 4.20.: Different models for the regulation of viral RNA synthesis. (A) Nuclear
export in the original model where M1 proteins unspecifically inhibit the activity of all vRNPs.
(B) Model of segment-specific regulation. Each cRNP produces svRNAs, which specifically
inactivate vRNPs of the segment they originate from.

feedback (Figure 4.20A). However, this mechanism primarily reduces noise in segment 7
levels as this segment encodes for the regulator. We were wondering whether a segment-
specific regulation would be able to decrease stochastic fluctuations in all eight genome seg-
ments. In a recent study, Perez et al. described a mechanism by which svRNAs (22 to 27 nt
long RNAs synthesized from cRNA) may regulate viral RNA synthesis in such a man-
ner [74]. These svRNAs were shown to interact with the viral RdRp in order to promote
genome replication of the segment they originate from. However, such a positive reg-
ulation would not be able to maintain the balance between segments as suggested by
Perez and colleagues. On the contrary, an increase in the vRNA synthesis rate of a
segment that already shows a high cRNA level (and thus a high svRNA concentration)
would increase noise. We, thus, developed a model in which svRNAs instead engage in a
segment-specific negative regulation, i.e., they inactivate the synthesis of positive-strand
RNAs of the segment they originate from (Figure 4.20B and Section A.2.3). Intriguingly,
this mechanism can reduce the fluctuations in vRNA levels of segment 1 below one order
of magnitude (Figure 4.21A). This noise reducing effect extends to all eight genome seg-
ments and leads to an improved agreement with the deterministic solution (Figure 4.21B).
Hence, segment-specific negative regulation can drastically reduce the influence of stoch-
astic effects. In addition, the differences between genome segments within infected cells
span a much narrow range making the cell population more homogeneous with respect to
viral genome content (Figure 4.22A). This results in a substantial increase in cell-specific
virus yields (Figure 4.22B). Yet, due to the differences in segment levels that remain,
mean virus yields in the stochastic model are still lower than in the deterministic simu-
lation. Moreover, negative regulation does not decrease the amount of cells that fail to
produce virus progeny due to an abortion of virus entry or genome segment loss when
there is only one infecting virion (Figure 4.22C). However, it does prevent the depletion
of viral polymerases and NP proteins by excessive viral RNA replication and the shut-
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Figure 4.21.: Noise reduction by segment-specific regulation. Stochastic models with
and without segment-specific regulation of viral RNA synthesis were used to simulate an infection
at an NIVC of 10. (A) Distribution of vRNAs of segment 1 (encoding PB2) at 12 hpi. The dashed
line indicates the deterministic result. (B) Fluctuations in the vRNA level of all eight genome
segments at 12 hpi in the absence (upper panel) and presence (lower panel) of segment-specific
regulation. Boxes were drawn as described in Figure 4.12B.

down of RNA synthesis before a segment was sufficiently amplified, which were other
reasons for nonproductive infections in the original model (compare Figure 4.19A and
Figure 4.22C). In summary, segment-specific negative regulation represents a mechanism
that would allow the virus to counteract noise amplification during viral RNA synthesis.
Furthermore, it would lead to an increase in virus production at high concentrations of
infecting virions but cannot prevent nonproductive infections at low NIVCs.
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Figure 4.22.: Reliability of infection in the presence of segment-specific regulation.
Stochastic simulations in the presence and absence of segment-specific regulation were performed
at different NIVCs. (A) Total number of vRNAs of segment 1 and 2 (encoding PB2 and PB1,
respectively) at 12 hpi for an infection at an NIVC of 10. The black X represents the vRNA level
in the deterministic model. (B) Cumulative number of released virus particles at 12 hpi for an
infection at an NIVC of 10. The dashed line indicates the deterministic result. (C) Probability
that an infected cell does not release virus progeny until 12 hpi in the presence of segment-specific
regulation. Cells were divided into infections where virus fusion failed and where one or more
viral genome segments are missing.
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4.1.3. Discussion of intracellular kinetics

In the previous two sections, we first derived a deterministic model for the intracellular
life cycle of influenza A viruses and then extended this description by considering the
inherent randomness of biochemistry. In the following, the merits and weaknesses of both
approaches are discussed.

4.1.3.1. Deterministic model of virus replication

Our deterministic model of influenza A virus replication integrates key experimental re-
sults published by various research groups over the last two decades. In doing so it allows
us to capture both qualitative and quantitative features of virus entry, the transition from
mRNA transcription to genome replication, and the dynamics of viral RNA synthesis in
a single coherent framework. Using these data, the model facilitates a systematic analysis
of the regulatory mechanisms involved in virus replication and of potential targets for the
optimization of vaccine production.

Improvement compared to other models To our knowledge, there are only two models
for the complete intracellular life cycle of influenza A viruses in literature. One has been
proposed by Madrahimov et al., who do however only account for the qualitative aspects of
infection since they use a Boolean approach in which the modeled entities can only assume
an active or inactive state [17]. Hence, the model can neither reproduce the dynamics
of viral replication nor the quantity of the viral components involved. However, it does
provide insights into viral interactions with selected host cell pathways, like PKC and
ERK signaling, which our description lacks so far. The second model was developed by our
group [16]. It comprises ODEs to describe the time courses of major viral components, but
does only use literature parameters and general information on influenza virus infection
for model calibration. Compared to this model, we tailored our framework to a variety
of published data sets and neglected aspects like the cytoplasmic-nuclear trafficking of
viral mRNAs and proteins, and the transport of envelope proteins between the ER and
the budding site, which reduces model complexity. Furthermore, we included a detailed
description of RNP formation, cRNA stabilization, and the regulation of nuclear export.
Taken together these features result in a multitude of differences between the outputs
of both models. Most prominently, the model of Sidorenko et al. predicts a monotonic
increase in all three viral RNA species until 12 hpi (at which point the simulation was
stopped) [275]. Experimental results do, however, typically show an almost stable cRNA
level and a decreasing mRNA concentration during late infection clearly contradicting
these predictions (see for instance references [175, 273]). Since our model reproduces
these measurements (Figure 4.5), we consider it to more closely resemble influenza A virus
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infection. For the same reason, the new model is better suited to validate or invalidate
hypotheses on the regulation of viral RNA synthesis.

Virus entry As a first step toward an intracellular model of influenza A virus replication
we simulated virus entry. In the model, binding to the cell surface occurs fast and the
virus can rapidly enter the host cell via endocytosis (Figure 4.2). This agrees well with
experimental studies in which virion-containing endosomes have been found as early as
5min after adsorption [36, 276], while fusion and uncoating typically occur between 5
and 90min with a half time of approximately 25min [47, 253, 272]. In our simulations,
vRNPs accumulate in the nucleus until 90min post infection, which is in good agreement
with the staining pattern of NP in experiments [47]. Intriguingly, virus uptake seem to
stop thereafter. Modeling suggests that this is caused by the depletion of extracellular
virions. However, in cell culture infections complete depletion of free viruses is typically
not observed [36, 177]. Thus, we speculate that only the virus particles in the vicinity
of an infected cell become depleted, while diffusion limits the transport of virions from
the bulk of medium. In this case, the number of extracellular viruses in our model would
reflect the infectious particles in close proximity to a cell. Alternatively, or additionally,
the internalization or removal of sialic acid-containing receptors could restrict virus entry
during late infection [257]. This scenario is not captured by the current model since we
adopted a binding mechanism that implies fast receptor recycling. But it could be readily
incorporated in future studies. In summary, virus entry requires on average 25min, after
which the first vRNPs enter the nucleus [47]. This delay is in agreement with the onset
of mRNA synthesis in our model, indicating that vRNPs start to transcribe viral mRNAs
immediately after reaching the nucleus.

Stabilization hypothesis In order to account for the transition from mRNA transcrip-
tion to genome replication, our model considers the stabilization of nascent cRNA by
viral polymerases and NP proteins. This allows us to quantitatively analyze the exper-
iments that have led to this hypothesis. The model can capture these measurements
successfully but requires several key features to do so. In particular, it predicts a high
degradation rate of naked cRNA in the absence of viral proteins, which compensates
for the continuous synthesis of cRNA by vRNPs, a core assumption of the stabilization
hypothesis (Figure 4.3B). Interestingly, this degradation rate is significantly higher in
cell culture infections than the rate inferred from cell-free experiments suggesting that
cRNA is stable under in vitro conditions (in the absence of nucleases), whereas efficient
degradation takes place in infected cells. It would be interesting to determine whether
cellular nucleases can cause such high degradation rates.
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In addition to the rapid degradation of naked cRNA, the model also requires the exis-
tence of an encapsidation intermediate with enhanced stability, the RdRp-cRNA com-
plex. This mechanism facilitates the accumulation of cRNA to intermediate levels in the
presence of replication-incompetent viral polymerases (Figure 4.3D). Moreover, such an
obligate intermediate state would explain why cRNA levels do not increase in the ex-
clusive presence of free NP. Confirming the two-step process of cRNP formation would,
thus, provide further evidence for the stabilization hypothesis. Note, however, that NP
has been found to bind RNA with high affinity in an unspecific manner in the absence of
viral polymerases (reviewed in [59]). To be consistent with the stabilization model, the
resulting NP-cRNA complexes should still be susceptible to nuclease digestion. Studying
whether this is the case and, if so, why polymerases are required for stabilization may
provide further insights into the transition to genome replication.
With respect to the kinetics of encapsidation, modeling suggests a high affinity of

polymerases to cRNA based on the observed saturation of polymerase binding in experi-
ments (Figure 4.3D). By contrast, NP binding is the rate-limiting step of encapsidation
in our model such that an increase in NP expression can result in higher cRNA levels.
Whether this is a general feature or only holds true for the experimental conditions used
for model calibration remains to be determined. But evidence for the latter comes from a
study by Mullin et al., who showed that pre-expression of increasing amounts of NP does
not alter RNA levels in infected cells [65].

Switching hypothesis In addition to cRNA stabilization, we also derived a simple math-
ematical model for the switching hypothesis in which NP directly promotes replication
at the expense of transcription. Furthermore, the vRNPs in this model were assumed to
posses a residual replication activity in the absence of NP proteins. It is this feature that
allows us to capture the experimentally observed synthesis of cRNA by virion-derived
vRNPs in a cell-free assay (Figure 4.4A), which is a key argument against switching [66].
Modeling, however, shows that the cRNA synthesis rate in this in vitro system is approx-
imately 25-fold lower than the rate found in cell culture infections indicating the absence
of important cofactors for replication, suboptimal assay conditions, or the presence of only
the proposed residual vRNP activity. Surprisingly, the comparison of our switching model
to cRNA levels in response to differential NP expression reveals a qualitative agreement,
despite major quantitative dissimilarities (Figure 4.4D). Hence, experiments which alter
NP levels may not provide sufficient information to confirm or dismiss switching (or stabi-
lization). By contrast, the model was unable to reproduce cRNA abundances in response
to changing polymerase expression. Once again, unraveling the role of viral polymerases
in the transition to genome replication may, therefore, be key to resolve this mechanism.
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Shutdown of RNA(+) synthesis The inhibition of viral mRNA synthesis during late
infection constitutes the second important regulatory feature of influenza A virus repli-
cation. This step was proposed to be part of the switch to genome replication (reviewed
in [59]), such that NP proteins change the activity of vRNPs from transcription toward
replication. By contrast, our simulations suggest that there is no immediate shutdown
of transcription but rather a sustained period of time in which both mRNA and cRNA
are synthesized simultaneously (Figure 4.5A and B). This facilitates the accumulation of
transcriptionally active progeny vRNPs, which support the rapid increase in mRNA levels
between 1 and 3.5 hpi. In the model, parental vRNPs alone could not sustain such an
increase and yield the high mRNA levels observed experimentally. In addition, our simu-
lation results also predict an essential role of progeny vRNPs in cRNA synthesis arguing
against the hypothesis that most cRNA production originates from parental vRNPs [57].
If the decrease in transcription is not the result of the switch to replication, what does

cause the reduction in mRNA levels after 4 hpi? Our simulations suggest that mRNA
synthesis shuts down because its template, the vRNA, leaves the nucleus (Figure 4.5C
and D). More precisely, M1 and NEP proteins start to accumulate around 3 hpi at which
point they direct vRNPs toward the cytoplasm. This is in good agreement with NP
staining in experiments, which is localized almost exclusively to the nucleus during the
first 2.5 hpi before becoming more and more cytoplasmic [45]. Once vRNPs have left the
nucleus, they no longer engage in transcription and mRNA levels begin to decrease due
to mRNA degradation. In our model, the lack of templates also impairs cRNA synthesis,
which agrees well with the observed reduction in their accumulation during late infection.
Thus, it seems that nuclear export itself or the processes regulating it impair positive-
strand RNA synthesis.
In our model, M1 proteins are the sole regulator of vRNP activity during export; they

impair RNA(+) synthesis. This is based on three lines of evidence. First, several indepen-
dent studies have shown that M1 is a potent inhibitor of viral transcription [93–95, 97].
Second, in RNP-reconstitution assays (where cells are transfected with the polymerase
subunits, NP, and a vRNA) M1 expression causes a general reduction in all three viral
RNA species [70]; and third, infection of cells with a virus that carries a mutant M1
protein (impaired in its binding to vRNPs) results in an increase in intracellular vRNA
levels by 250% [77], indicating a lack of negative regulation. Moreover, it has been specu-
lated that M1 binding to NEP might abrogate NEP’s polymerase enhancing function [88].
Considering M1 as the main regulator allows our model to not only reproduce the time
courses of the viral RNAs but also to predict the mRNA and M1 synthesis rate observed
in experiments not used for model calibration (Figure 4.5D). However, we can not exclude
that other model variants would work equally well. In particular, an inactivation by NEP
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or the export process itself may be able to produce similar results. That these processes
can at least contribute to the shutdown of RNA synthesis is suggested by two observations:
(i) Robb et al. found that in an RNP-reconstitution assay mRNAs continue to increase
up to high levels and that these high levels are not reached in the presence of NEP [70];
and (ii) the treatment of infected cells with inhibitors of nuclear export increases cRNA
levels [277, 278] and reduces the inhibition of viral polymerase activity [88]. Also, a recent
study indicates that in order to exert negative control over RNA synthesis, M1 requires
the presence of NEP [88], a mechanism not yet implemented in the model. We, thus,
propose that the accumulation of M1 and NEP during late infection signals a sufficient
supply with viral proteins for particle assembly and diverts vRNPs from transcription
and replication toward budding. The M1 level would be a particularly well-suited signal
because M1 proteins are the most abundant viral component in a virus particle and may,
hence, be the first protein that limits particle formation. From a systems perspective,
M1 may hence act as a negative feedback regulator during late infection that, perhaps
together with NEP, prevents an excessive RNA production by vRNPs in favor of virus
assembly.

Viral RNA dynamics Taken together our results suggest that after the transition to
genome replication, influenza A viruses synthesize all three viral RNA species until nuclear
export reduces the number of vRNAs that are available as templates for RNA(+) syn-
thesis (Figure 4.5A and B). Afterward, viral mRNA levels decrease due to degradation,
whereas cRNA levels stay roughly constant as cRNPs are more resistant to digestion.
Since cRNPs remain available as templates, the vRNA level continues to increase through-
out infection. These dynamics have been observed for several different influenza A strains
in various cell lines [75, 174, 255, 273] supporting the notion that they are an emergent
property of the system common to most (if not all) influenza A viruses.
Fitting the model to quantitative data on vRNA and cRNA levels also reveals that

the vRNA synthesis rate is ten times higher than that of cRNA. Previous experimental
studies have suggested that vRNA production occurs in trans by soluble polymerases [50],
whereas cRNAs are synthesized in cis by the resident polymerase in a vRNP (indicated
by the ability of virion-derived vRNPs to produce cRNA [66, 68]). It is, thus, tempting to
speculate that on average ten soluble polymerases simultaneously produce vRNA from one
cRNP. Alternatively, structural differences in the promoter region of vRNPs and cRNPs
may affect their efficiency to initiate synthesis [57].

Host cell factors In order to keep the model simple, we solely focused on the action of
viral components and assumed that host factors exert a constant or an insignificant influ-
ence (in which case they can be omitted from the model). In fact, we demonstrated that
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by considering virus entry, cRNA stabilization, and nuclear export alone, simulations are
able to reproduce the principle dynamics of intracellular replication. Nevertheless, inter-
actions with host cell factors play a crucial role in influenza virus infection (reviewed
in [279]). For instance, the activity of the cellular RNA polymerase II (Pol II) is essen-
tial for viral mRNA synthesis and Pol II degradation was suggested to contribute to the
shutdown of viral transcription [280]. In our model, the export of vRNPs accounts for
most of the decrease in mRNA synthesis (Figure 4.5D). Yet, at late time points simula-
tions overestimate viral transcription. A lack of Pol II in experiments may explain this
overestimation, in which case Pol II degradation would contribute approximately 20% to
the overall shutdown of viral mRNA synthesis. Furthermore, the association of Pol II
with viral polymerases was found to peak at 3 hpi and to decline thereafter [280], similar
to the amount of transcriptionally active nuclear vRNPs in our model. Hence, M1 and
NEP binding may disrupt the interaction of vRNPs and Pol II starting around 3 hpi,
whereas Pol II degradation later on further impairs viral transcription. Incorporating this
and other host factors explicitely in our model would facilitate a quantitative analysis of
virus–host cell interactions. But it would also increase the model’s complexity thereby
requiring additional data to identify the new parameters.

Bottlenecks of virus production In line with experimental observations, our model
shows a continuous increase in viral genome copies throughout infection. In addition, it
predicts an accumulation of all viral proteins until at least 12 hpi (Figure 4.7). In support
of this, protein synthesis in infected cells proceeds unhindered even at late times post
infection [256], and M1 protein levels continue to increase up to 24 hpi despite significant
virus release [77], which requires large amounts of M1. Similarly, strong M1 and NP
fluorescence can be detected by flow cytometry until at least 18 hpi [176]. Hence, it
seems that none of the essential viral components is depleted by virus assembly and
release. But what constrains the amount of virus particles a cell can produce? Prime
candidates for such bottlenecks are host factors and transport processes. vRNPs, for
instance, were shown to accumulate in the perinuclear region around the microtubule-
organizing centers at intermediate times post infection and at the plasma membrane at
late time points [103, 104], indicating that the transport to the budding zone or budding
itself may constitute a limiting step. Indeed, in our model an increase in the rate of
assembly and release can result in higher virus titers (Figure 4.8). Optimizing these
processes by cell-line engineering may, hence, help to obtain higher virus yields in vaccine
production.
Besides virus assembly and release, perturbations in viral RNA replication can strongly

affect virus production in our simulations. Since viral genome copies engage in an auto-
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catalytic process to produce all three viral RNA species and the viral proteins, small
changes to the replication rate have large consequences. By contrast, processes upstream
of RNA replication, like virus entry, have only a limited impact on yields. Therefore,
vaccine production may benefit from increasing the rate of viral RNA synthesis, delaying
the onset of nuclear export and the shutdown of RNA(+) synthesis, and enhancing the
transport of viral components and their assembly into virus particles. This could be
achieved by modifying production cell lines in order to provide more of the required
host factors or by adding specific beneficial genome segments to high growth reassortant
viruses, e.g. a faster polymerase and an M1 (and NEP) protein that causes a delay in
nuclear export.

