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Abstract

We investigate the dynamics of spinning binaries of compact objects at the next-to-leading
order in the quadratic-in-spin effects, which corresponds to the third post-Newtonian order (3PN).
Using a Dixon-type multipolar formalism for spinning point particles endowed with spin-induced
quadrupoles and computing iteratively in harmonic coordinates the relevant pieces of the PN metric
within the near zone, we derive the post-Newtonian equations of motion as well as the equations
of spin precession. We find full equivalence with available results. We then focus on the far-zone
field produced by those systems and obtain the previously unknown 3PN spin contributions to
the gravitational-wave energy flux by means of the multipolar post-Minkowskian (MPM) wave
generation formalism. Our results are presented in the center-of-mass frame for generic orbits,
before being further specialized to the case of spin-aligned, circular orbits. We derive the orbital
phase of the binary based on the energy balance equation and briefly discuss the relevance of the
new terms.
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I. INTRODUCTION

Coalescing binary systems composed of stellar mass black-holes and/or neutron stars are
among the most promising sources for a first direct detection of gravitational waves (GW)
by the network of ground-based interferometers formed by GEO-HF @] and the advanced
version of the detectors LIGO ﬂﬂ] and Virgo B], which should resume their science runs from
2015, approaching gradually their design sensitivity, expected to be better by an order of
magnitude than that of the first generation. The cryogenic detector KAGRA M] will join
them in a near future. Further ahead, the space-based observatory eLISA ﬂH, ] — a serious
proposal for the mission recently announced by the European Space Agency — will allow
us to scan a different frequency band where we expect to detect, notably, GW emitted by
supermassive black-hole binaries before merger.

Extraction of the signal from the noisy data by means of matched filtering techniques
and source parameter estimation both require an accurate modeling of the waveform. For
binary systems of compact objects, the inspiralling phase of the coalescence can be modeled
extremely well by resorting to the perturbative post-Newtonian (PN) scheme (see ﬂﬂ] for a
review), in which all quantities of interest are expanded as formal series in powers of 1/c.
For non-spinning (NS) systems, the phase of the waveform is currently known up to the
order 3.5PN (i.e. including corrections up to 1/c"), whereas the full polarizations have been
obtained up to the order 3PN ﬂg] (with the dominant quadrupole and octupole modes in the
decomposition of the waveform in spin-weighted spherical harmonics known up to the order
3.5PN [d, [1d]).

In recent years, motivated by astrophysical observations suggesting that black holes in
our universe can have significant spins, considerable effort has been devoted to investigating
higher order corrections to the spin effects in the binary dynamics, mostly restricted to
the conservative piece of the body evolution in the near zone. While for the neutron stars
observed so far, the largest dimensionless spin magnitude ever measured ] is only xy ~ 0.4
(and may reasonably be assumed to be much smaller for typical expected observations), the
spin of a black-hole might be commonly close to its maximal value ﬂﬂ@] Then, its effect
on the waveform can be fairly strong and, in particular, for spins misaligned with the orbital
angular momentum of the system, the dynamics becomes much more involved as the orbital
plane undergoes precession, resulting in large modulations of the waveforms m, @] Even
in the simpler case where the spins are aligned with the orbital angular momentum, they
significantly affect the inspiral rate of the binary, i.e. the frequency evolution of the signal,
starting at the 1.5 PN order (see for instance Ref. ﬂﬁ] for a detailed study of the effect of
the spin on the waveform quantified in terms of figures of merit relevant to data analysis).
To make all factors 1/c appear explicitly in this paper, we rescale the physical spin variable
Sphysical as

S = ¢ Sphysical = Gm?y, (1.1)

where Y is the dimensionless spin, with value 1 for an extremal Kerr black hole.

The calculation of the spin PN corrections to the conservative part of the dynamics and,
to some extent, to the radiation field of the binary beyond the leading order contributions has
been tackled using essentially three different approaches: (i) a Hamiltonian approach that
strongly relies on the use of the (second) Arnowitt-Deser-Missner (ADM) gauge [19], and
in which the dissipative part of the dynamics, demanding a special treatment, is generally
discarded (see however Ref. [20]), (ii) an effective field theory (EFT) Lagrangian formal-
ism ﬂﬂ, |, whose application to binary systems in general relativity has been actively
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developed since the mid-2000’s, and (iii) a post-Newtonian iteration scheme in harmonic co-
ordinates (PNISH), reviewed in Ref. [7], which we follow in the present paper. The existence
of those three independent methods permits important checks of calculations that are often
tedious, whenever quantities are available at the same order in more than one formalism.