Summary We have developed a quantitative mathematical model for the intracellular
replication of influenza A viruses. It explicitly accounts for the stabilization of viral
RNAs via their encapsidation by polymerases and NP proteins, and for the role of M1
and NEP during nuclear export. Together these mechanism can capture a wide variety of
experimental data sets in a consistent way. However, the fact that the model reproduces
these measurements does not necessarily prove its correctness. Because of this we have
outlined several model features that are required to obtain the observed behavior. These
features can be probed experimentally to validate or invalidate the underlying hypotheses
leading to a deeper understanding of influenza A virus replication. The model can guide
such experiments to increase their information content. It can also provide the means to
exchange knowledge on influenza A virus replication and to check new theories against
existing data.

4.1.3.2. Stochastic model of virus replication

Based on our deterministic description of influenza A virus replication, we developed a
stochastic model that accounts for the discrete nature of molecular populations and the
randomness of biochemical reactions. This model reveals a significant influence of stoch-
astic effects on viral replication at the single-cell level. In particular, our simulations show
that genome segmentation poses a serious challenge to influenza A viruses as molecular
noise can act independently on each segment. Together with the autocatalytic mechanism
of viral replication, which amplifies noise, large fluctuations in viral RNA and protein
levels are the consequence. These fluctuations can impair progeny virus production.

Differences to the deterministic model Stochastic models can show significant differ-
ences to their deterministic counterparts thereby revealing how the system responds to
the inherently random nature of biology [281]. To explore whether noise has any effect
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on influenza A virus replication, we compared our deterministic description of the intra-
cellular viral life cycle with a stochastic implementation. Intriguingly, mean stochastic
results differ significantly from the deterministic kinetics, even at a high number of in-
fecting viruses where noise should be weak (Figure 4.11). Most prominently, there is a
substantial decrease in virus production and large variations in virus yields between indi-
vidual cells. Similar observations have been made experimentally for VSV infection where
virus yields from single cells span over 150-fold [282, 283] and for cells infected by polio-
virus whose production capacity varies at least between 269 and 4,225 PFU/cell [284].
In addition, the yield distributions in these studies are skewed to the left displaying
many low-productive cells. This agrees well with our predictions for influenza A virus.
Since individual stochastic trajectories show significant variations in our model and even
mean stochastic results differ from the deterministic solution, we conclude that microscale
randomness does play a role in intracellular influenza A virus replication. This supports
earlier modeling work on VSV infection showing that low-abundant species can affect
viral replication [231] and the general notion that viral infections are particularly prone
to noise [282, 284, 285]. Hence, stochastic effects in virus replication may drive cell-to-cell
variability (e.g. in virus production) during influenza A virus infection.

Noise in viral RNA synthesis By comparing two variants of our model, we found that
influenza A virus replication is particularly susceptible to stochastic effects because the
eight genome segments can show variations in vRNA (and cRNA) levels that are indepen-
dent from one another. Hence, the copy number ratio of different genes is not intrinsically
fixed, like during the replication of single-stranded viruses, but rather varies substantially
causing large cell-to-cell differences in our simulations. Specifically, genome segment lev-
els differ by up to four orders of magnitude between individual cells (Figure 4.12). Such
large variations have been observed experimentally for influenza A viruses (Kupke, un-
published data) suggesting that their RNA synthesis is indeed vulnerable to noise. The
stochastic model also predicts that vRNA levels follow a log-normal distribution around
the deterministic result. This type of distribution is common to biology and known to
result from noise propagation in cascades of catalytic reactions [286]. Since viral genome
synthesis forms such a cascade, we expect this distribution to be a general feature of the
genome copy numbers in influenza A virus infection.
Surprisingly, segment 7 levels show lower fluctuations than the other vRNAs in our

model (Figure 4.12B). This is caused by the regulatory role of M1, which is encoded by
this segment. As discussed in the context of the deterministic model, we assumed that
M1 proteins control viral RNA synthesis including the production of their own template.
Such negative feedback loops are known to suppress noise [287, 288]. However, since
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we cannot exclude that other viral or cellular factors contribute to the shutdown of RNA
production this result should be taken with caution until the exact mechanism is clarified.
Nevertheless, it suggests that negative–feedback regulation can suppress fluctuations in
viral RNA synthesis to a certain extend.
A closer investigation of the origin of noise in our model reveals that most fluctuations

arise early in infection when viral RNAs are synthesized (Figure 4.14). This agrees well
with the theory that autocatalytic reactions, which underlie intracellular virus growth,
can account for large amounts of noise [285, 289]. Thus, we propose that the randomness
of reaction events causes small fluctuations in vRNA numbers during early infection, i.e.,
chance determines whether and when a particular RNA is synthesized or degraded, and
that these small fluctuations are amplified by the exponential growth of viral RNAs.
Because each vRNP can replicate independently, this leads to large differences between
different genome segments and to substantial variations in viral protein levels.

Stochastic effects in virus entry Stochastic simulations that were started with low
amounts of infecting viruses reveal additional differences to the deterministic description.
In particular, the model predicts that more than 90% of the cells fail to produce infectious
virus progeny when infection is initiated by a single virion (Figure 4.16C). One reason
for these nonproductive infections is an abortion of virus entry by fusion-incompetent
viruses, which accounts for roughly half of the observed cases. In the deterministic model,
failure to produce virus progeny upon infection is not observed since state variables are
continuous: instead of some cells undergoing successful fusion and others aborting virus
entry, the deterministic model simulates an average infected cell in which a fraction of the
virus particles enters the cytoplasm causing productive virus replication. By contrast,
stochastic simulations segregate the intracellular species (e.g. the viral genome copies)
into individual cells and they can “jump” to the unstable, virus free equilibrium, which
the deterministic model can not reach once left [281]. The latter is caused by two features
of stochastic simulations: they account for the discrete nature of molecular populations
allowing the state variables to actually reach zero, and for the randomness of reaction
events such that the degradation of a virus particle can occur before its fusion.

Burden of genome segmentation The second major reason for nonproductive infec-
tions in our model is the loss of one or more viral genome segments during replication.
Again, this is only observed in stochastic simulations because vRNA degradation can
occur before replication and the molecular populations can become zero. Our model
predicts that, once in the nucleus, each vRNP has a chance of 84% to replicate success-
fully (Figure 4.18A). Considering a cell in which fusion was successful and only a single
viral genome set reaches the nucleus, the probability to replicate all eight vRNPs, which
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is required to release propagation-competent viruses, is only 0.848 ≈ 25%. This is in good
agreement with the small number of productive cells observed in low MOI infections [290]
revealing the disadvantages of genome segmentation: it not only poses a serious challenge
to packaging (reviewed in [108]), but also requires that RNA synthesis is successful in
eight independent instances. Note that the latter may also restrict the total number of
genome segments an influenza virus (or other viruses with segmented genomes) can posses
as each additional segment would decrease the chance of successful virus production at
low MOI further.
These results are particularly interesting in the context of a recent study by

Brooke et al., who measured the expression of four viral proteins during low MOI in-
fection with influenza A virus and found that most infected cells fail to express at least
one of these proteins [290]. More precisely, the average expression frequency of a partic-
ular protein in an infected cell was 78.1% and the chance to express the products of all
eight genome segments 13.8%. This is comparable to our results predicting a probability
of 84% and 25% for the successful amplification of a specific genome segment and the com-
plete genome set, respectively4. We, therefore, propose that stochastic effects during early
infection at low MOI can cause the loss of genome segments contributing to the observed
failure to express viral proteins. The remaining cases of missing protein expression, i.e.,
the differences between our estimation of 84% and the experimental result of 78.1%, may
be caused by internal deletions in genome segments (e.g. DI RNAs), non-sense and lethal
mutations, or parental virions that lack a vRNA (as suggested by Brooke and cowork-
ers [290]). Our estimation would, hence, represent an upper limit for successful protein
expression and virion release at low MOI because we assumed that all infecting viruses
contain a full set of functional vRNPs. This also implies that even if all parental viruses
were propagation-competent many infections would not produce infectious virus progeny.
Hence, the term “semi-infectious virions” [291] may be misleading in that it could also be
the replication process itself that fails and not only the virus.
Note that although a genome segment can get degraded in our simulations, primary

transcription (i.e. the synthesis of mRNAs from parental vRNPs) results in the presence of
its encoded protein(s), albeit at much reduced levels (Figure 4.19B). More precisely, early
segment degradation causes a drop in the protein level by approximately three orders of
magnitude. In order to be consistent with the data of Brooke et al. [290], these residual
protein levels must be below the detection limit of flow cytometry such that cells in which
only primary transcription occurs appear to lack the protein entirely. Hence, investigating
whether primary transcription results in detectable protein levels can help to validate or

4Note that both, the experimental and simulation results are given in percent of infected cells, i.e., of
cells where fusion was successful, which make up only 50% of all cells.
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invalidate our hypothesis that segment degradation leads to a failure in detectable protein
expression.

Success of low MOI infections Taken together, our stochastic results suggest that low
MOI infections can lead to a significant proportion of cells that do not release infectious
virus progeny (Figure 4.19A). Consequently, stochastic effects would be particularly im-
portant in the early phase of infection where the virus establishes itself in a host or cell
population. During later stages, progeny virions that were released by the few produc-
tively infected cells would increase the MOI and (super-)infect cells that may have been
left with a fusion-incompetent virus or suffered from genome segment loss in an earlier
infection wave. Thereby, multiple virus particles would complement one another to cause
virus production in subsequent waves. Previously, it has been suggested that comple-
mentation dependency might constitute an evolutionary advantage for the virus during
late infection by imposing a step that mandates the mixing of segments from different
strains [290, 291]. Hence, it may be selected for. Our results put forward an alternative
hypothesis in which the requirement for complementation is simply a consequence of ran-
dom vRNA degradation and of the segmented genome of influenza A viruses. Nevertheless,
the virus may exploit it to enhance genetic shift.
Infections at a low MOI are often part of virus quantification assays where the sample

is diluted until the readout cannot be observed anymore. According to our model, these
techniques would particularly suffer from stochastic effects. More precisely, assuming
that all virus particles are replication-competent and can undergo fusion only 25% of
them would be detected as infectious particles in a plaque assay at maximum dilution
because of random genome segment loss. If the expression of a viral protein is the read-
out (e.g. in some forms of the TCID50 assay [170]), at most 84% of the infections would
be observed, assuming that the loss of the genome segment which encodes for the marker
protein prevents detection. If other segments, like those encoding the viral polymerase
subunits or the NP protein, would also be required to cause detectable protein expression,
this percentage would decrease even further. Hence, noise in virus replication may bias
infectivity assays and explain part of the difference between TCID50 and plaque titers, i.e,
the difference between the probability to loose a particular segment (encoding the marker
protein) and any one of the eigth segments, which prevents infectious virus production
and plaque formation.

Segment-specific regulation Given the large fluctuations in vRNA levels, we won-
dered whether there is a way for the virus to suppress noise. Based on a previously
proposed mechanism [74], we, thus, developed a model in which each genome segment
controls its own level by means of negative–feedback regulation. Note that the experi-
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mental results instead suggested a positive feedforward where cRNAs produce small viral
RNAs (svRNAs), which then promote vRNA replication in a segment-specific manner [74].
However, such a mechanism would most likely increase noise since svRNAs would en-
hance their own production (by increasing the level of vRNAs which then synthesize
more cRNAs). This resembles an autocatalytic reaction cascade known to facilitate the
accumulation of noise [289]. By contrast, segment-specific negative regulation can, indeed,
efficiently suppress noise in our simulations, resulting in more homogeneous vRNA levels
and higher virus yields (Figure 4.22). Further experiments are required to determine
whether influenza A viruses have evolved such a mechanism to control noise.

Summary We have developed a stochastic model of intracellular influenza A virus repli-
cation and could show that it significantly differs from the deterministic kinetics. In
particular, simulations suggest that the abortion of virus entry, the loss of genome seg-
ments, and the autocatalytic mechanism of RNA synthesis cause noise in virus replication
at the single-cell level. These processes may, hence, drive cell-to-cell variability during
infection. From a modeling perspective, the results argue for using stochastic models to
study intracellular viral growth. Yet, their computational inefficiency for systems with
large numbers of reactants (like the vRNAs and proteins in influenza A virus-infected
cells) still prevents a broad application. Hybrid simulation algorithms (reviewed in [292])
may be able to address this issue and facilitate an estimation of infection parameters from
stochastic models in future studies.
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4.2. A multiscale model of influenza A virus infection

In the previous sections, we considered the intracellular life cycle of influenza A viruses
and, thus, focused on single-cycle infections. Yet, in vivo the virus spreads from one
target cell to the next such that multiple infection rounds can occur. To understand the
interplay between intracellular replication and extracellular transmission we developed a
multiscale model of virus growth that integrates these two processes. In the first part of
this section, we show that such a model can capture measurement data on both levels
thereby providing a systems-level understanding of infection. Subsequently, the model
is used to study direct-acting antivirals in silico and to provide a ranking of the most
promising targets for antiviral therapy. In the following, parts of the original publication
of the model in PLoS Computational Biology are used [266].

4.2.1. From single cells to cell populations

In order to simulate the extracellular level of infection, we followed the classical model
of viral kinetics within a host or cell population, which considers uninfected target cells,
infected cells, and free virus particles (reviewed in [14] and [15]). We augmented this
framework by including the number of apoptotic cells and by modeling virus entry in
more detail (Figure 4.23A). The simulation of virus entry is based on the structure and
kinetics of the intracellular model (see Section 4.1.1). Once inside the cell, the virus
starts to replicate and produce viral RNA and proteins. To account for these intra-
cellular changes, we segregated the infected cell population according to the infection age,
i.e., the time that has elapsed since the virus entered the cell (Figure 4.23B). Hence,
the extracellular model tracks the number of infected cells, their lifespan, and how they
progress through the stages of infection, while the intracellular model provides the amount
of viral components in an infected cell over its age (Figure 4.23C). The two submodels
were coupled by assigning the age-dependent state of a cell to the age-segregated cell
population (Figure 4.23D). In simulations, intracellular virus replication primarily affects
the extracellular level via the age-dependent virus release rate, which depends on the
abundance of viral RNAs and proteins inside a cell and determines the number of virions
released into the extracellular medium.

Kinetics of viral infection For an accurate calibration of the model, we followed a two-
way strategy. At the intracellular level, we considered high MOI experiments, which result
in a single, synchronized infection round (Figure 4.24A). The RNA levels and virus titer
in these experiments can be interpreted as the average response of an individual cell to
infection. By contrast, the extracellular level was compared to flow cytometric data of
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Figure 4.23.: Schematic depiction of the multiscale model. (A) The extracellular level
of infection comprises the growth and death of uninfected cells, their infection by free virions, the
production of virus by infected cells, viral degradation/clearance, virus-induced apoptosis, and
the lysis of apoptotic cells. (B) Infected cells are further segregated according to the infection
age. (C) The intracellular state of an infected cell is simulated using the deterministic model of
influenza A virus replication (see Section 4.1.1 for details). (D) Both levels are coupled via the
age-dependent virus production rate. Figure taken from Heldt et al. [266].

low MOI experiments to assess the dynamics of virus transmission in a cell population
during multiple cycles of infection (Figure 4.24B). For parameter estimation, the complete
multiscale model was fitted simultaneously to both data sets using the same parameters.
Hence, in the final simulation, each infected cell behaves according to the time courses
shown in Figure 4.24A, while a population of such cells infected at low MOI exhibits the
dynamics in Figure 4.24B.
On both levels, simulations are in good agreement with the experimental results, which

allows us to analyze the infection kinetics in more detail. We find that viral mRNAs
rapidly accumulate upon infection (Figure 4.24A). By contrast, cRNA and vRNA syn-
thesis does not start until 3 to 4 hpi since viral proteins are required for genome replication.
Note that in comparison to the original intracellular model, which is based on data by
Kawakami et al. [175], measurements in Figure 4.24A suggest that, for these experiments,
genome replication starts roughly 2 h later (compared to Figure 4.5A and B). Also, the
shutdown of positive-strand RNA synthesis is delayed with vRNPs leaving the nucleus
around 5 to 6 hpi. At the same time, cells release the first virus particles such that the
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Figure 4.24.: Model fit to measurements of intracellular and extracellular infec-
tion dynamics. Curves represent model fits to experimental infections of MDCK cells with
influenza A/PR/8/34 (H1N1) depicted by circles. (A) Levels of intracellular vRNA, cRNA and
mRNA of segment 5 (encoding NP), and the amount of virus particles produced by an average
infected cell in a synchronous, single-cycle infection experiment (MOI = 6). Particle numbers
correspond to the amount of hemagglutinating virus particles and were calculated from virus
titer measurements by HA assay (Equation (3.2.13)). Bars indicate the standard deviation of
three independent experiments (two for the 9 and 10 hpi measurements). (B) Concentration
of uninfected, infected and apoptotic cells, and infectious virus titer in a multi-cycle infec-
tion (MOI = 0.1). Measurements were adopted from Isken et al. and are representative of three
independent experiments [267]. Figure adapted from Heldt et al. [266].

eclipse phase, i.e., the time from infection to virus release, is approximately 6 h (τeclipse

in Table 4.4). Thereafter, virus production increases as vRNPs and viral proteins accu-
mulate inside the cell (data not shown), whereas the depletion of these factors at very
late time points impairs virus release from 14 h onward (Figure 4.23D). These intra-
cellular dynamics are in good agreement with the course of infection at the extracellular
level (Figure 4.24B) considering that typical errors in adherent cell counts are in the
range of 10–20% due to variations introduced by the measurement technique, handling,
and trypsinization. In particular, at an MOI of 0.1 most of the cells become infected
between 12 and 19 hpi in the second and third round of infection. Simultaneously to the
decrease in uninfected cells, simulations show a corresponding increase in infected cells,
which, later, gradually succumb to virus-induced apoptosis. At 32 hpi, we observe a large



4.2. A multiscale model of influenza A virus infection 93

Table 4.4.: Parameter estimates for the multiscale model fit in Figure 4.24.

Parameter Value 95% CIa

FInf (cells/virion) 1b 0.47− 1
kApo

I (h−1) 3.28× 10−2 (2.26− 5.90)× 10−2

kApo
T (h−1) 7.35× 10−3 (4.89− 11.09)× 10−3

kBind
M1 (molecule · h)−1 2.43× 10−4 (0.59− 4.35)× 10−4

kFus (h−1) 9.56× 10−3 (3.95− 21.31)× 10−3

kLys (h−1) 6.39× 10−2 (4.64− 8.83)× 10−2

kRel
max (virions/(cell · h)) 586 170− 2650c

kSyn
C (h−1) 5.29 1.97− 9.33
kSyn

M (h−1)d 502 245− 814
kSyn

V (h−1) 32.18 13.90− 61.96
τapo (h)e 24.9 14.3− 36.3
τeclipse (h)f 5.7 5.1− 6.5

a95% confidence intervals provided by 2 000 bootstrap replicates [249].
bOne is the upper bound of FInf as no more cells can become infected than virions fuse with endosomes.
cEstimates reached the lower and upper parameter bounds.
dSynthesis rate of an mRNA of average length. In the model, transcription is length dependent with a
rate of 8.53× 105 nucleotides/h (see Section 3.1.1 for details).
eThe average lifespan of an infected cell was calculated as

(
kApo

T + kApo
I

)−1
, which includes the eclipse

phase.
fThe end of the eclipse phase was defined as the time when rRel (τ) > 1 virion/(cell · h). Note that this
includes the steps of virus entry. The delay between fusion and virus release is only 2 h.

deviation between the model and the experimental results. However, this single data point
can be regarded as an outlier because the measured total cell number at 32 hpi increased
by 30% compared to the 24 hpi sample. Such a large increase is unlikely to occur during
late infection when cell growth is already impaired. Furthermore, simulations of the infec-
tious virus titer (Figure 4.24B), which directly depend on the number of infected cells, are
in good agreement with the data providing additonal evidence for the model’s accuracy.
Due to virus binding, entry, and degradation, the virus titer decreases in the first hours
after addition of the inoculum. At approximately 30 hpi, the virus concentration peaks
when production and degradation are in equilibrium. Thereafter, the virus titer decreases
due to the decreasing number of infected cells and the rate constant of virus degradation.

Effect of seed virus concentration To test the predictive capabilities of the model, we
next simulated infections at different MOIs and compared the results to measurement
data not used for model construction. In these scenarios, the model correctly predicts
the shift in infection dynamics for very low and high amounts of infectious virus particles
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Figure 4.25.: Model predictions for different infection conditions. The model fit from
Figure 4.24 was used to predict the percentage of uninfected cells (A) and the infectious virus
titer (B) for infections at an MOI of 10−4 and 3, respectively. These predictions were compared
to data sets not used for model construction. Measurements were adopted from Isken et al. and
are representative of three independent experiments [267]. Figure adapted from Heldt et al. [266].

in the inoculum (Figure 4.25A). Furthermore, it can reproduce the delay in peak virus
titers observed at low MOI (Figure 4.25B). However, the simulation overestimates virus
production at a high seed virus concentration. Overall, the model can, thus, be of predic-
tive value especially for low MOI regimes where multiple infection rounds occur, which
resembles the in vivo situation more closely than single-cycle, high MOI experiments.

Connection of intracellular replication and extracellular infection A major advantage
of the proposed multiscale description is the integration of virus replication inside infected
cells with infection dynamics in cell populations. Through this link, the model can infer
the time course of key viral components in multi-cycle infections based on the kinetics
of RNA synthesis at the intracellular level. For instance, it can predict the distribution
of NP proteins in a cell population during infection, which is a valuable experimental
readout for monitoring vaccine production [176]. For this purpose, the model uses the
number of uninfected and infected cells (Figure 4.26A) to estimate the infection age den-
sity (Figure 4.26B). This density shows very low numbers of cells in the early phase of
infection at 8 hpi, whereas at 20 hpi cells form a distribution with an age between 0 h (very
recently infected) and 12 h (intracellular replication is already advanced). In the follow-
ing, infected cells grow older and the distribution moves to the right. The spread of the
age density depends on the slope of the increase in infected cells between 12 and 20 hpi in
Figure 4.26A. Furthermore, the apoptosis rate determines how fast the density’s integral,
the total number of infected cells, decreases. In addition to this information, the intra-
cellular model provides the number of NP proteins over the age of an infected cell based on
the viral RNA levels (Figure 4.26C). More specifically, it predicts an increase in NP up to
an age of 18 h after which protein levels decrease due to the shutdown of mRNA synthesis.
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Figure 4.26.: Dynamics of cellular NP content during multi-cycle infection. An
infection at MOI 0.1 was analyzed for the amount of NP proteins in the host cell population.
(A) Concentration of uninfected (solid) and infected cells (dashed). Vertical dash-dotted lines
indicate the time points post infection that were used as examples in B and D. (B) Infection age
density (see Equation (3.2.5)) over the age of an infected cell illustrating how many infected cells
have the indicated age at different times post infection. (C) Abundance of NP proteins (including
free and RNP-bound NP) in an average infected cell over its age. (D) Distribution of NP
expression in the cell population for different times post infection.

The combination of the age distribution and the age-dependent intracellular state yields
the distribution of NP proteins in the cell population over time (Figure 4.26D). At early
times, where most of the cells are uninfected, NP expression levels are low. Subsequently,
the protein level increases in individual cells and in the cell population (compare dis-
tribution at 8, 20, and 32 hpi). At late time points, the decrease in intracellular NP
concentration causes a characteristic shift of the NP distribution to the left (compare
distribution at 32, 44, and 56 hpi). For an MOI of 1, we even observe bimodal protein
distributions (see Figure B.1 in the appendix). Thus, the time course of viral components
inside an infected cell directly translates into protein expression levels in a cell popula-
tion. Cell population measurements can, hence, be used to infer the dynamics of the
intracellular viral life cycle even if the experiment features multi-cycle infection (i.e. if it
was performed at low MOI).
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Lifespan of infected cells The multiscale model also facilitates an estimation of the
lifespan of infected cells from experimental data allowing us to combine this estimate
with the virus release kinetics at the intracellular level. We can, hence, assess whether
cell death limits virus production. Based on the measurements in Figure 4.24B an infected
cells survives on average 25 h (τapo in Table 4.4). At this age, virus production is already
impaired due to the depletion of cytoplasmic vRNPs and viral proteins (Figure 4.27, solid
line). However, similar to the standard model of viral infection [11], our simulation
assumes that the probability of cell death is independent of time such that cell survival
times follow an exponential distribution around the average (for a detailed discussion and
alternatives see reference [204]). Therefore, many cells die before the end of the productive
phase with more than one quarter succumbing to apoptosis before they reach the peak in
virus release. Cell death can, hence, affect the viral burst size, i.e., the number of virus
particles an infected cell releases (Figure 4.27, dashed line), and may, thus, limit virus
yields in vaccine production.

Figure 4.27.: The impact of cell death on virus production. Survival probability of an
infected cell and its virus production rate over the infection age neglecting cell death (solid) and
considering cell death (dashed). Figure adapted from Heldt et al. [266].
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4.2.2. Interference by direct-acting antivirals

Mathematical models of viral infection are often used to identify and design treatment
strategies. Thus, previous studies have extended the classical model of viral kinetics by
considering drug interference with the infection of cells and with virus production at
the within-host scale [14, 206, 217]. In addition to these general effects, our multiscale
model can also predict the impact of DAAs, which directly target specific steps of the
intracellular virus life cycle to impair viral replication and spread.

Interference with virus production In order to find promising targets for antiviral
drugs, we analyzed our model for the most susceptible steps of intracellular replication
with respect to virus production (Figure 4.28A). In theory, each tested mechanism may
correspond to a specific class of DAA, whereby the drug efficacy depends on factors like
the chosen compound, dosing regime, or virus strain. In simulations, most of the targets
eventually lead to reduced virus production with increasing efficacy. Yet, in some cases
a weak interference can already suffice to cause an effect. For instance, targeting viral
mRNA and protein synthesis or virus assembly/release is highly effective in our model
even at low efficacies. Note that drugs which are currently in use for influenza treatment
typically show a maximum efficacy of 90% and above [206, 218, 293]. At this interference
potential, compounds that affect viral mRNA splicing, cRNA and vRNA synthesis, or
nuclear export also impair virus production. Interestingly, simulations at low drug effica-
cies show an increase in virus yield when viral genome synthesis or RNA encapsidation
are targeted. Such an increase is also observed for inhibitors of M1 protein binding.
The multiscale model predicts drug effects based on how a compound interferes with

intracellular virus replication. Inhibitors of viral mRNA synthesis, for instance, reduce
mRNA and protein levels and, thereby also impair the accumulation of viral genome
copies (Figure 4.28B, upper panel). Especially the later leads to a significant decrease
in virus production. The minor increase in cRNA and vRNA during early infection in
these simulations results from a decrease in M1 protein levels causing a weaker inhibi-
tion of positive-strand RNA synthesis. Besides this regulatory function, M1 proteins are
also the most abundant viral component in progeny virions. Therefore, a reduction in
virus assembly/release leads to a higher abundance of M1, which decreases RNA levels
slightly (Figure 4.28B, middle panel). However, most of this drug’s effect results from the
retention of viral components in the cell. Note that targeting assembly/release with 50%
efficacy reduces the viral burst size to roughly half its pretreatment value, whereas the in-
hibition of transcription with similar efficacy causes a drop by approximately 90%. Hence,
release inhibitors exert a linear influence on virus production in contrast to the nonlinear
response to blocking of mRNA and protein synthesis. For the inhibition of cRNA synthe-
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Figure 4.28.: Impact of DAAs on intracellular virus replication. (A) Simulated effect
of drugs that target the indicated steps of intracellular virus replication with varying efficacy.
Colors indicate the fold change in the total number of virus particles an average infected cell
produces over its lifetime compared to the drug-free regime. Numbers in circles correspond to
the examples shown in B. (B) Time courses of selected viral components during drug treatment
with 50% efficacy. Columns correspond to components depicted in the scheme. Dashed and
solid lines are time courses in the absence and presence of drugs, respectively. All components
were normalized to their maximum in the drug-free regime. Figure taken from Heldt et al. [266].
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sis, we observe a reduction in cRNA levels up to 27 hpi, which is accompanied by a lower
abundance of vRNAs and mRNAs (Figure 4.28B, lower panel). Surprisingly, however,
the RNA levels under treatment catch up with the concentrations in the drug-free regime
at late time points. Again, this is caused by the lack of M1 proteins, which prevents
an efficient shutdown of positive-strand RNA synthesis in the model. Since the release
of virus particles further drains the pool of M1, inhibition of cRNA production at low
drug efficacy results in a later but more sustained release of virions. In summary, viral
polymerases are promising targets for DAAs as interfernce at the stage of RNA synthesis
interrupts the autocatalytic mechanism of viral replication causing a large effect on virus
production. By contrast, the viral burst size scales only linearly with drug efficacy when
processes downstream of nuclear export (e.g. virus assembly and release) are impaired.

Effect of cell death In the previous paragraph, we observed that some drugs can change
the replication dynamics such that they increase virus production at the expense of an
early virus release (Figure 4.29A). Whether these drugs result in treatment success de-
pends primarily on the lifespan of an infected cell; more precisely, on whether the cells
reach the phase of higher productivity. In our in vitro experiments, infected cells survive

Figure 4.29.: The effect of cell death dynamics on virus production. (A) Virus produc-
tion rate over the age of an infected cell in the absence of drugs and during inhibition of cRNA
synthesis with 50% efficacy. (B) Different survival probabilities for an infected cell assuming
that virus-induced apoptosis occurs with the rate estimated from data in Figure 4.24 (1x) or
at twofold (2x) and fourfold (4x) this rate. (C) Total number of virus particles released by an
infected cell considering the combination of different production rates and survival probabilities
shown in A and B, respectively. Figure taken from Heldt et al. [266].
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on average 25 h (Figure 4.29B). However, in vivo the immune response might decrease the
productive lifespan of a cell, e.g., by the action of cytotoxic T lymphocytes. These shorter
survival times may result in treatment success despite the drug having no significant effect
on virus production in vitro or even causing an increase in titers (Figure 4.29C). Hence,
the treatment potential of a drug should be judged with respect to cell death dynamics.

Delay in infection dynamics Besides impairing virus particle production, drugs can
also delay virus spreading thereby providing the immune system with time to counteract
the infection. Figure 4.30A illustrates the time course of the infectious virus titers in
our model during antiviral treatment at high efficacy. Again, inhibitors of viral RNA
and protein synthesis are most effective in reducing virus titers. They even protect a
large percentage of cells from infection (Figure 4.30B, number 3). By contrast, inhi-
bition of viral fusion with endosomes delays virus infection by approximately two days
but neither decreases the peak titer significantly nor protects the cells (Figure 4.30B,
number 2). A similar response can be observed when the other steps of virus entry
are targeted (e.g. when attachment to the cell surface or endocytosis are inhibited; see
Figure B.2 in the appendix). Note that in the presence of these drugs, virus titers are
mainly constrained by the number of available host cells. When these cells are depleted,
virus production stops and the titer decreases according to the rate of virus degradation.
Hence, targets upstream of viral RNA synthesis merely delay infection in the absence of
an immune response unless the drug is highly effective.
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Figure 4.30.: Impact of DAAs on viral infection dynamics. Model predictions for an
infection at an MOI of 10−4 are shown. (A) Simulated effect of drugs that target the indicated
steps of virus infection with an efficacy of 95%. Colors indicate the log10 infectious virus titer
over time. Numbers in circles correspond to the examples shown in B. (B) Concentration of
uninfected target cells and infectious virus titer in the absence of drugs (solid line) and during
treatment with inhibitors of virus fusion (dashed) and mRNA synthesis (dash-dotted) at 95%
efficacy. Figure modified from Heldt et al. [266].
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4.2.3. Discussion of the multiscale model

Viral infections inherently cover several spatial and temporal scales, which is of particular
importance for antiviral therapy since state-of-the-art drugs typically target intracellular
virus replication in order to induce changes at the within-host scale. To elucidate the
effects of such drugs, we developed a multiscale model of influenza A virus infection that
integrates a description of the intracellular viral life cycle into a model of cell-to-cell
transmission and target cell dynamics. This approach accurately captures a wide variety
of in vitro experiments on both scales, including the quantity of all three viral RNA
species inside an infected cell as well as the infection dynamics and virus titers in a cell
population. An analysis of the model suggests that drug interference with viral RNA
synthesis, the nuclear export of viral genomes, and the assembly/release of virus particles
is most effective in suppressing virus production. By contrast, blocking the steps of virus
entry primarily delays in vitro infection but does not reduce peak virus titers significantly
unless the inhibition occurs with very high efficacy. The model also demonstrates that cell
death dynamics can strongly affect treatment success thereby providing valuable insights
into the multiscale nature of viral infection.

An integrated modeling approach The limited availability and diversity of experimen-
tal data still represents a serious challenge to the construction and calibration of within-
host models for viral kinetics [15]. Most in vivo descriptions, for instance, exclusively rely
on virus titer data since such measurements are easily attainable from infected individuals
and animals (reviewed in [14]). However, only four independent parameters can be reliably
extracted from such virus titer curves, severely limiting the level of detail one can incor-
porate into a mathematical model [204]. A promising approach to address this issue is to
include data on the intracellular viral life cycle from in vitro experiments (Figure 4.23).
Hence, we used our deterministic model of influenza A virus replication, which reproduces
the dynamics of virus entry, the regulation of viral RNA synthesis, and the levels of the
three viral RNA species (see Section 4.1.1), to obtain a detailed picture of intracellular
events. This information was then linked to the within-host (cell population) scale. Based
on RNA data, the model, for instance, predicts a delay between the infection of a cell
and virus release of approximately 6 h, after which virus production increases for another
7 h as viral components accumulate. The length of the eclipse phase is in good agree-
ment with estimates from other studies (7 h for MDCK cell infection in bioreactors [177],
0.2–6 h for cultivations in a hollow-fiber system [217], and 6 h for human infection [206]).
However, previous within-host models have assumed that virus production proceeds at
a constant rate in the productive phase. By contrast, our model suggests a bell-shaped
production rate over the age of an infected cell. Since simulations are very sensitive to
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such assumptions [204, 205], multiscale modeling can lead to more realistic estimates of
key infection parameters [203], which can greatly support the design of antiviral therapy.
Based on flow cytometric data our model also provides the average in vitro lifespan of

an infected cell. With 25 h (including the eclipse phase) it is similar to previous theoretical
estimates and direct experimental measurements (reviewed in [15]). Due to the depletion
of viral components (caused by the shutdown of RNA(+) synthesis) virus release from
an infected cell would cease around the same time. Nevertheless, most of the cells in
our model die before becoming nonproductive, which reduces overall virus yields, because
survival times vary significantly around the mean. More precisely, cell death in our
model, like in the majority of other studies, follows an exponential distribution such that
a significant proportion of cells dies at an early age (Figure 4.27). Note that a study
by Holder and Beauchemin suggests that other distributions might be more appropriate
to describe cell survival [204]. In principle, our model can easily accommodate such
assumptions since the apoptosis rate can be an arbitrary function of the infection age.
Yet, our simulations and data on apoptosis induction during single-cycle infections [267]
do not justify more complex approaches at the moment. If more data become available the
apoptosis rate could, however, be related to the abundance of intracellular viral factors
like vRNAs or pro- and anti-apoptotic viral proteins.
The proposed multiscale model also allowed us to couple the time courses of intra-

cellular viral components to the infection dynamics in a cell population. For instance, the
model predicts that the NP expression level in cells increases during the first day of a low
MOI infection before showing a characteristic decrease (Figure 4.26). Intriguingly, such a
shift of the cell population to low NP levels during late infection was observed experimen-
tally [176, 223]. While most previous models were unable to capture this shift [223, 224],
with the exception of a population balance model by Müller et al. who assumed that apop-
tosis causes the reversal in propagation direction [225], our multiscale approach provides a
mechanistic explanation for the phenomenon. At late times post infection, the shutdown
of viral mRNA synthesis and the demand for NP proteins by encapsidation and virus
release cause a decrease in intracellular NP levels. Therefore, older infected cells show
lower NP fluorescence. Multiscale models are ideal to reveal such functional connections
between intracellular replication and the infection dynamics in a cell population.

Predictive capabilities of the model When testing our model against data not used for
model construction we found that it can correctly predict the time course of uninfected
target cells and the virus titer for low MOI infection but overestimates virus production
at high MOI (Figure 4.25). In our model, peak virus titers depend on the initial number
of target cells, which was comparable in the experiments, and the viral burst size, i.e.,
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the number of virions produced per infected cell. The burst size follows from the virus
production rate and the life span of an infected cell. Hence, the experimentally observed
decrease in virus production at high MOI may have two reasons. On the one hand, the
virus inoculum may contain factors, such as DI viruses (see Section 4.3), which impair
intracellular replication and reduce the rate of virus production; and on the other hand,
substances in the inoculum, like interferon, may cause an increase in cell death [267].
Additional measurements are required to distinguish between these two possibilities.

Limitations of in vitro models Due to the limited availability of in vivo data, we
primarily relied on cell culture experiments for the construction and calibration of our
model. In contrast to infections in animals and humans, which are mostly monitored by
means of viral titers, such in vitro systems provide access to a variety of information,
like the number of available target cells, their infection status, and the intracellular levels
of viral RNAs. These high quality data were a prerequisite for the development of a
multiscale model. However, the focus on cell culture experiments necessitates some ad-
justments if the model should be applied to animal or human infections in the future. In
particular, the growth and death of uninfected target cells is typically neglected by in vivo
models as both processes are assumed to be slow compared to infection [14]. Furthermore,
virus clearance in the lung may occur faster as it is caused by active processes such as
phagocytosis and mucociliary transport as opposed to thermal or enzymatic degradation
in cell culture. However, the most prominent feature of an authentic infection that our
model currently lacks is an immune response. In the past, a number of different strategies
were suggested to incorporate the innate and adaptive immune response into within-host
models of influenza A virus infection. However, none of them agreed completely with the
experimental data available [210]. Including an adequate representation of the immune
system, thus, remains a key challenge of current modeling efforts. Multiscale approaches
could support these efforts as they allow for the integration of antiviral mechanism at
the intracellular level (like the interferon-induced antiviral response) and of extracellular
factors (such as natural killer cells and neutralizing antibodies).