The binary dynamics at the spin-orbit level (i.e. linear-in-spin effects, which will be
referred to as SO from now on) are known up to the order 3.5PN in both the PNISH and
ADM approaches @], and to the order 2.5PN in the EFT framework @, @] On the
other hand, quadratic-in-spin corrections (labeled as SS throughout the paper) have been
obtained to the order 2PN in the PNISH formalism ], while in both the ADM and
EFT formalisms they are known up to the order 3PN @], and even 4PN for the simpler
S1.5; interactions |22, @, @, @] Higher-order-in-spin corrections have also been recently
derived ﬂﬁ, 4d |. As for the spin contributions to the radiation field, they have mostly
been computed by using the same usual combination of the MPM and PNISH approaches as
in the present paper, although partial results required for the calculation of the 3PN flux ]
and the 2.5PN waveform ] have been obtained within the EFT approach. The energy
flux of gravitational-wave radiation is known up to the order 4PN at the SO level ],
whereas at the SS level only the leading order (2PN) terms were known until now [33].
Moreover, the leading order cubic-in-spin terms, which arise at 3.5PN, have been calculated
very recently [47].

Our goal here will be to determine, within the PNISH approach, the 3PN (i.e. next-to-
leading order) spin-spin corrections entering both the source dynamics (thereby providing
an additional confirmation of the ADM and EFT results already available at this order)
and most importantly the energy flux, thus completing the knowledge of all the spinning
corrections to the phasing formula up to the 3PN order. At the next order 3.5PN, the
only remaining unknown terms all come from a SS tail contribution. By contrast, the spin
corrections to the full gravitational-wave polarizations are only known to the poorer 2PN
accuracy @, ] and we postpone to future work the task of obtaining all the corrections
up to the order 3PN.

Our source modeling, as well as the one used in the EFT and ADM approaches, consists
in representing each compact object as a (spinning) point particle whose internal structure
is entirely parametrized by a set of effective multipole moments. The validity of this descrip-
tion, which makes the calculations tractable analytically, relies on (i) the compact character
of the bodies, and (ii) the weak influence of their internal dynamics to their “global” mo-
tion in general relativity, often referred to as the effacement principle @ . The foundations
of this formalism were laid down in the seminal works of Mathisson @] Later Papa-
petrou @], found a particularly simple form for the evolution equations (which comprise
both the equations of motion and of spin precession) for dipolar particles, i.e. at linear order
in spins. His derivation was improved and rephrased in the language of distribution theory
by Tulczyjew M], whose method — systematically extensible beyond the dipolar model —
has been recently applied at the quadrupolar level @] The dynamics of point particles with
finite-size effects described by higher multipoles was thoroughly investigated by Dixon @f
], who constructed an appropriate stress-energy “skeleton” to encode information about
the internal structure of the body while, on their side, Bailey & Israel proposed an elegant
effective Lagrangian formulation @] Recently, Harte ﬂﬁ_ln showed how the formalism of
Dixon could be extended to self-gravitating systems, by constructing appropriate effective
momenta and effective multipole moments evolving in some effective metric.

In the present article, we are interested in the quadratic-in-spin contributions arising from



the quadrupolar moment of the compact object in the case where it is adiabatically induced
by the spin @, @, @, @], as well as the simpler contributions coming from products
of SO corrections. Because, in our source model, we replace extended bodies by point
particles within a self-gravitating system, our approach must be regarded as an effective one
and supplemented with some UV regularization procedure. A good choice is known to be
dimensional regularization, with possible need of renormalization. We find however that,
at this order, the so-called pure Hadamard-Schwartz prescription @] is sufficient, i.e. that
dimensional regularization is not necessary.