Effects of DAAs Accounting for the intracellular replication of influenza A viruses
allowed us to investigate which steps of the viral life cycle are most susceptible to drug
interference. At efficacies above 90%, which are usually found for antivirals in clinical
use, inhibitors of viral transcription, RNA replication, protein synthesis, nuclear export,
and virus assembly/release are very successful in blocking virus production in our sim-
lations (Figure 4.28). In agreement with the latter prediction, neuraminidase inhibitors,
which target the release of progeny virions, are widely used for influenza therapy today.
Yet, the emergence of drug-resistance in circulating virus strains urges the need for new
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antivirals [121]. Judging from our model, inhibitors of the viral polymerase are the most
promising alternative. During viral replication polymerases engage in an autocatalytic
reaction where they synthesize cRNA from vRNA and vice versa. Disrupting this mecha-
nism has detrimental consequences for all major viral components in our model. In agree-
ment with this, compounds that specifically inhibit viral transcription efficiently impair
influenza A virus growth in cell culture and in mice [294]. Moreover, favipiravir (T-705),
an inhibitor of the viral RdRp [133], is potent against influenza viruses in vitro and
in vivo [132, 295], and has entered clinical trials recently [131] demonstrating the poten-
tial of polymerases inhibitors as antiviral drugs. Multiscale models could support such
clinical trials by predicting the effect of different dosing regimes and drug concentrations.
In addition to a direct inhibition of polymerase activity, experimental studies have also

identified 25-amino-acid peptides [136] and small molecule inhibitors [296] that can impair
the growth of influenza viruses by preventing viral polymerase assembly. By contrast, a
blockage of RdRp formation has hardly any influence on virus production in our model
unless drug efficacy well exceeds 99%. This discrepancy most likely originates from the
kinetics of polymerase assembly in our model. Due to a lack of experimental data, we
assumed that polymerases form rapidly from their three subunits according to mass ac-
tion kinetics (see Section 3.1.1). Thus, the availability of the subunits limits polymerase
formation rather than the formation rate of the complex. In light of the above men-
tioned experimental results, future studies may want to revise this assumption. Note
that reconciling model predictions that are initially inconsistent with the data provides
an ideal opportunity to refine our understanding of the underlying biological mechanisms.
However, it also requires an experimental setup specifically designed to resolve the dis-
crepancy.

Inhibition of virus entry Instead of reducing peak virus titers, inhibitors of virus entry
merely delay infection in our simulations unless they are highly effective (Figure 4.30).
This is in good agreement with theoretical studies showing that peak viral loads do not
change with viral infectivity [216] and with in vitro experiments in which the infection
of MDCK cells with influenza A virus was delayed by up to two days in the presence of
amantadine, an inhibitor of viral uncoating [217]. In our model, the delay of infection
results from the ability of entry inhibitors to protect uninfected target cells from the virus.
However, since interference is not perfect, a few viruses will overcome the block. Once this
occurs, the infected cells will produce the same amount of virus particles than they would
have in the absence of the drug because entry inhibitors do not impair the production
of viral components. Thus, the treatment success that has been observed in vivo with
these drugs most likely depends on mechanisms that take advantage of the delay to clear
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infection (e.g. the immune response).
Another aspect that may contribute to the success of antivirals which act on the early

steps of intracellular virus replication are stochastic effects. As we have demonstrated
in Section 4.1.2, low MOI situations, which occur primarily when the virus establishes
itself in a host, feature a high percentage of nonproductive cells. The first infection wave
may, hence, depend on only a few cells that release progeny virions. At this early stage,
the inhibition potential (i.e. the drug’s efficiency) needed to stop virus spreading may
be comparatively low making entry inhibitors an effective prophylactic drug. Further
insights into how molecular noise affects the susceptibility of virus entry to antivirals
could be provided by a stochastic multiscale model of infection.

Lifespan of infected cells affects treatment Surprisingly, our simulations show that a
weak inhibition of viral RNA replication can lead to an increase in virus production at
the expense of early virus release. While this result should be taken with caution until
experimentally validated, it demonstrates that some interventions may change the release
phenotype of a cell from an early production toward a later but more sustained one. From
an evolutionary perspective such a change may be detrimental for the virus since faster
growing strains would outcompete slower variants. However, during treatment it may
nevertheless occur. In these cases, the drug’s ability to prevent virus production (and
spreading) heavily depends on the lifespan of infected cells (Figure 4.29). In particular,
an antiviral compound which was rejected based on in vitro cell survival times may result
in lower virus titers when lifespans are shorter. In vivo, the latter is indeed very likely as
the immune response increases cell death rates [214, 297]. Also, virus strain-dependent
factors such as the expression of the PB1-F2 protein can lead to faster cell death [298].
Screening approaches for novel antiviral drugs may, hence, benefit from using conditions
that mimic in vivo cell survival times.

Summary Our multiscale model combines the intracellular events of viral replication
with infection dynamics at the cell population level. In doing so, it allows us to estimate
crucial infection parameters from a broader set of experimental data, and to simulate the
effects of DAAs on virus production. In the future, such approaches may help to elucidate
how viruses overcome antiviral drug treatment, and why acquiring drug resistance can
change critical features of intracellular replication like the length of the eclipse phase
and the viral burst size [226]. Our description could also be integrated into a model for
between-host viral kinetics in order to understand how drugs affect the epidemic scale
and how molecular characteristics determine viral fitness and persistence across different
levels. Including an immune response in the multiscale model represent an important step
toward these goals.
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4.3. Replication of defective interfering viruses

Defective interfering particles (DIPs) are incomplete viruses that require coinfection with
an STV to propagate. However, they also interfere with STV replication at the intra-
cellular level such that coinfected cells mainly produce progeny DIPs. To elucidate the
mechanism of interference, we developed a model of intracellular DI RNA replication,
which is described in the first part of this section. Subsequently, we introduce a second
model for the continuous production of influenza A virus in cell culture where DIPs can
cause oscillations in virus titers that decrease the process’ productivity.

4.3.1. Interference with intracellular virus replication

In order to simulate how DIPs interfere with the intracellular life cycle of influenza A virus,
we extended our deterministic model of virus replication to include a DI RNA. Due to their
reduced length, these RNAs were suggested to have an advantage in replication over full-
length segments [143]. In addition, the preferential amplification of DI RNAs in coinfected
cells suggests that this advantage occurs during viral genome production at the step of
cRNA synthesis [113, 150, 151]. Note that whether the advantage occurs in cRNA or
vRNA synthesis (or is a mixture of both) does not influence model outputs [269]. For the
sake of simplicity, we chose a linear dependency of the synthesis rate on DI vRNA length,
i.e., defective segments that are half as long as their wild-type (wt) RNA produce cRNA
twice as fast (Figure 4.31A). Most of the experimentally observed DI RNAs originate
from one of the three polymerase segments [147, 149]. The model, thus, considers a

Figure 4.31.: Assumed effect of DI RNA length on synthesis kinetics. (A) Simulation
of the time that is required to synthesize one cRNA molecule from a segment 3 DI vRNA with the
indicated length. (B) Estimated replication advantage, i.e., increase in cRNA synthesis rate (see
Equation (3.3.7)) of DI vRNAs with the indicated length over the full-length segment 3 (encoding
PA). Black lines indicate the advantage of a DI vRNA that comprises 480 nt. (C) Time course
of DI vRNAs with the indicated replication advantage over the wt segment assuming a constant
supply with viral polymerases and NP proteins.
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DI vRNA of segment 3, which comprises 480 nt (the average length of sequenced DI RNAs
of segment 3 [108]). This length corresponds to a synthesis advantage of approximately
3.65-fold over the wt vRNA in our simulations (Figure 4.31B). Note that due to the
autocatalytic mechanism of viral replication, RNA levels in the model scale exponentially
with synthesis rates such that small increases in these rates result in substantial differences
in vRNA abundance (Figure 4.31C).

Competition for viral resources To understand DI vRNA synthesis, we compared the
intracellular replication of an STV to coinfections by an STV and a DIP. In these simu-
lations, coinfected cells show a significant reduction in overall vRNA levels including the
segments for which there is no DI RNA present (Figure 4.32A). In particular, coinfection
with our model DI RNA reduces the vRNA level of segment 5 by two orders of magnitude
with coinfected cells starting to differ significantly from their STV-infected counterparts
from 3hpi onward. In the model, interference with wt segment synthesis was primar-
ily caused by an excessive amplification of DI RNAs, which reached levels approximately

Figure 4.32.: Interference of DI RNA synthesis with viral replication. Simulated
infection of a cell by two STVs (solid) and coinfection by one STV and one DIP with a defective
segment 3 (dashed). The DI RNA comprises 480 nt and has a 3.65-fold advantage over its full-
length counterpart. (A) Intracellular level of vRNAs of segment 5 (encoding NP). (B) Level of
the full-length vRNA (FL RNA) and DI vRNA of segment 3 in coinfected cells. (C,D) Level of
unbound NP proteins (C) and viral polymerases (D) during STV infection and coinfection.
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three orders of magnitude higher than the corresponding full-length RNA (Figure 4.32B).
Again, a modest advantage in RNA synthesis results in large differences in viral genome
levels. Like wt segments, the newly produced DI RNAs require viral polymerases and
NP proteins for encapsidation. Hence, excessive RNA synthesis can deplete the pool of
both proteins (Figure 4.32C and D). Surprisingly, however, NP is the first protein that
becomes exhausted although one might think that a defect in segment 3, which encodes
for the PA subunit, mainly affects viral polymerases. Yet, the coinfecting STV provides
a copy of the PA gene, which is sufficient to meet the demand for polymerases during
early infection since each RNA requires only one RdRp. By contrast, a DI RNA of 480 nt
binds 24 NP proteins (considering an estimated stoichiometry of one NP molecule per
24 nt [59]). Hence, encapsidation quickly drains the pool of NP starting around 3 hpi
from which moment on coinfected cells contain significantly less of this protein. In our
simulations, the depletion of viral proteins causes an accumulation of encapsidation inter-
mediates in coinfected cells (compare Figure 4.33A and B). In STV–infected cells, most
vRNAs are fully encapsidated, especially during late infection. By contrast, coinfected
cells show an increase in the relative level of RdRp-vRNA (and RdRp-cRNA) complexes.
Since these partially protected RNAs are subject to rapid degradation and only complete
RNPs engage in replication, the insufficient supply of NP and RdRp impairs the accumu-
lation of cRNA and vRNA. This also affects viral transcription and reduces viral protein
levels even further. Hence, in our simple model, a modest replication advantage causes
the depletion of NP proteins and RdRps due to an excess of DI RNAs. Thereby, defective

Figure 4.33.: Accumulation of replication intermediates during coinfection. STV
infection (A) and coinfection (B) were simulated as described in Figure 4.32. Upper panels show
the levels of naked vRNAs, RdRp-vRNA complexes, and vRNPs of segment 5 as the fraction
of total vRNA of segment 5. Lower panels depict the abundance of unbound NP proteins and
viral polymerases (RdRp) normalized to their maximum.
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RNAs interfere unspecifically with the synthesis of all full-length genome segments.
In experiments, coinfected cells mainly produced progeny DIPs [113, 114, 155]. We

investigated whether our model can reproduce this observation based on the predicted
excess in DI RNA synthesis. As described before, an STV-infected cell releases up to
104 virus particles (Figure 4.34). A simulation of DIP infection in the absence of STVs
yields no progeny virions since no complete viral polymerases are formed. Interestingly,
upon coinfection, the model predicts almost exclusive DIP production in good agreement
with experimental results [113, 114, 155]. This is due to the exponential scaling of RNA
levels with synthesis rates (i.e. with the replication advantage). When the DI RNA has
no advantage in replication, infected cells release the same amount of DIPs and STVs
demonstrating that the replication advantage and not the RNA length (i.e. the binding
of fewer NP molecules) is the key factor for interference in our simulations. However,
although these effects can be separated in a mathematical model they are most likely
tightly linked in reality.

The effect of initial virus concentration and replication advantage A central influence
factor in DIP infection is the number of infecting viruses. For instance, DIPs require a
high MOI for replication where coinfection is likely (Figure 4.35). Therefore, we used
our model to predict how differences in the initial STV and DIP concentration affect
virus production (Figure 4.36). Note that for each condition, we simulated an average
cell that is infected by the indicated amount of virus particles. In infection experiments,
stochastic effects and limitations in virus diffusion can lead to a mixture of cells including
subpopulations that are infected by STVs or DIPs alone. Most measurement techniques

Figure 4.34.: Reduced virus production in coinfected cells. Cumulative number of
progeny virus particles at 12 hpi considering a cell that was either infected by two STVs, two
DIPs, or one STV and one DIP. The DI RNA originates from segment 3, comprises 480 nt,
and has either a 3.65-fold replication advantage over its full-length RNA (DIPA) or no advan-
tage (DIPN).
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Figure 4.35.: Coinfection probability. Probability that a cell is coinfected by an STV and
a DIP according to the Poisson distribution (Equation (3.3.17)) given different initial amounts
of both virus types.

can only provide an average of this heterogeneous cell population. As observed before, the
presence of a single DIP is enough to prevent the release of STVs from coinfected cells in
our model (Figure 4.36A). In addition, increasing the STV concentration in the absence
DIPs increases cell-specific virus yields slightly. This is caused by a higher initial level
of wt segments and, thus, a faster synthesis of full-length RNAs and viral proteins (data
not shown). For the same reason, an increase in the initial amount of STVs increases
the number of progeny DIPs produced by a coinfected cell (Figure 4.36B). By contrast,
higher initial amounts of DIPs impair virus production since they interfere with RNA
replication and compete for viral proteins.
So far, we have only considered a well-defined DIP with a specific length and replication

advantage. However, virus preparations can contain a variety of DI RNAs comprising
different lengths [148]. Hence, the influence of the length-dependent replication advantage
in our model was analyzed next. As described before, with no difference in length and,

Figure 4.36.: Influence of initial virus concentration on virus production. Cumulative
number of progeny STVs (A) and DIPs (B) at 12 hpi considering infections at different initial
amounts of both virus types. The DI RNA originates from segment 3, comprises 480 nt, and has
a 3.65-fold replication advantage.
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thus, no replication advantage at the level of RNA synthesis, cells produce the same
amount of STVs and DIPs (compare Figure 4.37A and B). For an increasing replication
advantage there are two distinct regimes. First, STV production decreases and DIP
levels show a corresponding increase such that the overall virus yield remains roughly
constant. Then, when the replication advantage exceeds 0.8, i.e., the synthesis rate of the
DI RNA is 1.8 times that of the full-length segment (corresponding to a length of 1240 nt
in the model), DIP yields decrease as well. In the first regime, NP proteins and RdRps
are available in sufficient quantities (Figure 4.37C). Hence, the replication advantage of
DI RNAs leads directly to an increase in their vRNP level and there is no interference
with wt segment synthesis (Figure 4.37D). The small increase in segment 3 vRNPs in this
regime is caused by the reduced production of STVs. By contrast, vRNPs of segment 5
remain constant because they are required for both, the formation of STVs and DIPs.
Despite these initial differences segment 3 and 5 show similar levels for the rest of tested
parameter range. In the second regime, excess DI RNA synthesis depletes the pool of

Figure 4.37.: Effect of the replication advantage on virus production. Simulated
infection of a cell with one STV and one DIP. The DI RNA originates from segment 3, has
the indicated replication advantage, and comprises the corresponding length. All components
are shown at 12 hpi. (A,B) Cumulative number of progeny STVs (A) and DIPs (B) that are
released from the cell. (C) Levels of the unbound viral RdRp and NP protein normalized to
their maximum. (D) Levels of vRNPs formed from segment 3, 5, and the DI RNA normalized
to their maximum.
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NP proteins (and later also of RdRps) and impairs the production of full-length and
DI vRNPs. Hence, modeling suggests that there is an optimal replication advantage at
which DI RNAs can outcompete the wt segments without interfering with viral protein
synthesis such that DIP production is maximized.

Coinfection timing The above simulations assume that STVs and DIPs enter the cell at
the same time. However, in a realistic infection scenario both events can occur successively,
which might change the outcome of coinfection. Indeed, our model shows a dependency
of virus production on coinfection timing (Figure 4.38A). When STV infection occurs
first, wt segments can replicate without interference and viral proteins accumulate. A
DIP which infects the cell later can benefit from these proteins and produce more virus
progeny. However, when the DIP enters the cell after nuclear export has been initiated
and positive-strand RNA synthesis was shut down, the DI RNA can no longer replicate
and the cell will release mostly STVs. In a situation where the DIP infects first, progeny
DIP yields decrease with an increasing delay in STV infection (Figure 4.38B). Here,
primary transcription causes an accumulation of M1 proteins, albeit to low levels. The
higher these levels are at the time of STV infection, the faster M1 accumulates to a
concentration where it inhibits RNA replication, which reduces wt segment production
and DIP release.

DI RNAs from different segments Considering that most experimentally observed DI
RNAs originate from the polymerase segments, we were wondering whether defects in
other segments might hinder successful replication or DIP production such that these
DI RNAs die out. Hence, we simulated the amount of virus progeny produced by DIPs of

Figure 4.38.: Influence of coinfection timing. Cumulative number of progeny virus parti-
cles that are released by a coinfected cell until 12 h post STV infection. The DI RNA originates
from segment 3, comprises 480 nt and has a 3.65-fold replication advantage. (A) STV infection
occurs at 0 h and DIP infection with the indicated delay. (B) DIP infection occurs at 0 h and
STV infection with the indicated delay.
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segment 3 and 4 (encoding PA and HA, respectively) with respect to coinfection timing
and replication advantage (Figure 4.39A and B), which were the main influence factors
in previous simulations. As observed before, there is an optimal replication advantage
for both DI RNAs, which, if exceeded, leads to lower virus yields. Intriguingly, however,
defects in segment 3 and 4 differ significantly in their response to delayed STV infection.
With a defect in a polymerase segment, DIP production remains fairly constant even at
large delays. By contrast, the segment 4 DI RNA produces no virus progeny for delays
larger than 2 h. Again, this results from a differential accumulation of M1 proteins and
the inactivation of vRNPs during nuclear export (Figure 4.39C and D). In cells infected
with a segment 3 DI RNA there is only primary transcription since no complete viral
polymerases are formed, whereas a defect in segment 4 allows the production of all viral
proteins except HA. Hence, viral RNAs are synthesized in the latter case and nuclear
export occurs just like it does in STV-infected cells. Therefore, full-length RNAs which
are introduced by an infecting STV after 2 h do not replicate and are unable to complement
for the defective segment. Taken together these results suggest that in a scenario where
coinfection times vary, segment 3 DI RNAs may produce more virus progeny than their
segment 4 counterparts and might, thus, outgrow them.

Figure 4.39.: Virus production for DI RNAs from different segments. Simulated in-
fection of a cell by one STV and one DIP. The DI RNA either originates from segment 3 (A,C)
or from segment 4 (B,D). (A,B) Cumulative number of progeny DIPs at 12 h post STV in-
fection considering that the DI RNAs have the indicated replication advantage over their wt
segments (and comprise the corresponding length) and that STV infection occurs with the in-
dicated delay. (C,D) Number of unbound M1 proteins in a DIP-infected cell in the absence of
STVs. The DI RNAs exert a 0.5-fold replication advantage (and comprises the corresponding
length).



4.3. Replication of defective interfering viruses 115

4.3.2. Oscillations in continuous influenza A virus production

Due to their interference potential, DIPs can compromise influenza virus infection when-
ever high MOI situation arise. Here, we present a mathematical model for the production
of influenza A virus in a continuous cultivation system. The model demonstrates that
DIPs readily accumulate in such a process and that they can cause oscillations in virus
titers. Note that we use parts of the original publication of the model in PLoS ONE in
the following [148].

Continuous infection system In contrast to batch cultivations, continuous systems
have a number of advantages. They reduce down times for equipment cleaning, can
achieve higher space-time yields, and provide products at constant quality to name only
a few. Therefore, Frensing et al. established a continuous system for influenza A virus
production [148]. This system comprises two stirred tank reactors with a working vol-
ume of 1 L each (Figure 4.40). The process was started by cultivating avian AGE1.CR
suspension cells in both reactors in batch mode prior to infection. At the time of infec-
tion, the virus reactor was inoculated with influenza A/PR/8/34 (H1N1) at an MOI of
0.025. Both reactors were then switched into continuous cultivation mode and connected.
Subsequently, cells were constantly transfered from the cell to the virus reactor where
virus propagation took place. Excess medium from the virus reactor, which contained the

Figure 4.40.: Reactor setup for continuous influenza A virus infection. The setup com-
prises two stirred tank reactors in which AGE1.CR suspension cells were cultivated in continuous
mode. Both reactors were connected via the purple tubing such that cells were constantly fed
into the virus reactor where infection took place. Green components belong to the cell reactor
and red components to the virus reactor. Figure taken from Frensing and Heldt et al. [148].
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produced virus and the cells, was harvested at a constant rate.
Frensing et al. monitored the cell concentration as well as the virus titers in both

reactors during two independent cultivations (Figure 4.41). Surprisingly, virus titers in
both cultivations showed periodic fluctuations. At the same time, cell numbers stayed
constant in the cell reactor and changed apparently at random in the virus reactor. The
oscillations in virus titers spanned six orders of magnitude in TCID50 measurements and
one order of magnitude in HA data. Note that while the TCID50 method detects infectious
virus only, the HA assay accounts for all hemagglutinating virus particles including DIPs
and other noninfectious viruses.

Virus titers in the absence of DIPs Since the declines in virus titers were preceded by
a high MOI situation, Frensing et al. hypothesized that DIPs might be involved in the
observed oscillations [148]. This was supported by the detection of subgenomic RNAs
via segment-specific PCR. In particular, Frensing et al. found 500 to 700 nt long RNAs of
segment 1 to 3 in the virus stock and showed that both the subgenomic and the full-length
RNAs oscillated during continuous infection. Yet, it was not clear whether DIPs were the
cause of these oscillations or the continuous cultivation mode had introduced periodic
fluctuations which were affecting virus titers. We, therefore, developed a simple mathe-
matical model for the infection kinetics in the virus reactor, which initially neglected the
influence of DIPs (Figure 4.42A). This model considers a population of uninfected cells,
which increases through intake from the cell reactor and through cell growth in the virus
reactor itself. Extracellular virions can infect these cells causing them to produce infec-
tious virus progeny. Infected cells can die due to virus-induced apoptosis and infectious
particles degrade over time. Furthermore, cells and virus particles are constantly removed
from the reactor. An analysis of this model by our coworkers, indeed, revealed parameter

Figure 4.41.: Measurements of continuous influenza virus infection. (A) Viable cell
concentrations in both reactors for the second of two independent cultivations in reference [148].
(B) Virus titer determined by HA and TCID50 assay for the same cultivation. Figure modified
from Frensing and Heldt et al. [148].



4.3. Replication of defective interfering viruses 117

Figure 4.42.: Simulation of continuous infection in the absence of DIPs. (A) Schematic
representation of the model for continuous influenza A virus infection in the absence of DIPs.
The continuous harvest of cells and viruses was omitted for illustrative reasons. (B,C) Simulated
virus titers for a dilution rate of the virus reactor, D, which is lower than the specific growth rate,
µ (B), or higher than µ (C). Parameters were chosen according to Table 4.5 except that the dilu-
tion rate in B was reduced to D = 10−8 1/h. Figure adapted from Frensing and Heldt et al. [148].

regions where a Hopf bifurcation gives rise to periodic solutions that are independent of
DIPs [148]. Specifically, oscillations can occur if and only if the dilution rate of the virus
reactor (D) is lower than the specific growth rate of the cells (µ), which is confirmed by
our numerical simulations (Figure 4.42B). However, these fluctuations do not occur on
the same time scale as those observed in experiments. More importantly, in the experi-
mental setup, the dilution rate was higher than the growth rate (Table 4.5). Hence, virus
titers should remain constant if DIPs do not influence the system (Figure 4.42C).

Virus titers in the presence of DIPs Next, we extended the model by including the DI
virus population (Figure 4.43A). In these simulations, DIP-infected cells do not produce
virus progeny in the absence of STVs. However, once coinfection occurs, virus replication
proceeds and DIPs are released. Furthermore, the model accounts for the de novo gen-
eration of DIPs by STV-infected cells, which, in addition to producing large quantities
of STVs, release a small amount of DIPs. For the sake of simplicity, we did not consider
the influence of coinfection timing and the identity of the defective segment here. Instead



4.3. Replication of defective interfering viruses 118

Table 4.5.: Parameters and non-zero initial conditions for the simulation of continuous influenza
virus infection.

Parameter Description Value

µ (h−1) specific growth rate 0.027
D (h−1) dilution rate of virus reactor 0.0396
f (–) de novo DIP production 10−3

FInf (cells/virion) infection efficiency 1
kApo (h−1) apoptosis rate of infected cells 7.13× 10−3

kDeg
V (h−1) virus degradation rate 0.035
kInf (ml/(virion · h)) virus infection rate 2.12× 10−9

kProd (virions/(cell · h)) virus production rate 168
T0 (cells/ml) initial target cell concentration 5.33× 106

Tin (cells/ml) cell concentration in feed 2.96× 106

Vs0 (virions/ml) initial STV concentration 1× 104

the model focuses on the key features of DIP infection, i.e., that they only replicate in
coinfected cells and suppress STV production. Intriguingly, this simple implementation
readily shows oscillations in virus titers (even for D > µ) in agreement with the experi-
mental observations (Figure 4.43B). In particular, the model captures the frequency of
titer fluctuations, the extended first peak, and the phase shift between infectious and
total virus titers. Yet, it does not correctly reproduce the amplitude of TCID50 and HA
measurements. Nevertheless, the simulations confirm that DIPs can cause oscillations
during continuous virus production.
Since the observed fluctuations in virus titers reduce virus yields and, thus, represent a

challenge to vaccine production, we investigated two strategies to avoid DIP accumulation:
(i) the use of seed viruses which contain a low amount of DIPs (Figure 4.43C) and (ii) a
reduction of de novo DIP generation through the optimization of virus strains or cell
lines (Figure 4.43D). In both scenarios, virus titer oscillations continued to emerge even
with a very pure seed virus or low de novo DIP generation. In fact, constant virus titers
were only found when DIPs were completely absent from the system (i.e. in the absence
of both, DIPs in the inoculum and DIP production by STV-infected cells). This was
confirmed by our coworkers via an analysis of the model equations showing that the DIP-
free regime is unstable upon introduction of defective interfering viruses [148]. Hence,
the two investigated strategies of process optimization are unlikely to prevent virus titer
fluctuations. However, a reduction in the de novo generation of DIPs can slightly delay the
first decrease in virus titers, whereas the fluctuations are surprisingly robust to differences
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Figure 4.43.: Simulation of continuous infection in the presence of DIPs.
(A) Schematic representation of the model for continuous influenza A virus infection in the pres-
ence of DIPs. Dashed arrows indicate apoptosis and virus degradation. The continuous harvest
of cells and viruses was omitted for illustrative reasons. (B) Simulated virus titers for the para-
meters used in Table 4.5. Vertical lines mark the peaks in TCID50. (C,D) Log10 HA units / 100µl
over process time for various ratios of DIPs (Vd0) to STVs (Vs0) in the seed virus neglecting
de novo DIP generation (C) and for different rates of de novo DIP generation by STV-infected
cells, f (denoting the fraction of DIP to STV production), without DIPs being present in the
seed virus (D). Figure adapted from Frensing and Heldt et al. [148].

in seed virus composition (compare Figure 4.43C and D). In summary, DIPs can readily
accumulate in a continuous infection system which features high MOI situations posing a
serious challenge to the production of influenza vaccines in such a process.
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4.3.3. Discussion of defective interfering virus replication

We derived two mathematical models to study the effect of DIPs on influenza A virus
infection. The first considers the replication of a defective RNA at the intracellular level,
while the second accounts for DIP growth in bioreactor experiments. In the following,
the results of both approaches are discussed.

4.3.3.1. Intracellular DI RNA replication

Despite half a century of research, the molecular basis for DI RNA interference with the
intracellular life cycle of influenza A viruses is still not well understood. To elucidate this
process we developed a quantitative mathematical model which describes the replication
of defective RNAs inside an infected cell. We assumed that these DI RNAs posses an
advantage in replication causing them to accumulate to high levels and to sequester large
amounts of NP proteins and viral polymerases. The lack of these factors impairs the
synthesis of full-length RNAs in our model representing one mechanism of interference.
We also observe that cells which are coinfected by an STV and a DIP mainly produce de-
fective viruses and that DIP production strongly depends on the extend of the replication
advantage and the coinfection timing. Hence, the model sheds light on the replication of
subgenomic RNAs of influenza A virus but also shows where current hypotheses struggle
to explain the available data.

Advantage of DI RNAs Although numerous studies have found a preferential amplifica-
tion of DI RNAs over their full-length counterparts [113, 114, 150], it is still unclear how
they gain this competitive advantage. The most common hypothesis suggests a length
dependency of RNA synthesis such that viral polymerases produce more copies of a short
viral RNA per unit time (reviewed in [143, 144]). We incorporated this mechanism into
our model. However, the model may also be used to investigate other hypotheses since the
replication advantage and RNA length can be studied independently from one another.
Simulations of an example DI RNA revealed that even a modest advantage in repli-

cation can lead to large differences in copy numbers due to the exponential growth of
viral RNAs (Figure 4.32). Hence, DI RNAs rapidly outnumber the wild-type segments as
suggested on theoretical grounds [144] and found experimentally [113, 114, 150]. In par-
ticular, our model DI RNA exceeds the level of its full-length counterpart by three orders
of magnitude at 3–4 hpi. Note that the same should be true for short wild-type RNAs if
replication is strictly length dependent, i.e., segment 8 should replicate significantly faster
than segment 1 leading to substantial difference in vRNA levels. Yet, such differences have
not been observed in cell culture infections [174] suggesting that the replication advan-
tage is limited to DI RNAs and that other factors than mere RNA length play a role. A
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mechanism that could explain this restriction is the presence of yet unknown regulatory
elements in full-length RNAs that are impaired or lost upon deletion [143].
In agreement with experimental data [113, 114, 155], our simulations show that co-

infected cells almost exclusively release progeny DIPs (Figure 4.34). In the model, this
results from the preferential amplification of DI RNAs, which outnumber their correspond-
ing full-length segment by far. However, infection studies have also found an advantage
in DI RNA packaging such that released virus particles display an increased ratio of DI
to full-length RNAs compared to the level in infected cells [113, 114, 155]. We have not
incorporated this advantage in our model since enhanced replication already suffices for
exclusive DIP release. However, future studies may want to address this mechanism.

Competition for viral resources Given the preferential amplification of DI RNAs and
their similarity to full-length segments, both species may compete for a common viral
or cellular resource [144]. Modeling suggests that, among the viral factors, polymerases
and NP proteins are most likely to become such bottlenecks for replication since both
components participate in the encapsidation of viral RNAs. NP, in particular, is rapidly
depleted in our model although the DI RNA originates from a polymerase-encoding seg-
ment (Figure 4.32). This is because the encapsidation of an RNA molecule requires
only one polymerase complex but multiple copies of NP. Thus, the full-length segment,
introduced by the STV, can provide sufficient copies of the intact polymerase subunit.
However, after the consumption of NP, the pool of viral polymerases is also drained. The
competition for viral proteins has also been observed in experiments where two vRNA-like
fluorescent reporters interfered with each other and this interference was mitigated by an
increase in polymerase expression [152]. That no dependency on NP was found may be
caused by the artificial nature of the system, i.e., a minireplicon approach was used to
drive replication instead of an authentic infection. Alternatively, our model might overes-
timate the number of available polymerases in an infected cell. In this case, polymerases
would be depleted first and no limitation in NP would occur because we assumed that
encapsidation is a two-step mechanism which requires the formation of an RdRp-RNA
complex before NP can bind. Whatever the exact mechanism, both the model and the
experiments [152] suggest that encapsidation factors are the most likely candidates for
viral resources that become limiting during DI RNA replication.
In our simulations, the competition for viral resources causes a reduction in all full-

length viral RNAs. Some experiments show such a reduction upon coinfection of cells by
STVs and DIPs [150]. Yet, in other studies, wild-type RNA levels remain unaffected by
DI RNA replication [113, 114]. Hence, this effect might depend on the characteristics of
the DI RNA such as its initial concentration and its advantage in replication (discussed
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below). Besides a global effect on viral RNA levels, some DI RNAs have also been shown
to cause a reduction in only the level of their corresponding full-length segment, while
other full-length vRNAs were produced normally [113]. This observation would argue for
a segment-specific effect of DI-RNAs mediated by factors other than NP proteins and
viral polymerases. However, the current model cannot capture such a mechanism. Also
note that our simulations do not account for limitations in host factors, which are the
subject of ongoing investigations.

Influence factors of DIP production Considering the heterogeneity of DIPs and the
different infection conditions they encounter, we used our model to predict how changes
in the replication advantage and the initial virus concentration affect DIP production at
the single-cell level. With respect to changing MOI, we observed that DIP yields from
coinfected cells increase with higher initial concentrations of STVs (Figure 4.36). In
experiments, increasing the MOI of the STV indeed results in higher virus titers [299].
We propose that this is caused by an increase in the availability of polymerases and
NP proteins due to a higher copy number of the full-length vRNAs. Yet, in the above
mentioned study, the authors also found an increase in infectious virus progeny [299],
which is not present in our model since coinfected cells almost exclusively produce DIPs.
This discrepancy may be related to the replication advantage of the DI RNA (discussed
below) or to cell population effects, i.e., the fact that the number of STVs and DIPs
absorbed by each cell is a statistical property leading to a heterogeneous cell population
with respect to the degree of coinfection. By contrast, our model simulates an average
infected cell.
Previously, it has been proposed that DI RNAs may have an optimal length because

larger deletions are assumed to increase replication speed but would also eventually dis-
rupt the terminal packaging signals [144]. Our results suggest that there may be another
constrain. As the replication advantage increases, DI RNAs sequester more and more
viral (and perhaps also cellular) proteins, which eventually impairs full-length RNA syn-
thesis (Figure 4.37). Since the full-length RNAs and their products are required for virus
release, too much of an advantage may hurt DIP production. Hence, at its optimal length,
the defective RNA would outcompete the full-length segments but not deplete the pool
of viral resources. Such an optimal DI RNA may replicate efficiently without altering the
wild-type RNA levels similar to what has been observed in some experiments [113, 114].
Finally, the time point at which a DIP and an STV coinfect a cell has an impact on

virus production in our simulations. In particular, the potential to interfere with STV
release decreases markedly when DIP infection occurs after the shutdown of viral RNA
synthesis around 3 hpi (Figure 4.38). This is in excellent agreement with experiments
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showing that interference is most effective when the DI virus is added within the first
3 h after STV infection [300]. Hence, cells in the late infection phase may be resistant to
DI RNA replication because the DI RNA is no longer able to enter the nucleus due to
high concentrations of M1 and NEP.

DI RNAs of different origin The observation that DI RNAs mostly originate from the
polymerases segments [147, 149] raises the question of whether such defects are more likely
to occur in the first place or cause a more efficient replication such that they emerge
as the dominant species after several rounds of infection. Surprisingly, we find that a
defect in segment 3 does indeed have an advantage in DIP production over a DI RNA
of segment 4 when STV coinfection is delayed (Figure 4.39). More precisely, a defect in
segment 4, which encodes HA, allows viral RNA synthesis to proceed unhindered such
that replication shuts down normally at which point an infecting STV can no longer rescue
virus release. Eventually, the cell dies under the burden of infection without producing
progeny viruses. By contrast, failure to encode a functional polymerase subunit stalls
virus replication and the DI RNA can persist at low levels in the cell; it can wait for
an STV to infect. Thus, we hypothesize that defects in segments which are essential for
viral RNA synthesis (e.g. segment 1–3 and 5) can result in an advantage in DIP growth
when STV infection is delayed. Such DIPs may, hence, outgrow others over subsequent
passages and emerge as the dominant species.

Summary By incorporating a defective RNA into our model of intracellular influenza A
virus replication, we were able to reproduce many qualitative features of DI RNA synthesis
but also found some discrepancies to measurement data. Especially the length-dependent
replication advantage, which leads to large differences in vRNA levels even at low rates,
requires further studies as simulations indicate that, if present, it has to be restricted to
DI RNAs and should not affect short wild-type segments. The cause of such a restriction
remains elusive. Furthermore, modeling suggests that the growth properties of a DIP
depend on the replication advantage of its DI RNA, the initial number of infecting viruses,
the coinfection timing, and the segment carrying the defect. In a heterogeneous DIP
population, DI RNAs that originate from segments essential for viral RNA synthesis
and DI RNAs that do not drain the pool of viral proteins may, hence, have a growth
advantage. Taken together, these results contribute to our understanding of DI RNA
replication and may also help to design production processes for DIPs with therapeutic
potential (reviewed in [144, 145]).
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4.3.3.2. DIP growth during continuous infection

Continuous production processes for influenza virus hold the promise of increasing virus
yields and avoiding batch-to-batch variations. Yet, they suffer from oscillations in virus
titers, which cause periods of low productivity [148]. Using a simple mathematical model
we inferred that such oscillations can have two reasons: the continuous cultivation mode
itself and the growth of DIPs. However, for the experimental system considered here only
the latter can explain why cyclic variations occur.

Oscillations due to process mode The most surprising observation in the continuous
infection experiments conducted by Frensing et al. are the oscillations in HA and TCID50

titers [148]. Our mathematical model indicates that, in principle, such oscillations can
arise in the absence of DIPs due to the continuous cultivation mode (Figure 4.42). More
precisely, the continuous feed from the cell growth reactor prevents the depletion of host
cells by infection, which is typically observed in batch cultivations [177]. At low dilution
rates, these cells can spawn a new cycle of virus production after the previous infection
wave has subsided. The existence of periodic solutions in the absence of DIPs was con-
firmed by an analysis of our model by Frensing and coworkers [148], which also revealed
that such oscillations can only occur if the dilution rate of the virus reactor is lower than
the cell growth rate. Since this was not the case in the experiments, other factors than
the process mode are causing the periodic decrease in virus titers. Also note that oscil-
lations are not unusual in continuous cultivation systems and it has been suggested that
they can arise from cell growth due to feedback interactions between cell metabolism and
the environment, and from interactions among linked intracellular reactions [301, 302].
However, we do not expect that such oscillations play a role here since cell concentrations
in the cell bioreactor were approximately constant.