The paper is organized as follows. In Section [l we explain how the dynamics of a
test point particle endowed with a spin-induced quadrupolar structure moving in a curved
background spacetime is described in the Dixon-Mathisson-Papapetrou formalism. We also
write the equations of evolution for the particle worldline, as well as for the spin, under
a convenient explicit form, and we define a spin vector of conserved Euclidian norm in
terms of which our PN results shall be written. The validity of the model to describe
the body dynamics in self-gravitating binaries is discussed. In Section [II], dedicated to the
computation of the next-to-leading order SS contributions to the PN equations of motion, we
present expressions for the conserved energy in the center-of-mass frame, both for generic
orbits and for the restricted case of circular orbits in the absence of precession. Finally,
Section [[V] sketches the derivation of the next-to-leading order SS contributions to the GW
flux and includes a discussion of the impact of our newly derived terms on the phase evolution
of non-precessing binaries in the frequency band of LIGO and Virgo. Because of the length
of the equations, some results are relegated to appendices. Appendix [A] gives the explicit
expressions for the relative acceleration and the precession vector in the center-of-mass frame,
and Appendix [B] shows the relevant SS contributions to the source moments. We also give
the explicit transformation between spin vector and spin tensor in Appendix [C] as well as
the correspondence between our results and the ADM ones in Appendix [DI

We use the following conventions henceforth: O(n) means O(1/c¢"), i.e. represents a
contribution of the order (n/2)PN at least. Greek indices denote spacetime coordinates,
ie. p=0,1,2,3, while Latin indices are used for spatial coordinates, i.e. ¢ = 1,2,3. Sym-
metrization and anti-symmetrization are represented by, respectively, parenthesis and brack-
ets around indices. We adopt the signature (—,+,+, +) and keep explicit both Newton’s
constant GG and the speed of light ¢. Finally the covariant derivative along the worldline is
written as D/(cdr) = u*V,,, where u* is the four velocity of the particle, defined such that
utu, = —1.

II. DYNAMICS OF QUADRUPOLAR PARTICLES

We shall now introduce the model we have adopted to represent the two spinning compact
objects composing the binary as point particles. In Section [TAl we display the Dixon-
Mathisson-Papapetrou evolution equations for test bodies at quadrupolar order, set the
covariant spin supplementary condition, and discuss its consequences. In Section [TB| we
rewrite the equations of motion in terms of the 4-velocity and introduce a conserved mass.
Section [I.C] presents the construction of a spin vector with a conserved Euclidean norm and
shows the precession equation it satisfies. Finally, Section explains to what extent the
Dixon-Mathisson-Papapetrou dynamics can be used for the companions of a self-gravitating
binary.



A. The Dixon-Mathisson-Papapetrou framework

When describing the dynamics of a binary system of compact objects with masses m 4,
A = 1,2, in the context of the post-Newtonian approximation, it is physically sound to
model the two companions as point particles. Indeed, the ratio of the radii Ry ~ Gm/c?
to the body separation 75 is of the order Gm/(r12¢?), and thus much smaller than 1. The
dynamics of test point-like objects including finite size effects has been investigated exten-
sively by Dixon |, who generalized the Mathisson-Papapetrou equations for spinning
particles @, @, , |ﬁ_4|] by attaching arbitrary high-order moments to the individual bodies,
beyond the monopole and the current dipole also referred to as the particle spin. It can also
be derived from an effective Lagrangian-type approach for spinning particles, pioneered by
Bailey & Isracl [60] (see also an extensive study for special relativity in [63]) and later im-
plemented in EFT , ], where higher-order moments appear as parametrizing couplings
in the action to the value of the Riemann tensor and its derivatives on the worldline.

The Dixon-Mathisson-Papapetrou equations of evolution for a spinning particle with
quadrupolar structure read:

Dpa ]' 167 v C 167 %

Py —Q—CR WS = ngR M (2.1a)
DSf de g .

c2dr - Qp[o‘uﬁ] * ?R[ Auu‘]mw ) (2.1b)

where p® is the 4-momentum of the particle and u* = da*/(cdr) the 4-velocity along the
world-line. The anti-symmetric spin tensor S*” represents the effective 4-angular momentum
of the object, while the (effective) mass and current type quadrupoles are encoded into the
Dixon quadrupolar tensor JP*¥_ which is only constrained at this stage to have the same
symmetry properties as RPH.