Oscillations due to DIPs When we introduced DIPs into our model it readily showed
oscillations in virus titers that match the experimental observations (Figure 4.43). In the
past, models of DIP growth have also displayed cyclic variations [271, 303, 304]. However,
these studies considered serial passage infections and the titer fluctuations exerted fea-
tures of deterministic chaos, i.e., virus titers were intrinsically unpredictable after a short
amount of time, which is supported by serial passage experiments [304, 305]. By contrast,
the oscillations in our continuous system are much more regular. A similar observation has
been made in a model for continuous baculovirus infection although the authors did not
check whether these fluctuations could have also originated from the process mode [306].
Yet, such regular patterns correspond well to the measurements of Frensing et al. [148]
and our simulations suggesting that regular oscillations are a general feature of continuous
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infection processes in the presence of DIPs. Hence, this type of process lends itself well
to the analysis of DIP replication under controlled conditions.
Although our model reproduces the frequency of virus titer oscillations, it fails to cap-

ture their amplitude. In particular, it underestimates the fluctuations in TCID50. This
is most likely caused by the relatively simple structure of the model we chose to enable
an analysis of the equation system for bifurcations. These simplifications include the
assumption that coinfection by DIPs can interfere with virus production even if STV
infection is already well advanced. By contrast, our intracellular model of DI RNA repli-
cation (Section 4.3.1) and experimental results [300] suggest that DIPs need to enter
the cell within 3 h after STV infection. Moreover, we adopted a single-hit mechanism of
DIP interference from previous models [271, 303], i.e., infection by a single DIP suffices
to convert an STV-infected cells to a cell that exclusively releases DIPs. While this is
supported by our intracellular model, experimental studies on VSV infection suggest a
multi-hit inhibition with at least four types of productively infected cells whose virus pro-
duction depends on the amount of infecting DIPs [307]. Taken together, these features
may allow a more detailed model to reproduce the measurements more faithfully.

Features of DIP-induced oscillations Our simulations and the measurements display a
delay between the peak in TCID50 and HA titer. Such a delay was also found for infections
by VSV in the presence of its DIPs [308]. It results from the observation that DIPs
need a high MOI to replicate but also interfere with the production of infectious virus.
Hence, large amounts of STVs, which increase the TCID50, favor the accumulation of DIPs
resulting in high HA titers but also causing a drop in infectious viruses. In a continuous
production process, high MOIs could, thus, serve as an indicator for an imminent drop in
HA titer. Yet, assays for the quantification of infectious virus are usually time consuming,
preventing an online control of this parameter. Hence, a mathematical model, like the
one presented here, could be used to predict titer dynamics facilitating interventions to
control the process.
Our simulations also indicate that the DIP-free regime is unstable such that the intro-

duction of DIPs (either by their presence in the inoculum or de novo generation) causes
the rapid accumulation of defective viruses and a decrease in virus titers. This is con-
firmed by our colleagues who analyzed the equation system [148]. Hence, DIPs readily
grow under the chosen experimental conditions and impair virus production unless the
inoculum is completely free of DIPs and they are not produced by STV-infected cells.
A similar observation has been made in a model for VSV infection, in which DIPs dom-
inate subsequent coinfections once they are available [309]. Hence, counteracting DIP
amplification in continuous influenza virus infection is not an easy task. Nevertheless,
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decreasing the de novo generation of DIPs by STV-infected cells can delay DIP accumu-
lation, whereas oscillations are surprisingly robust to changes in seed virus purity. The
latter was also observed in a model for serial passaging of VSV, where the initial DIP
concentration had no effect on steady state virus titers [309].

Summary Our simple mathematical model shows that DIPs can cause periodic oscilla-
tions and low productivity in a continuous infection system for influenza A virus. It also
indicates that the DIP-free regime is unstable such that DIPs readily grow once intro-
duced. Hence, DIP accumulation is a general obstacle in continuous infection systems in
agreement with previous observations of reduced productivity in a two-stage bioreactor
setup for baculovirus infection [310–312]. Different reactor configurations, like a fed-
batch-operated growth reactor coupled to an infection reactor run in batch mode [306],
may be able to address this problem facilitating the production of influenza viruses in a
semi-continuous manner.
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Chapter 5

Conclusion

The general aim of this study was to build mathematical models for influenza A virus
infection at the intracellular and cell population level that can identify bottlenecks of virus
production. Discovering such bottlenecks is a key step toward a better understanding of
virus-host cell interactions. It can also help to increase virus yields in vaccine production
and to develop new, more potent antiviral drugs. Based on our models we proposed
various strategies to meet these goals. In addition, we developed a multiscale model of
influenza A virus infection that links the intracellular processes of viral replication to the
extracellular cell-to-cell transmission and the dynamics of the host cell population. This
model represents a major milestone of the present work allowing us to elucidate how both
levels interact and to uncover emergent properties of infection that only appear when the
system is considered as a whole.

Intracellular virus replication In the first part of this work, we used experimental results
from various sources in literature to derive a kinetic model of influenza A virus infection
at the intracellular level. This model describes the crucial steps of viral replication from
virus entry to the release of progeny virions with a particular focus on the synthesis of
viral RNAs and its regulation. Since the latter is still a matter of controversial debate
we analyzed two model variants that represent different hypotheses on the transition
from viral transcription to genome replication: the switching and stabilization hypothesis,
respectively. While our switching model agrees qualitatively with part of the data, it fails
to correctly account for the influence of viral polymerases on cRNA levels in experiments.
By contrast, simulations that incorporate the stabilization of nascent cRNA by viral
proteins reproduce the measurements well allowing us to capture the time course of the
three viral RNA species during early infection. To also describe later stages of the viral
life cycle a second regulatory mechanism was required. This mechanism controls the fate
of vRNPs, which can either act as templates for viral mRNA and cRNA synthesis while
inside the nucleus or form progeny virions after nuclear export. Our results suggests that
balancing these two roles is key to the successful production of influenza A viruses. In
particular, the nuclear export of vRNPs, which is triggered by M1 and NEP, facilitates
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virus assembly but also causes a shutdown of positive-strand RNA synthesis. Hence,
leaving the nucleus too early may result in an insufficient production of mRNA and cRNA,
whereas a late export can delay progeny virus release. The latter can be detrimental
for the virus as apoptosis may kill the cell before virions can be released and because
virus variants which leave cells faster may have an evolutionary advantage. However,
during vaccine production, where competition between strains is not an issue, the timing
of nuclear export could be tuned to increase virus yields. In addition, increasing the
rate of viral RNA synthesis can boost virus production significantly in our simulations.
In fact, virus yields are particularly sensitive to this process as viral RNAs engage in
an autocatalytic reaction where vRNA produces cRNA and vice versa. Hence, vaccine
strains could benefit from a fast viral polymerase and a slow nuclear export. Moreover,
the fine tuning of host factors required for these processes may improve production cell
lines. In summary, our model captures a wide variety of experimental data and provides
a detailed picture of virus replication at the intracellular level.

Stochastic fluctuations in viral RNA synthesis At the intracellular level viral infec-
tions are often considered noisy because they involve reactions with small molecule num-
bers (e.g. when a single virus particle releases a single copy of the viral genome into the
cytoplasm). In our simulations such stochastic effects do indeed strongly affect influenza A
virus replication decreasing mean virus yields and causing large numbers of low-productive
cells even if each cell is infected by multiple viruses. When infection is initiated by a sin-
gle virion noise can have an even more dramatic effect with most cells failing to produce
infectious virus progeny. Our simulations suggest that both phenomena are favored by
the segmented genome of influenza viruses. Since genome segmentation allows each vRNP
to act as an independent replication unit, stochastic effects, which are amplified by the
autocatalytic mechanism of viral RNA synthesis, can cause large fluctuations in the copy
number of viral genes. These differences between the vRNAs in an infected cell can impair
virus production. Also, stochastic effects can lead to the random degradation of vRNPs,
which has profound consequences when it occurs in the beginning of infection and in cells
where only one copy of the parental viral genome enters the nucleus. In these cases, the
loss of a genome segment prevents the release of replication-competent virions. Especially
at low MOI this effect may contribute to the large number of nonproductive infections
observed experimentally. Taken together, the model shows how stochastic effects can
drive cell-to-cell variability during infection and it provides additional evidence for the
hypothesis that influenza virus particles need to complement each other in order to ensure
a productive infection. Moreover, modeling reveals that, despite its advantages for genetic
diversity, genome segmentation may increase the susceptibility of virus replication to noise
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and may, hence, require regulatory mechanisms that can suppress molecular fluctuations.

Multiscale model of infection In order to study how the intracellular viral life cycle
interacts with infection dynamics at the cell population level we integrated our deter-
ministic model of virus replication into a description of target cell dynamics and virus
transmission from one target cell to the next. Coupling these two scales allows the model
to reproduce intracellular data (e.g. the levels of the three viral RNA species) and, at the
same time, the number of uninfected, infected, and apoptotic cells as well as the virus
titer in cell culture. Furthermore, it facilitates a systematic analysis of the intracellular
processes that are most susceptible to antiviral therapy. We found that the inhibition of
viral RNA and protein synthesis, nuclear export, and assembly/release can efficiently sup-
press virus production. Especially inhibitors of the viral polymerase are highly promising
compounds as they interfere with the exponential growth of viral RNAs. By contrast,
targeting the steps of virus entry (e.g. attachment, endocytosis, and fusion/uncoating)
primarily delays infection but does not reduce peak virus titers in vitro unless the drug
is highly effective. Our simulations also demonstrate that the extend of virus-induced
cell death strongly affects therapy success especially for antivirals that change the time
course of virus release at the intracellular level. These drugs may benefit from the ac-
tive killing of infected cells by the immune system in vivo. Overall, multiscale modeling
can link experimental results on the intracellular and cell population level, and provide
a systems-level understanding of virus infection across these different scales. Our model,
therefore, represents a promising platform to incorporate further levels of detail like the
immune response and viral pathogenesis.

Replication of defective interfering viruses The last part of this work focuses on the
growth of DIPs, which can compromise virus production at the intracellular and cell pop-
ulation level. For the replication inside an infected cell simulations show that DI RNAs
rapidly outgrow the full-length vRNAs competing with them for viral encapsidation fac-
tors. Depletion of NP proteins and viral polymerases may, hence, represent one mechanism
of DI RNA–induced interference. We also find that, due to the autocatalytic mechanism
of viral replication, a modest advantage in replication suffices to induce large differences
between the full-length and DI RNAs causing coinfected cells to almost exclusively release
progeny DIPs. Since such differences have not been observed between wild-type segments
of different length, the replication advantage does not seem to be strictly length depen-
dent but may rather apply to DI RNAs only. This favors the hypothesis that wild-type
segments contain regulatory elements that are impaired or completely lost upon deletion
of large internal stretches of the vRNA. The model also provides insights into the features
that determine whether a subgenomic RNA replicates successfully. In order to produce
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large amounts of DIPs in our simulations a DI RNA requires an intermediate replication
advantage allowing it to accumulate rapidly without draining the pool of viral proteins.
Moreover, it needs to coinfect a cell no later than 3 h after STV infection to be able to
cause interference. Finally, we found that DI RNAs which originate from segments essen-
tial for viral RNA synthesis may have an additional growth advantage as they can persist
in DIP-infected cells at low levels allowing them to wait for STV coinfection. Taken
together, these result shed light on the replication of DI RNAs inside infected cells and
suggest further experiments to better characterize their growth.
In order to study a continuous production process for influenza vaccines we also devel-

oped a simple mathematical model of DIP replication at the cell population level. This
model suggests that DIPs can readily accumulate in such a system causing regular oscilla-
tions in virus titers, which show remarkable resemblance to the measurement data. Since
these oscillations lead to periods of low productivity, the model was used to test different
strategies to avoid DIP accumulation. Neither of these strategies succeeded in eliminat-
ing the oscillations although reducing de novo DIP generation was able to delay the first
decrease in virus titers. The persistence of oscillations agrees well with the observation
that the DIP-free model regime is unstable such that constant virus titers can only exist
in the absence of de novo DIP generation and of DIPs in the inoculum. Overall, DIPs
thus represent a significant challenge to the continuous production of influenza A virus,
which calls for different process modes and/or reactor configurations.

Summary We have developed several quantitative mathematical models of influenza A
virus infection at the intracellular and cell population level. These models suggest novel
targets for antiviral therapy and strategies to increase virus yields in vaccine production.
They also allowed us to integrate some of the current knowledge on influenza A virus
infection into a systematic framework and to test competing hypotheses on the viral life
cycle against data from different experimental sources. In contrast to previous modeling
approaches, which mainly studied the different levels of infection in isolation, we also built
a multiscale model that links intracellular virus replication with infection dynamics at
the within-host scale. While such an approach facilitates an investigation of the system’s
emergent properties today, it may become even more important in the future by allowing
us to predict the pathogenicity and pandemic potential of new virus variants from their
molecular traits and perhaps also from their genome sequence.
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Chapter 6

Outlook

The mathematical models presented in this work capture a wide variety of in vitro data
and provide a detailed picture of viral kinetics in cell culture. Applying these findings to
in vivo infections and in particular to influenza in humans holds great promise for future
studies. Especially the multiscale model lends itself well to such an investigation as it
could link the molecular traits of a virus, which govern its intracellular replication, to viral
pathogenesis at the tissue scale and organ level. Multiscale models may, hence, contribute
to clinical drug trials and to the development of more potent vaccines. In order to be
compatible with in vivo data the model does, however, need an adequate representation
of the immune response. This could include both, antiviral mechanisms within a cell,
like the interferon response and other antiviral signaling cascades, as well as processes
at the extracellular level, such as virus-specific antibodies and cell-mediated immunity.
Due to its integrative nature, multiscale modeling could use existing descriptions of these
processes allowing future studies to benefit from the large pool of models already available
in systems immunology [184].
Accounting for the transmission of viruses between hosts (i.e. the epidemic scale)

would represent another promising step toward a more detailed multiscale description
of influenza virus infection. This approach may reveal how differences between virus
strains at the molecular level affect their fitness across various scales, e.g., whether a fast
polymerase, which increases the number of virions an infected cell can release, also leads
to higher lung titers in infected patients and provides an advantage with respect to virus
spreading in the human population. Such models may eventually allow us to predict the
virulence and pandemic potential of new virus variants from their sequence data (i.e. the
phenotype from the genotype) by revealing the molecular events that lead to disease at
the organism level and epidemic scale.
At the intracellular level, future studies may benefit from extending the scope of mod-

eling to host cell factors that are essential for influenza virus replication. Incorporating
these factors could support cell line engineering for vaccine production, e.g., the identifica-
tion of cellular proteins whose knockdown or overexpression can increase virus production.
In addition, it would facilitate an in silico analysis of host factors for their potential as
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antiviral drug targets [118]. However, extending the intracellular model in such a way
is currently limited by the available data. Cell culture experiments in which a specific
cellular factor is perturbed and intracellular viral kinetics are measured could provide
such data. In addition, modeling could be guided by the results of large-scale siRNA
screens although these screens typically produce only limited insights into the kinetics of
intracellular infection. More sophisticated models may provide such information thereby
contributing to a quantitative understanding of virus-host cell interactions.
Another aspect that deserves further attention is the regulation of viral RNA synthesis.

Although a model of the stabilization hypothesis can reproduce many of the experimen-
tal observations it does not rule out other regulatory interactions proposed in literature.
Building alternative model variants from these hypotheses and using model discrimina-
tion techniques may reveal which mechanisms are strictly necessary to explain the data.
Moreover, model-based experimental design can suggest what components to measure and
when to measure them in order to validate or invalidate these hypotheses. Such theoretical
studies could be supported by experiments that use specific inhibitors of virus replica-
tion or by monitoring the replication of DI RNAs. Hence, applying the iterative cycle of
mathematical modeling and experimental validation may help to gain a comprehensive
picture of the factors that control the intracellular viral life cycle.
With respect to the noise observed in virus replication it would be highly desirable

to use stochastic models for the estimation of intracellular parameters. However, two
circumstances prevent their application at the moment. On the one hand, data on virus
replication in individual cells are required to accurately calibrate stochastic intracellular
models but such measurements are currently lacking. Recent advances in experimental
techniques do, however, allow to probe single cell infection. On the other hand, com-
putational efficiency is a major bottleneck for the simulation of stochastic models. One
way to improve the performance are hybrid algorithms that combine deterministic and
stochastic simulation techniques. If these algorithms can reduce computation time signif-
icantly, stochastic models may replace their deterministic counterparts in the analysis of
intracellular viral kinetics in the future.
The development of multiscale models that account for molecular noise represents an-

other interesting avenue of research. In particular, stochastic effects could influence the
cell population level in low MOI scenarios (e.g. shortly after inoculation) and during an
infection with DIPs, where the number of viruses that infect a particular cell is a statistical
property. Noise in the initial phase of infection could, for instance, cause large fluctuations
in the onset of virus production (i.e. the delay until the virus titer increases), which are
typically observed between low MOI experiments. Modeling could reveal what part of this
inter-experiment variation is caused by the inherent randomness of biochemical reactions.
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Moreover, our stochastic model at the intracellular level suggests that low MOI situations
result in a large percentage of nonproductive infections. Hence, a relatively small number
of virus-producing cells may determine whether the virus is able to establish itself in a
host. Entry inhibitors which further reduce this number, may, therefore, be particularly
suitable to act as prophylactic antivirals.
Overall, the combination of mathematical modeling with state-of-the-art experimental

techniques holds great promise for influenza virus research. Especially multiscale models
and stochastic approaches provide the means of moving virology from a descriptive to a
predictive science. In the future, mathematical models may, thus, gain a more prominent
role in the fight against influenza.
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Appendix A

Intracellular virus replication

This chapter provides additional information on the intracellular model of influenza A
virus replication. It covers the deterministic implementation first and then presents sup-
plements to the stochastic model.

A.1. Deterministic model

Here, we summarize all parameter values and initial conditions used to simulate the
deterministic model of influenza A virus replication at the intracellular level.

Table A.1.: List of parameters for the deterministic intracellular model.