The stress-energy tensor 7% of the model can be constructed after the Tulczyjew pro-
cedure, by making the only assumption that its support is point like with at most two
derivatives acting on the Dirac distributions, in the three following steps [55]: (i) write the
most general symmetric tensor that involves up to two (covariant) derivatives of the particle

lar densit
scalar density o 5@ — y()
n = / cdr' ———== (2.2)

where 6*(z — y(7)) is a 4-dimensional Dirac delta, with y(7) the particle worldline and x
the field point; (ii) derive the hierarchy of equations verified by the coefficients of n in T
due to the conservation equation V,T*” = 0; (iii) constrain those coefficients by solving
all algebraic equations, which leaves two sets of ordinary differential equations. Identifying
these two equations to Egs. (Z1)) yields the expression of 7" in terms of p#, S and JPM":

v v 1 ( V)\po
" = n | py )c—l—gR’ipaJ)pg

~V, [nSPHu)] — %VPVU [nc?geme] . (2.3)

It can be recovered with a smaller amount of calculation, further assuming that the system
dynamics is governed by the effective Lagrangian of Bailey & Israel @], by differentiating
the resulting action with respect to the metric [42].



As the spin tensor S* is anti-symmetric, it actually contains six degrees of freedom.
Moreover, for an isolated body, the space-time components J% of the total angular mo-
mentum J* = S*/c in an appropriate asymptotically Minkowkian gauge represent the
mass-type dipole of the object, and can thus always be taken to be zero. Similarly, for a
test particle moving in a gravitational background, three degrees of freedom among those
contained in the effective spin tensor are expected to be non-dynamical. They may be elim-
inated by fixing the “center-of-body” reference point with the help of three independent
space-time equations, globally referred to as the spin supplementary condition (SSC). The
three remaining degrees of freedom correspond to the spatial components of the spin vector

S*. Various choices of SSC are possible (see for instance [66]). Here we shall adopt, in
keeping with previous works, the covariant (or Tulczyjew [54]) condition
S*p, =0. (2.4)

Assuming that the rotating bodies are always at equilibrium, we can reasonably expect
their moments to depend on their masses, spins, as well as possible dimensionless parameters
that characterize the internal structures. Notably, the spins may induce mass quadrupoles
as they do for Kerr black holes. This effect produces spin square contributions that must
be crucially taken into account at quadratic order in the spin variables. Tidal fields inside
the bodies may also generate ¢ > 2 multipoles, but their leading order contribution to the
acceleration would be ~ (Ry5/r12)° = O(10) for a compact binary, so that they can safely
be neglected in the present work.

As not all degrees of freedom in the Dixon quadrupole are physical, its value as a function
of time cannot be uniquely determined by the internal dynamics of the body. In the adiabatic
approximation, there exists a relation, valid along the particle worldline, between JP** the
4-velocity u* and the spin tensor S*. It can derived from an effective Lagrangian Lgg built
to be the most general Lagrangian — modulo perturbative redefinitions of the gravitational
field, terms in the form of a total time derivative, terms that vanish under some given SSC,
and O(S?) remainders — with the properties of: (i) being quadratic in S**, (ii) depending
on u*, the metric g,,, (derivatives of) the Riemann tensor, as well as some parameters
characterizing the object ﬂZ_lL , @] After redefining p#, S* we find that the stress-
energy tensor associated with Lgg coincides with that of Eq. (23)) provided JP is given
by

Jp)x;w _ 3H4 SU[PUM SU[MUV} , (25)

mec
at any instant. The above expression properly describes the presence of a non-vanishing spin-
induced quadrupole, with the source dependent constant x representing the quadrupolar
polarisability. The mass parameter m is defined by p? = pop® = —m2c?. Notice that m is
not a priori conserved. In fact, as shown below, its time derivative is quadratic in spin and
cannot be consistently ignored at our accuracy level.

The (contravariant) 4-momentum and 4-velocity of the particle are proportional when
terms beyond linear order in the spins are neglected: p* = mcu® + O(S?). Our first
step will consist in expressing p® as a function of u® to quadratic order in the spin. We
impose that the derivative along the worldine of the SSC (2.4]) is zero, insert the equations
of motion (ZIa) and (ZID) into the resulting identity, and use the fact that JPM* ~ O(S?)
whereas S*ug ~ O(S®). This yields, at quadratic order in spin,

Seb grv 4c

p* =mcu® — S UARB)\,W + guBR[aA“VJBP‘”V + O(Sg) . (2.6)




We are now in position to write the spin evolution equation in a more explicit way. In
the Lagrangian formalism, the effective linear and angular momenta are defined in a way
that guarantees the conservation of the spin magnitude @, @] This conservation law is
a remarkable feature of the spinning-particle dynamics. In our context, it will follow from
Eq. (1) for some class of supplementary conditions. In fact, it can indeed be derived ex-
plicitly from those equations, for the form (23] of the quadrupole moment and the covariant
SSC (Z4)). By substituting the 4-momentum (2.6)) into equation (2.1D) we get

DS der o, N
. = 5 Rl )\Wjﬁ]wu + u,yu[ﬁR })\WJ“{AW . ufyu[ﬁJ‘lM“”RxW
Sely grv
—u Rﬂwu[ﬁ —3 +0(8%). (2.7)

If we contract this expression with S,5, we obtain S,5DS* /(cdr) ~ O(S?*) and, therefore,
defining the spin magnitude as s? = S,55%/2,

ds O(S?%). (2.8)

dr

This demonstrates that the spin magnitude is actually conserved at order O(S?).

B. Conserved mass and evolution equations

Our next task is to investigate the issue of mass conservation at quadratic order in spins.
For this purpose, let us compute the time derivative of the mass parameter m. Using the
equation of motion (2.Tal) and the Bianchi identities, we can write
, dm Dp*  mc?

Pyt i N g Rop IO + O(S?) . (2.9)

As the time dependence of J** is through the 4-velocity and the spin tensor, i.e. JPA (1) =
Jedw (yP (1), 8%P(1)), the fact that Du’/(cdr) ~ O(S) and DS /(cdr) ~ O(S?) implies
the approximate conservation of the Dixon quadrupole: DJP* /(cdr) ~ O(S3). Now,
substituting v’V with D/(cdr), we can write down the equation

1
D= LR | = 0(5°), (2.10)

which finally allows us to define a conserved quantity m as

1
m = — 6R,WWJPAW : (2.11)

Hereafter, the constant parameter m will be regarded as the effective mass of the particle.
This mass is the one that appears in all our post-Newtonian results. By construction, it is
conserved, like the spin magnitude. Substituting the expression (2.9)) into Eq. (2.6]) gives us
the link between the 4-momentum and the 4-velocity:

Sed 5

2m c3

4c

BUBR[O‘ J L O(S3), (2.12)
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where m was just shown to be a constant parameter at order O(S5?). We are then in position
to rewrite the evolution equations for spinning particles to quadratic order in the spins, using
the 4-velocity instead of the 4-momentum. Those are:

Du®  u” DRgyu SepSm I lad JPA
= — — —R” — R —
R e TR L it ALY
a Appv [« Blouv
— u_DR)‘PHV J o 4uﬁ DR PRV J + 0(53) ’ (213&)

6 dr m 3 dr m

DS 4¢3
dST ; [ 8 RO Al Jre 18 JQ]AWUV RVMV R[“}\W JP )\/W]
Sahsw
R ca— — O(5%). (2.13b)

C. Definition of a spin vector and equation of precession

From the anti-symmetric spin tensor S, we define the spin 4-covector S, as

~ 1 pﬁ L

Sa - QEQBuumCS ) (214)
where €48, = /=9 Napuw denotes the covariant Levi-Civita tensor, with 14, being the
completely anti-symmetric symbol that verifies 79123 = 1, and where g = det g, is the
determinant of the metric tensor in generic coordinates. The tilde on this covariant spin
vector will allow us to distinguish it from the Euclidean conserved-norm spin vector we shall
introduce below. Notice that S, automatically satisfies Sap® = 0 and thus carries 3 degrees
of freedom as required. If we contract the above equation with €*7*?p, and use the SSC

p,S* =0, we can invert Eq. (2I4]) and obtain the spin tensor in terms of S,:
§oB — o P g\ 053 (2.15)
mc

Remembering that p = mcu” + O(S?) at the linear-in-spin level, it is straightforward to
check that Saga = 52, by virtue of the relation eag,we’\p‘” = —4!5%5%5‘;5?}.