Parameter Value Source, Reference, Comment

Btot
hi (sites) 150 [251]

Btot
lo (sites) 1 000 [251]

DRib (nucleotides) 160 [313]
FFus (–) 0.51 Figure 4.2A
FSpl7 (–) 0.02 Ratio of M2 to M1 in virion
FSpl8 (–) 0.125 [314]
Kswt (molecules/cell) 5.89× 1011 Figure 4.6
KVRel (virions) 10 Adjusted
kAtt

hi (site · h)−1 8.09× 10−2 Adjusted to data in [251]
kAtt

lo (site · h)−1 4.55× 10−4 Adjusted to data in [251]
kBind

M1 (molecule · h)−1 1.39× 10−6 Figure 4.5A and B
kBind

NP (molecule · h)−1 3.01× 10−4 Figure 4.3B–D
kBind

RdRp (molecule · h)−1 1 Figure 4.3B–D
kDeg

M (h−1) 0.33 Figure 4.3B–D
kDeg

R (h−1) 36.36 Figure 4.3B–D
kDeg

Rnp (h−1) 0.09 Figure 4.5A and B
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Parameter Value Source

kDeg
RRdRp (h−1) 4.25 Figure 4.3B–D
kEn (h−1) 4.8 Figure 4.2A
kEq

hi (site−1) 1.13× 10−2 [251]
kEq

lo (site−1) 8.33× 10−5 [251]
kExp (molecule · h)−1 1× 10−6 Adjusted to data in [104]
kFus (h−1) 3.21 Figure 4.2A
kImp (h−1) 6 [48]
kRdRp (molecule−2 · h−1) 1 Rapid complex formation assumed
kRel (virions/(molecule · h)) 3.7× 10−3 Cell releases 104 virions in 12 h
kRes

C (h−1) 0.03 Figure 4.4A
kSyn

C (h−1) 1.38 Figure 4.5A and B
kSyn

M (nucleotides/h) 2.5× 105 Figure 4.5A and B
kSyn

P (nucleotides/h) 64 800 [315]
kSyn

V (h−1) 13.86 Figure 4.5A and B
L1 (nucleotides) 2 320 [25]
L2 (nucleotides) 2 320 [25]
L3 (nucleotides) 2 211 [25]
L4 (nucleotides) 1 757 [25]
L5 (nucleotides) 1 540 [25]
L6 (nucleotides) 1 392 [25]
L7 (nucleotides) 1 005 [25]
L8 (nucleotides) 868 [25]
LV (nucleotides) 1 700 Based on [25]
NPHA (molecules/virion) 500 [25]
NPM1 (molecules/virion) 3 000 [25]
NPM2 (molecules/virion) 40 [25]
NPNA (molecules/virion) 100 [25]
NPNP (molecules/virion) 1 000 [25]
NPNEP (molecules/virion) 165 [25]
NPRdRp (molecules/virion) 45 [25]
NNuc

M1 (nucleotides) 200 [79]
NNuc

NEP (nucleotides) 1 700 Adjusted to [59]
NNuc

NP (nucleotides) 24 [59]
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Table A.2.: Initial conditions and parameter changes (compared to Table A.1) used to simulate
the stabilization model.

Figure Non-zero initial conditions Parameter changes

Figure 4.1A V Ex = 2460 kEn = 0
Figure 4.1B V Ex = 0 – 1.5× 104 kEn = 0
Figure 4.2A V Att

hi = 100
Figure 4.2B V Ex = 10 kDeg

Rnp = 0, kSyn
P = 0

Figure 4.3A Vpnuc = 8 kDeg
M = 0.37, kDeg

R = 0.06,
kDeg

Rnp = 0, kSyn
C = 0.03,

kSyn
M = 350, kSyn

P = 0
Figure 4.3B V Att

hi = 5, PPA = 104, PPB2 = 104, FFus = 1, kDeg
Rnp = 0,

PNP = 104 kEq
hi = 108, kSyn

C = 0.76,
kSyn

M = 1630, kSyn
P = 0,

kSyn
V = 0

Figure 4.3C V Att
hi = 5, PRdRp = 104, PNP = 104 Same as for Figure 4.3B

Figure 4.3D V Att
hi = 5, PRdRp = b · 104, PNP = b · 104,

b = [0, 1, 2, 4]=̂[−,+,++,+ + ++]
Same as for Figure 4.3B

Figure 4.5 V Att
hi = 10 kEq

hi = 108

Figure 4.7 V Att
hi = 10 kEq

hi = 108

Figure 4.8 V Ex = 10 Perturbation by 15%

Table A.3.: Initial conditions and parameter changes (compared to Table A.1) used to simulate
the switching model.

Figure Non-zero initial conditions Parameter changes

Figure 4.4A Vpnuc = 8 kDeg
M = 0.37, kDeg

R = 0.06,
kDeg

Rnp = 0, kRes
C = 0.03,

kSyn
M = 350, kSyn

P = 0
Figure 4.4B V Att

hi = 5, PPA = 104, PPB2 = 104, FFus = 1, Kswt = 8.85× 106,
PNP = 104 kDeg

M = 0.34, kDeg
R = 0.92,

kDeg
Rnp = 0, kEq

hi = 108,
kRes

C = 0.35, kSyn
M = 1.63× 103,

kSyn
C = 152, kSyn

P = 0,
kSyn

V = 0
Figure 4.4C V Att

hi = 5, PRdRp = 104, PNP = 104 Same as for Figure 4.4B
Figure 4.4D V Att

hi = 5, PRdRp = b · 104, PNP = b · 104,
b = [0, 1, 2, 4]=̂[−,+,++,+ + ++]

Same as for Figure 4.4B

Figure 4.6 V Att
hi = 10 kEq

hi = 108, kSyn
M = 1.79× 105,

kDeg
R = 0.28, kSyn

C = 727,
kSyn

V = 603, kBind
M1 = 1.48×10−6
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Table A.4.: Parameter estimates for the transition from transcription to genome replication
based on a model that accounts for the switching hypothesis.

Parameter Value Local sensitivity
in vitroa cell cultureb in vitroa cell cultureb

Kswt (molecules/cell) – 8.85× 106 – 3.06× 10−2

kBind
NP (molecule · h)−1 – 3.01× 10−4,c – 1.62× 10−5

kBind
RdRp (molecule · h)−1 – 1c – 5.23× 10−12

kDeg
M (h−1) 0.37 0.34 0.13 1.44× 10−2

kDeg
R (h−1) 0.06 0.92 1.76× 10−2 4.54× 10−2

kRes
C (h−1) 0.03 0.35 8.78× 10−2 3.93× 10−2

kSyn
C (h−1) – 152 – 3.14× 10−2

kSyn
M (h−1) 0.21d 0.96d 0.18 8.12× 10−2

aModel fit presented in Figure 4.4A.
bModel fit presented in Figure 4.4B–D.
cParameter was fixed to the value from the stabilization model.
dFor better comparison, the synthesis rate of an mRNA of average length is shown. In the model,
transcription is proportional to the actual length of each segment’s mRNA and a length specific synthesis
rate (here 350 and 1635 nucleotides · h−1, respectively).

Table A.5.: Parameter estimates for the
switching model considering data in Figure 4.6.

Parameter Value

Kswt (molecules/cell) 5.89× 1011

kBind
M1 (molecule · h)−1 1.48× 10−6

kDeg
R (h−1) 0.28
kSyn

C (h−1) 727
kSyn

M (h−1) 105a

kSyn
V (h−1) 603

aSynthesis rate of an mRNA of average length
using a length specific rate of 1.79 · 105 nucleotides ·h−1.
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Table A.6.: Parameters corresponding to the mechanisms
listed in Figure 4.8.

Mechanism Parameter

Binding of M1 to nuclear vRNPs kBind
M1

cRNA synthesis kSyn
C

Degradation of RdRp-RNA complexes kDeg
RRdRp

Degradation of RNPs kDeg
Rnp

Degradation of viral mRNAs kDeg
M

Encapsidation of viral RNAs by NP kBind
NP

Endocytosis of virions kEn

Viral mRNA synthesis kSyn
M

Viral protein synthesis kSyn
P

Virus assembly / release kRel

vRNA synthesis kSyn
V
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A.2. Stochastic model

This section provides parameter values and initial conditions used to simulate the stoch-
astic model of intracellular influenza A virus replication. In addition, it summarizes the
equations of three model variants including a model that neglects genome segmentation,
an improved version that considers the vRNAs (and cRNAs) of different genome segments,
and a stochastic model for segment-specific regulation of viral RNA synthesis.

Table A.7.: List of parameters for the stochastic intracellular model.a

Parameter Value Source, Reference, Comment

ε (–) 0.03 [264]
kBind

M1 (molecule · h)−1 1b Rapid binding assumed
kIn (molecule · h)−1 0.87 Fit to the deterministic model
kSyn

S (h−1) 0.1 Adjusted
LV

1 (nucleotides) 2 341 [25]
LV

2 (nucleotides) 2 341 [25]
LV

3 (nucleotides) 2 233 [25]
LV

4 (nucleotides) 1 778 [25]
LV

5 (nucleotides) 1 565 [25]
LV

6 (nucleotides) 1 413 [25]
LV

7 (nucleotides) 1 027 [25]
LV

8 (nucleotides) 890 [25]
nc (–) 10 [264]

aIn addition to the parameters shown here, the model uses the values from Table A.1.
bOnly used for the model that considers segment-specific regulation (otherwise kBind

M1 = 1.39×10−6) since
svRNAs govern the shutdown of RNA(+) synthesis in this model variant.

Initial conditions In terms of initial conditions, the number of extracellular virions,
V Ex (t = 0), in the stochastic simulations was set to the NIVC indicated in each figure.
For the simulation in Figure 4.9 the initial condition was V Ex (t = 0) = 30 virions/cell.

A.2.1. Model that neglects genome segmentation

For stochastic simulations it was more convenient to rewrite our model of intracellular
influenza A virus replication into chemical equations. Based on Equations (3.1.1)–(3.1.4),
we obtained the corresponding formulas for virus entry.

V Ex +Bn
kAtt

n−−⇀↽−−
kDis

n

V Att
n , n ∈ {hi, lo} ,

V Att
n

kEn−−→ V En +Bn,
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V En kDeg
En−−→ ∅,

V En kFus−−→ 8Vpcyt,

Vpcyt kImp−−→ Vpnuc.

If not otherwise indicated, we assumed that all reaction rates follow from mass action
kinetics and that a reaction only occurs if all its substrates are available. For viral RNA
replication Equations (3.1.5)–(3.1.13) translate to:

Vpnuc kSyn
C−−→ Vpnuc +RC,

RV + PRdRp
kBind

RdRp−−−→ RV
RdRp,

RV
RdRp + bLV/NNuc

NP cPNP
kBind

NP−−−→ Vpnuc,

Vpnuc + bLV/NNuc
M1 cPM1

kBind
M1−−−→ Vpnuc

M1 ,

Cp
kSyn

V−−→ Cp +RV,

RC + PRdRp
kBind

RdRp−−−→ RC
RdRp,

RC
RdRp + bLV/NNuc

NP cPNP
kBind

NP−−−→ Cp,

Vpnuc
M1 + PNEP

kExp−−→ Vpcyt
M1.

Note that the binding rates for viral proteins to RNAs and RNPs were calculate
from first order mass action kinetics neglecting the exponents that would typically
follow when multiple proteins bind in a single step. Viral mRNA and protein synthe-
sis (Equations (3.1.16)–(3.1.26)) can be described by the following equations.

Vpnuc kSyn
M /(8Li)−−−−−−→ Vpnuc +RM

i , i = 1, .., 8,

RM
4

kSyn
P /DRib−−−−−−→ RM

4 + PHA,

RM
5

kSyn
P /DRib−−−−−−→ RM

5 + PNP,

RM
6

kSyn
P /DRib−−−−−−→ RM

6 + PNA,

RM
7

kSyn
P (1−FSpl7)/DRib−−−−−−−−−−−−→ RM

7 + PM1,

RM
7

kSyn
P FSpl7/DRib−−−−−−−−−→ RM

7 + PM2,

RM
8

kSyn
P FSpl8/DRib−−−−−−−−−→ RM

8 + PNEP,

RM
1 +RM

2 +RM
3

kSyn
P /DRib−−−−−−→ RM

1 +RM
2 +RM

3 + PRdRp.

In the last equation, we calculated the rate of viral polymerase production using
min

(
RM

1 , R
M
2 , R

M
3

)
instead of the product of the three viral mRNAs (see Section 3.1.2

for details). For simplicity and agreement with the deterministic model, virus release was
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assumed to occur in a single reaction step.

8Vpcyt
M1 + NPHA

PHA + NPNA
PNA + NPM2

PM2 + (NPRdRp
−8)PRdRp

+ (NPNP
−bLV/NNuc

NP c)PNP + (NPM1
−bLV/NNuc

M1 c)PM1 + (NPNEP
−8)PNEP

rRel−−→ V Rel,

where the release rate (rRel) is given by Equation (3.1.27). Finally, the equations for
degradation processes are the following.

RV kDeg
R−−→ ∅,

RV
RdRp

kDeg
RRdRp−−−−→ ∅,

Cp
kDeg

Rnp−−→ ∅,

RC kDeg
R−−→ ∅,

RC
RdRp

kDeg
RRdRp−−−−→ ∅,

Vpnuc
M1

kDeg
Rnp−−→ ∅,

RM
i

kDeg
M−−→ ∅,

Vpnuc kDeg
Rnp−−→ ∅,

Vpcyt
M1

kDeg
Rnp−−→ ∅.

A.2.2. Model that considers genome segmentation

The model shown above does not consider the vRNAs (and cRNAs) of individual genome
segments explicitly but rather accounts for their total number. Hence, it assumes that
these RNA species exist in equimolar concentrations throughout infection. Here, this
assumption is dropped in favor of a more general model. From Equations (3.1.1)–(3.1.4)
and the modifications in Section 3.1.2 virus entry followed as:

V Ex +Bn
kAtt

n−−⇀↽−−
kDis

n

V Att
n , n ∈ {hi, lo} ,

V Att
n

kEn−−→ V En +Bn,

V En kDeg
En−−→ ∅,

V En kFus−−→ V cyt,

V cyt kImp−−→ Vpnuc
1 + Vpnuc

2 + . . . + Vpnuc
8 ,

where V cyt denotes a cytoplasmic complex that comprises the eight genome segments and
Vpnuc

i is the number of vRNPs of segment i in the nucleus. We assumed that the reaction
rates follow mass action kinetics if not otherwise stated and that for a reaction to occur
all its substrates must be available. For viral RNA replication, the deterministic model
was extended by accounting for each segment i = 1, . . . , 8 individually.
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Vpnuc
i

kSyn
C−−→ Vpnuc

i +RC
i ,

RV
i + PRdRp

kBind
RdRp−−−→ RV

RdRp,i,

RV
RdRp,i + bLV

i /N
Nuc
NP cPNP

kBind
NP−−−→ Vpnuc

i ,

Vpnuc
i + bLV

i /N
Nuc
M1 cPM1

kBind
M1−−−→ Vpnuc

M1,i,

Cpi
kSyn

V−−→ Cpi +RV
i ,

RC
i + PRdRp

kBind
RdRp−−−→ RC

RdRp,i,

RC
RdRp,i + bLV

i /N
Nuc
NP cPNP

kBind
NP−−−→ Cpi,

Vpnuc
M1,i + PNEP

kExp−−→ Vpcyt
M1,i,

where LV
i denotes the length of segment i’s vRNA. Note that the binding rates for viral

proteins to RNAs and RNPs were calculate from first order mass action kinetics neglecting
the exponents that would typically follow when multiple proteins bind in a single step.
Viral mRNA and protein synthesis are described by the following equations.

Vpnuc
i

kSyn
M /Li−−−−→ Vpnuc

i +RM
i ,

RM
4

kSyn
P /DRib−−−−−−→ RM

4 + PHA,

RM
5

kSyn
P /DRib−−−−−−→ RM

5 + PNP,

RM
6

kSyn
P /DRib−−−−−−→ RM

6 + PNA,

RM
7

kSyn
P (1−FSpl7)/DRib−−−−−−−−−−−−→ RM

7 + PM1,

RM
7

kSyn
P FSpl7/DRib−−−−−−−−−→ RM

7 + PM2,

RM
8

kSyn
P FSpl8/DRib−−−−−−−−−→ RM

8 + PNEP,

RM
1 +RM

2 +RM
3

kSyn
P /DRib−−−−−−→ RM

1 +RM
2 +RM

3 + PRdRp,

where we calculated the rate of viral polymerase production in the last equation using
min

(
RM

1 , R
M
2 , R

M
3

)
instead of the product of the three viral mRNAs (see Section 3.1.2 for

details). For simplicity and agreement with the deterministic model, virus release was
assumed to occur in a single reaction step.

Vpcyt
M1,1 + . . . + Vpcyt

M1,8 + NPHA
PHA + NPNA

PNA + NPM2
PM2

+ (NPRdRp
−8)PRdRp + (NPNP

−
∑

ibLV
i /N

Nuc
NP c)PNP

+ (NPM1
−
∑

ibLV
i /N

Nuc
M1 c)PM1 + (NPNEP

−8)PNEP
rRel−−→ V Rel,

with the release rate (rRel) given by Equation (3.1.32). Finally, the equations for
degradation processes are the following.

RV
i

kDeg
R−−→ ∅, RC

i
kDeg

R−−→ ∅, RM
i

kDeg
M−−→ ∅,
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RV
RdRp,i

kDeg
RRdRp−−−−→ ∅,

Cpi
kDeg

Rnp−−→ ∅,

RC
RdRp,i

kDeg
RRdRp−−−−→ ∅,

Vpnuc
M1,i

kDeg
Rnp−−→ ∅,

Vpnuc
i

kDeg
Rnp−−→ ∅,

Vpcyt
M1,i

kDeg
Rnp−−→ ∅.

A.2.3. Model with segment-specific regulation

In Section 4.1.2, we introduced a stochastic model that considers a segment-specific mech-
anism for the regulation of positive-strand RNA synthesis. This model is similar to the
description presented above (Section A.2.2) with the following exceptions. We incorpo-
rated the number of svRNAs of segment i (RS

i ), which are produced by cRNPs.

Cpi
kSyn

S−−→ Cpi +RS
i ,

where kSyn
S denotes the synthesis rate of svRNAs. These svRNAs are assumed to induce

an inactive state in nuclear vRNPs (VpIn) that carry the genome segment from which the
svRNA originates.

Vpnuc
i

kInRS
i−−−→ VpIn

i ,

where kIn is the inactivation rate. The inactivated vRNPs can no longer serve as templates
for mRNA and cRNA synthesis but may bind M1 proteins to form M1-vRNP complexes.

VpIn
i + bLV

i /N
Nuc
M1 cPM1

kBind
M1−−−→ Vpnuc

M1,i.

In this model, M1 proteins only bind to the inactivated RNPs replacing the corresponding
equation in Section A.2.2. The other reactions are as described above.
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A.2.4. Comparison between deterministic and stochastic simulations

The following section presents three figures showing that the modifications outlined in
Section 3.1.2 do not change model dynamics in a deterministic setting (Figure A.1),
that 3 000 stochastic runs are sufficient to obtain a representative sample of the system’s
dynamics (Figure A.2), and that the stochastic model shows similar results than the
deterministic implementation if genome segmentation is neglected (Figure A.3).

Figure A.1.: Impact of modifying and extending the deterministic model. For an
infection at an MOI of 10 the original deterministic model of intracellular virus replication (cir-
cles) was compared to a deterministic model that incorporates the modifications and extensions
outlined in Section 3.1.2 (lines). These modifications include that vRNAs and cRNAs of in-
dividual genome segments are accounted for, segment separation occurs after nuclear import,
polymerase subunits were neglected, and discrete numbers of NP, M1 and NEP molecules bind
to RNAs. (A) vRNA and mRNA level of segment 5 (encoding NP). (B) cRNA level of segment 5.
(C) Abundance of viral polymerases (PRdRp) and M1 proteins (PM1). (D) Cumulative number
of released virus particles.
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Figure A.2.: Difference between the deterministic model and the mean of stochastic
simulations that neglect genome segmentation. The normalized sum of squared residu-
als (SSR) between both simulation techniques was determined for an infection at an MOI of 10
using a stochastic mean averaged over an increasing number of runs. Each point in the graph
corresponds to the mean of 500 SSRs calculated by comparing the deterministic model to the
average of the indicated number of stochastic runs, which were randomly drawn from a set of
5 000 runs. The normalized SSRs were calculated over all states present in both models, whereby
each state was divided by its maximum in the deterministic model and the number of simulated
time points.
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Figure A.3.: Comparison between the deterministic model and stochastic simula-
tions that neglect genome segmentation. The deterministic model of intracellular influenza
virus replication (points) was compared to the mean of 3 000 stochastic simulation runs (lines)
for an infection at an NIVC of 10. The stochastic model was simulated with the modifications in
Section 3.1.2 but without explicit consideration of the vRNAs and cRNAs of individual genome
segments (see Section A.2.1). (A) vRNA level of an arbitrary genome segment and mRNA level
of segment 5 (encoding NP). (B) cRNA level or an arbitrary segment. (C) Abundance of viral
polymerases (PRdRp) and M1 proteins (PM1). (D) Cumulative number of released virus particles.
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Appendix B

Multiscale model of infection

Here, supplementary information on the multiscale model of infection are given. These
include the parameters and initial conditions used for simulations and two additional
figures depicting bimodal NP distributions in infected cell populations (Figure B.1) and
virus titer dynamics under drug treatment (Figure B.2).

Table B.1.: List of parameters for the intracellular level of the multiscale model.a

Parameter Value Source, Reference, Comment

KVRel (virions) 300 Adjusted
kBind

M1 (molecule · h)−1 2.43× 10−4 Figure 4.24A
kSyn

C (h−1) 5.29 Figure 4.24A
kSyn

M (nucleotides/h) 8.53× 105 Figure 4.24A
kSyn

V (h−1) 32.18 Figure 4.24A
kRel

max (virions/(cell · h)) 586 Figure 4.24A
aIf not explicitly shown here, the parameters from Table A.1 were used.
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Table B.2.: List of parameters for the extracellular level of the multiscale model.

Parameter Value Source, Reference, Comment

µmax (h−1) 0.03 [177]
Btot

hi (sites/cell) 150 [251]
Btot

lo (sites/cell) 1 000 [251]
FInf (cells/virion) 1 Figure 4.24B
kApo

I (h−1) 3.28× 10−2 Figure 4.24B
kApo

T (h−1) 7.35× 10−3 Figure 4.24B
kAtt

c,hi (ml/(site · h)) 3.32× 10−8 Adjusted to data in [251]
kAtt

c,lo (ml/(site · h)) 1.85× 10−10 Adjusted to data in [251]
kDeg

V (h−1) 0.1 [217]
kEn (h−1) 4.8 Figure 4.2A
kEq

c,hi (ml/site) 4.48× 10−9 [251]
kEq

c,lo (ml/site) 3.32× 10−11 [251]
kFus (h−1) 9.56× 10−3 Figure 4.24A
kLys (h−1) 6.39× 10−2 Figure 4.24B
Tmax (cells/ml) 7× 105 Data not shown

Table B.3.: List of non-zero initial conditions for the multiscale model.

Simulation Level Initial condition

Figure 4.23D, 4.24A intracellular V Ex = 1.2 virions/cell
Figure 4.24B, 4.26 intracellular Vpcyt = 8molecules/cell

extracellular T = 4.90× 105 cells/ml,
Ta = 9.49× 103 cells/ml,
V = 6.90× 104 virions/ml

Figure 4.25 intracellular Vpcyt = 8molecules/cell
extracellular (MOI = 10−4) T = 5.10× 105 cells/ml,

Ta = 8.90× 103 cells/ml,
V = 51 virions/ml

extracellular (MOI = 0.1) same as in Figure 4.24B
extracellular (MOI = 3) T = 5.24× 105 cells/ml,

Ta = 8.06× 103 cells/ml,
V = 1.57× 106 virions/ml

Figure 4.27, 4.28, 4.29 intracellular Vpcyt = 8molecules/cell
Figure 4.30 intracellular Vpcyt = 8molecules/cell,

extracellular T = 5.29× 105 cells/ml,
V = 52.9 virions/ml
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Table B.4.: Parameters corresponding to the drug
targets in Figure 4.28 and 4.30.

Mechanism Parameter

Assembly of RdRp-complexes kRdRp

Binding of M1 to nuclear vRNPs kBind
M1

Binding of RdRp to viral RNAs kBind
RdRp

cRNA synthesis kSyn
C

Encapsidation of viral RNAs by NP kBind
NP

Endocytosis of virions kEn

Fusion with endosomes kFus

Nuclear export of viral genomes kExp

Nuclear import of viral genomes kImp

Viral mRNA synthesis kSyn
M

Viral protein synthesis kSyn
P

Virus binding to high-affinity sites kAtt
c,hi

Virus binding to low-affinity sites kAtt
c,lo

Virus assembly / release kRel
max

vRNA synthesis kSyn
V

Splicing of mRNAs for M2 FSpl7
Splicing of mRNAs for NEP FSpl8
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Figure B.1.: Bimodal distribution of cellular NP content during multi-cycle infec-
tion. Same as in Figure 4.26 except that an MOI of 1 was simulated and the rate of virus fusion
was increased to the value in Table 4.1. (A) Concentration of uninfected (solid) and infected
cells (dashed). (B) Infection age density. (C) Distribution of cells that contain the indicated
amount of NP proteins at different times post infection.
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Figure B.2.: Virus titer dynamics in response to DAA treatment. Infectious virus
titer in the absence (dashed line) and presence (solid line) of drugs that target the indicated
steps of viral replication with an efficacy of 95% during an infection at an MOI of 10−4. Colors
indicate whether the drug decreases virus titers (green), primarily delays infection (yellow), or
increases virus production (red).
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Appendix C

Defective interfering viruses

This chapter provides additional information on the models for DI RNA replication at
the intracellular level and DIP growth during continuous virus infection experiments.
It lists their parameters and initial conditions and presents model equations for the
synthesis of DI RNAs of segment 3 (encoding PA) and 4 (encoding HA), respectively.

Table C.1.: List of parameters for the intracellular model of DI RNA replication.a

Parameter Value Source, Reference, Comment

FAdv (–) 3.65b Assumption (see Figure 4.31)
kCplx (molecules−7 · h−1) 1 Rapid complex formation assumed
LV

1 (nucleotides) 2 341 [25]
LV

2 (nucleotides) 2 341 [25]
LV

3 (nucleotides) 2 233 [25]
LV

4 (nucleotides) 1 778 [25]
LV

5 (nucleotides) 1 565 [25]
LV

6 (nucleotides) 1 413 [25]
LV

7 (nucleotides) 1 027 [25]
LV

8 (nucleotides) 890 [25]
LV

9 (nucleotides) 480b [108]
aIn addition to the parameters shown, here the model uses the values from Table A.1.
bAdvantage and length for a model DI RNA of segment 3 (if not otherwise indicated). Simulations of a
DI RNA of segment 4 use FAdv = 4.39 and LV

9 = 330 nt.
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Table C.2.: Initial conditions and parameter changes (compared to Table C.1 and Table A.1)
used to simulate the intracellular model of DI RNA replication.

Figure Non-zero initial conditions Parameter changes

Figure 4.31C Vpnuc
9 = 1, PRdRp = 104, PNP = 104, FAdv = [0, 1, 3.65],

dPj/dt = 0 LV
9 = [2233, 1117, 480]

Figure 4.32, 4.33 V Ex = [2, 1], DEx = [0, 1]
Figure 4.34 V Ex = b, DEx = b, FAdv = 0 for DIPNA

with b = [0, 1, 2]=̂[−,+,++]
Figure 4.36 V Ex = 0 – 15, DEx = 0 – 15
Figure 4.37 V Ex = 1, DEx = 1 FAdv = 0 – 4.2,

LV
9 = 2233 – 429

Figure 4.38A V Ex = 1, DEx = 0 (1 after delay)
Figure 4.38B DEx = 1, V Ex = 0 (1 after delay)
Figure 4.39A DEx = 1, V Ex = 0 (1 after delay) FAdv = 0 – 2,

LV
9 = 2233 – 744

Figure 4.39B DEx = 1, V Ex = 0 (1 after delay) FAdv = 0 – 2,
LV

9 = 1778 – 593
Figure 4.39C DEx = 1, V Ex = 0 FAdv = 0.5, LV

9 = 1489
Figure 4.39D DEx = 1, V Ex = 0 FAdv = 0.5, LV

9 = 1185

Table C.3.: Initial conditions and parameter changes (compared to Table 4.5) used to simulate
the model of DIP growth during continuous influenza A virus production.

Figure Non-zero initial conditions Parameter changes

Figure 4.42B T = 5.33× 106, Vs = 104 f = 0, D = 10−8

Figure 4.42C T = 5.33× 106, Vs = 104 f = 0
Figure 4.43B T = 5.33× 106, Vs = 104

Figure 4.43C T = 5.33× 106, Vs = 104, Vd = 0 – 104 f = 0
Figure 4.43D T = 5.33× 106, Vs = 104 f = 0 – 1

C.1. Model for a DI RNA of segment 3

In the following, we provide a complete list of the equations for our model of intracellular
DI RNA replication that considers a defect in segment 3 (encoding PA). Entry of STVs
into the cell follows from Equations (3.1.1)–(3.1.4). We assumed that DIPs are taken up
in a similar way.

dDEx

dt = kDis
hi D

Att
hi + kDis

lo DAtt
lo −

(
kAtt

hi Bhi + kAtt
lo Blo

)
DEx,
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for Bn = Btot
n − V Att

n −DAtt
n , n ∈ {hi, lo} ,

dDAtt
n

dt = kAtt
n BnD

Ex −
(
kDis

n + kEn
)
DAtt

n ,

dDEn

dt = kEn
(
DAtt

hi +DAtt
lo

)
−
(
kFus + kDeg

En

)
DEn,

where D denotes the defective virus and the notation of indices follows Equations (3.1.1)–
(3.1.4). Upon fusion with late endosomes, both types of viruses release a complex com-
prising the eight genome segments.

dV cyt

dt = kFusV En − kImpV cyt,

dDcyt

dt = kFusDEn − kImpDcyt,

where V cyt and Dcyt contain a full-length vRNA or a DI vRNA of segment 3, respectively.
When these complexes enter the nucleus the genome segments separate into independent
replication units.

dVpnuc
k

dt = kImpV cyt + kImpDcyt + kBind
NP PNPR

V
RdRp,k −

(
kBind

M1 PM1 + kDeg
Rnp

)
Vpnuc

k ,

for k = 1, 2, 4, . . . , 8 and

dVpnuc
3

dt = kImpV cyt + kBind
NP PNPR

V
RdRp,3 −

(
kBind

M1 PM1 + kDeg
Rnp

)
Vpnuc

3 ,

dVpnuc
9

dt = kImpDcyt + kBind
NP PNPR

V
RdRp,9 −

(
kBind

M1 PM1 + kDeg
Rnp

)
Vpnuc

9 ,

where k = 1, . . . , 8 are the full-length segments and k = 9 denotes the defective segment 3.
We assumed that the DI RNA has a replication advantage over its full-length counterpart
at the level of cRNA synthesis.

dRC
i

dt = kSyn
C Vpnuc

i − kBind
RdRpPRdRpR

C
i − kDeg

R RC
i , i = 1, . . . , 8,

dRC
9

dt = (FAdv + 1) kSyn
C Vpnuc

9 − kBind
RdRpPRdRpR

C
9 − kDeg

R RC
9 ,

where FAdv denotes the factor with which the synthesis of the DI cRNA exceeds the
production of its full-length counterpart. We estimated FAdv from the DI RNA length.

FAdv =
(
LV

3
LV

9
− 1

)
,
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where LV
3 denotes the length of segments 3’s vRNA and LV

9 is the length of the DI vRNA.
Apart from cRNA synthesis, RNA replication occurs as described in the original model.

dRV
m

dt = kSyn
V Cpm − kBind

RdRpPRdRpR
V
m − kDeg

R RV
m, m = 1, . . . , 9,

dRC
RdRp,m

dt = kBind
RdRpPRdRpR

C
m − kBind

NP PNPR
C
RdRp,m − kDeg

RRdRpR
C
RdRp,m,

dRV
RdRp,m

dt = kBind
RdRpPRdRpR

V
m − kBind

NP PNPR
V
RdRp,m − kDeg

RRdRpR
V
RdRp,m,

dCpm

dt = kBind
NP PNPR

C
RdRp,m − kDeg

RnpCp,m,

dVpnuc
M1,m

dt = kBind
M1 PM1Vp

nuc
m −

(
kExpPNEP + kDeg

Rnp

)
Vpnuc

M1,m.

Upon binding of NEP, M1-vRNP complexes leave the nucleus.

dVpcyt
M1,k

dt = kExpPNEPVp
nuc
M1,k − kCplxVpcyt

M1,3
∏
k

Vpcyt
M1,k

− kCplxVpcyt
M1,9

∏
k

Vpcyt
M1,k − kDeg

RnpVp
cyt
M1,k,

for k = 1, 2, 4, . . . , 8 and

dVpcyt
M1,3

dt = kExpPNEPVp
nuc
M1,3 − kCplxVpcyt

M1,3
∏
k

Vpcyt
M1,k − kDeg

RnpVp
cyt
M1,3,

dVpcyt
M1,9

dt = kExpPNEPVp
nuc
M1,9 − kCplxVpcyt

M1,9
∏
k

Vpcyt
M1,k − kDeg

RnpVp
cyt
M1,9,

where kCplx denotes the formation rate of a cytoplasmic complex that comprises the eight
vRNPs including either the full-length or DI vRNA of segment 3. Viral mRNA and
protein production was described by the following equations.

dRM
i

dt = kSyn
M
Li

Vpnuc
i − kDeg

M RM
i , i = 1, . . . , 8,

dPPB1

dt = kSyn
P
DRib

RM
2 − kRdRpPPB1PPB2PPA,

dPPB2

dt = kSyn
P
DRib

RM
1 − kRdRpPPB1PPB2PPA,

dPPA

dt = kSyn
P
DRib

RM
3 − kRdRpPPB1PPB2PPA,
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dPRdRp

dt = kRdRpPPB1PPB2PPA − kBind
RdRpPRdRp

∑
m

[
RV

m +RC
m

]
, m = 1, . . . , 9,

dPNP

dt = kSyn
P
DRib

RM
5 − kBind

NP PNP
∑
m

LV
m

NNuc
NP

(
RV

RdRp,m +RC
RdRp,m

)
,

dPM1

dt = kSyn
P
DRib

(
1− FSpl7

)
RM

7 − kBind
M1 PM1

∑
m

LV
m

NNuc
M1

Vpnuc
m

− (NPM1 −
∑

p=1,...,8

LV
p

NNuc
M1

)rRel − (NPM1 −
∑

p=1,2,4,...,9

LV
p

NNuc
M1

)rRel
D ,

dPNEP

dt = kSyn
P
DRib

FSpl8R
M
8 − kExpPNEP

∑
m

Vpnuc
M1,m,

dPHA

dt = kSyn
P
DRib

RM
4 −NPHA

(
rRel + rRel

D

)
,

dPNA

dt = kSyn
P
DRib

RM
6 −NPNA

(
rRel + rRel

D

)
,

dPM2

dt = kSyn
P
DRib

FSpl7R
M
7 −NPM2

(
rRel + rRel

D

)
,

where rRel
D is the release rate of DIPs. Compared to the original model we neglected the

release of free viral polymerases, NP, and NEP with budding virions (see reference [269]
for a discussion). We, also, assumed that one NEP protein binds per genome segment
to induce nuclear export. In the cytoplasm, the eight full-length RNAs and the defective
segment form complexes.

dV cyt
Cplx

dt = kCplxVpcyt
M1,3

∏
k

Vpcyt
M1,k − rRel − kDeg

RnpV
cyt
Cplx, k = 1, 2, 4, . . . , 8,

dDcyt
Cplx

dt = kCplxVpcyt
M1,9

∏
k

Vpcyt
M1,k − rRel

D − kDeg
RnpD

cyt
Cplx,

where V cyt
Cplx and Dcyt

Cplx denote a complex containing all eight genome segments including
a full-length or defective segment 3, respectively. The equations for virus release are the
following.

dV Rel

dt = rRel = 8kRelV cyt
Cplx

∏
j

Pj

Pj +KVRelNPj

,
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dDRel

dt = rRel
D = 8kRelDcyt

Cplx
∏

j

Pj

Pj +KVRelNPj

,

with j ∈ {HA,NA,M1,M2} ,

where V Rel and DRel are the STVs and DIPs, respectively, that are released from the cell.

C.2. Model for a DI RNA of segment 4

We used the same equations as presented in Section C.1 to model the replication of a
DI RNA of segment 4 with the following exceptions.

dVpnuc
k

dt = kImpV cyt + kImpDcyt + kBind
NP PNPR

V
RdRp,k −

(
kBind

M1 PM1 + kDeg
Rnp

)
Vpnuc

k ,

with k = 1, 2, 3, 5, . . . , 8,

dVpnuc
4

dt = kImpV cyt + kBind
NP PNPR

V
RdRp,4 −

(
kBind

M1 PM1 + kDeg
Rnp

)
Vpnuc

4 ,

dRC
9

dt = (FAdv + 1) kSyn
C Vpnuc

9 − kBind
RdRpPRdRpR

C
9 − kDeg

R RC
9 , with FAdv = LV

4
LV

9
− 1,

dVpcyt
M1,k

dt = kExpPNEPVp
nuc
M1,k − kCplxVpcyt

M1,4
∏
k

Vpcyt
M1,k

− kCplxVpcyt
M1,9

∏
k

Vpcyt
M1,k − kDeg

RnpVp
cyt
M1,k,

dVpcyt
M1,4

dt = kExpPNEPVp
nuc
M1,4 − kCplxVpcyt

M1,4
∏
k

Vpcyt
M1,k − kDeg

RnpVp
cyt
M1,4,

dPM1

dt = kSyn
P
DRib

(
1− FSpl7

)
RM

7 − kBind
M1 PM1

∑
m=1,...,9

LV
m

NNuc
M1

Vpnuc
m

− (NPM1 −
∑

p=1,...,8

LV
p

NNuc
M1

)rRel − (NPM1 −
∑

p=1,2,3,5,...,9

LV
p

NNuc
M1

)rRel
D ,

dV cyt
Cplx

dt = kCplxVpcyt
M14

∏
k

Vpcyt
M1,k − rRel − kDeg

RnpV
cyt
Cplx,

dDcyt
Cplx

dt = kCplxVpcyt
M1,9

∏
k

Vpcyt
M1,k − rRel

D − kDeg
RnpD

cyt
Cplx.
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