To derive the evolution equation for the spin 4-covector, we differentiate Eq. (2.14]) with
respect to the proper time, which yields

DS, 1 Sopgur 903
? = Eagwj —RB U)\ — —R

4" Aop mec 3 Ao

JAPyP |+ O(S?). (2.16)

In what follows, we shall explicitly resort to our particular form ([Z3) for J#*# relevant in
the case of a spin-induced quadrupole. It will be convenient to investigate each term on the
right-hand side of Eq. (2.I6]) individually. With our definition of S,, the first term there

reads
1

4
At this stage, it is useful to introduce the gravitomagnetic part of the Bel decomposition of
the Riemann tensor

S GHy 1 S
Capu R\, u = ——une"”’”—”C

RB
Aop me 2

Sgutu, + O(SY). (2.17)

Aop

H, = 2R u™u’ . (2.18)

8



where "R is the self-dual Riemann tensor defined by

* 1 K
Rapur = 5605" Ry - (2.19)

Physically, the tensor H,, represents the tidal current-type quadrupole in the relativistic
theory of tides. We can now put Eq. (ZIG]) in the form

1 g aSersw 1. S8 5
2 Caur s u" ——— = S H M ua— == + O(57). (2.20)

Let us focus next on the second expression on the right-hand side of Eq. (2I6). After
substituting the value for J*? therein, we rewrite the resulting expression in terms of the
gravitoelectric part of the Bel decomposition of the Riemann tensor

G = — R’ (2.21)

which is nothing but the tidal mass-type quadrupole generalizing that of Newtonian gravity
(up to a factor 1/c?). Next, we directly replace the spin tensors with their corresponding
spin covectors in Eq. (Z10]), hence:

D3, 3.3,

1 5,5
i :§H“’Bua——mea5wuﬁG“ —C+O(53). (2.22)
Finally, after setting .
5 Sx A A
Qs = 2 [u Ha — K eogu G | 2.23
= 2 i = G 223)

the spin precession equation for the covariant spin vector takes the form
DS,
dr

= 0,5% +O(S%). (2.24)
The anti-symmetric tensor Qaﬁ may be interpreted as a spin-precession frequency tensor.

It remains to construct a spin 3-vector S* with conserved Euclidean norm. A “canonical”
construction is already explained in Section 2.1 of Ref. ﬂﬁ], to which the reader may refer
for further details. The precession vector governing the evolution of S? differs from that of
Ref. ﬂﬁ], derived in the SO approximation, by additional terms that are quadratic in spins.

The passage to spin 3-vectors is achieved by introducing a direct orthonormal tetrad e /.
The underlined index represents the vector label, which we may be viewed as the tetrad
index, spacetime indices being represented by Greek letters and spatial indices by Latin
letters as usual. Posing ej’ = u*, we see that

o= Sued' = 0(5%), (2.25)
which means that S’Q may be neglected. The squared FEuclidean norm of gﬁ is then given by
0,528 = ~,,5"5" = 5,91 = 57, (2.26)

with v, = g + u,u,. In words, the spin vector gﬁ has a conserved Euclidean norm. To
define the spin variable uniquely in some coordinate grid, we still need to specify the choice



to be made for the spatial part of the tetrad. Considering that §%e,ey; = 7;j, a natural
choice is to take for e, the unique symmetric positive-definite square root (in the matrix
sense) of ;;. The complete expression for the tetrad is

el = (7’” - v”ov—) Cai - (2.27)
a o ) Ca

with v* == cut/u® denoting the coordinate velocity. After projection on the basis vec-
tors (2.27), the precession equation for the spin vector becomes

ds - -
Do _ (5 + 0 )Sﬁ, 2.98
dr (w—é + g ( )
where we have introduced the rotation coefficients for the tetrad
Deg,,
Do = —e H —=— 2.29
wiﬁ 6g dr ( )

and where Qgﬁ = Q,Weg“ eg. Now, as d/dr = u’d/dt, it is convenient to define an anti-
symmetric precession frequency tensor associated with the coordinate time as

Qus = % (@gﬁ + Qgg) . (2.30)

Since S? is negligible, the precession equation reduces to

L 0,50+ 08, (2.31)

Moreover, from the equality e,” = u”, it follows that the first term on the right-hand side
of Eq. (223)) vanishes when projected on spatial tetrad indices, so that
. S,
Kl Pl
Ui = —RegG™ (2.32)

where ¢, or £;;;, (indifferently) denote the Euclidean Levi-Civita symbol, with normalization
£128 — 1,5 = 1, which is linked to the four dimensional Levi-Civita tensor by the relation
E%& = EZZE .

In the rest of the paper, we shall use a conserved Euclidean spin vector S with spatial
components S* in harmonic coordinates such that

Si= Gt (2.33)
Because of the anti-symmetric character of {2;;, we can finally rewrite the precession equation
in terms of a precession vector ' = —¥£Q), /2 as
jk
dsS; ,

It is the above precession vector Q¢ that will be computed, along with the equation of motion,
in Section [Tl Our results will be displayed either in terms of the vector S* or of the spatial
components of the spin tensor S%.
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D. Application to self-gravitating binary systems

Although the evolution equations (Z]) originally obtained by Dixon are only suitable to
describe the dynamics of test particles, their rederivation based on the method of Tulczyjew
or the Lagrangian approach of Bailey & Israel, regarded as effective field schemes, holds for
self-gravitating N point-like body systems. Nonetheless, the validity of the point particle
model breaks down at UV scales where the post-Newtonian expansion cannot be applied,
i.e. for r4 ~ R4, with r being the distance between the particle representing the body A
and the field point . In particular, some infinities arise when computing the gravitational
field iteratively due to divergences at the particle positions y4. The situation is even worse
as we make x tend towards y4.

As usual, those infinities are cured thanks to dimensional regularization, which preserves
the invariance under diffeomorphism of general relativity, combined with some renormaliza-
tion procedure. For an appropriate choice of the space dimension d, the field remains weak
near 74 = 0 and can be computed perturbatively in the post-Newtonian approximation.
We are confident that this leads to the correct PN dynamics because: (i) the result for the
acceleration is unambiguous up to the order 3.5PN for binaries of spinning compact objects,
(ii) it is equivalent to that obtained from other methods (see the review paper [7] for ref-
erences), and notably from the approach & la Einstein-Infeld-Hoffmann used by Itoh @] in
the case of spinless bodies where no regularization is needed. Those cautions being taken, a
self-gravitating system of N spinning bodies endowed with a quadrupolar structure may be
modeled by means of the following effective stress-energy tensor, which generalizes that of

Eq. 23):

1
T — (1, v) + _R(u JV)/\po 2
st

-V, (nASf‘(”uz)> — %V,,VU (nAchf‘(W)J)] : (2.35)

where the subscripts A indicate the particle label.

The presence of poles o< e % in the metric at a given post-Newtonian order, with e = d—3
and k being a positive integer, may generate contributions in the source for the next or-
der that could not be recovered by resorting to a purely three dimensional regularization.
However, in the absence of such subtleties, the so-called pure Hadamard-Schwartz regular-
ization [68] is sufficient to get the correct result. This prescription essentially relies on a
specific use of the Hadamard partie finie regularization, which we shall briefly discuss now
(the reader will find more details in Ref. [69]).

Let us consider a function F'(x) with the same regularity properties as those arising in
our problem, i.e smooth everywhere except at some singular points y4 (A =1,2,..., N) in
the neighborhood of which its admits an expansion of the form

F(z)= ) rhify(na)+o(rh) (2.36)

po<p<P A4

for any integer P, with n4 = (@ — y4)/ra. Such a function is said to be of class F. Its
Hadamard partie finie (F') 4 is then defined as the angular average of the finite part 4 fo(12.4):

(Fla= [ SR, (2.37)
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where df)4 denotes the elementary solid angle with direction n 4 centered on y4. The oper-
ation of taking the Hadamard partie finie is not distributive with respect to multiplication
in the sense that, for another generic function G(x) of class F, (F)a(G)a # (FG)a in
general. Moreover, it does not respect the Lorentz invariance. Because of the first of those
two unpleasant features, the so-defined regularization is fundamentally ambiguous as such.
Howbeit, it can still be used in practical computations provided it is supplemented by some
additional prescription. In the PNISH approach, the post-Newtonian metric is constructed
iteratively with the help of PN potentials. Those are elementary bricks satisfying a wave-
type equation (more details are provided in Section [II). A convenient prescription is to
define the value of a product F'G of two potentials (or potential derivatives) evaluated at
point y4 as (F)a(G)a. Similarly, the regularized product of a potential /' and an arbitrary
smooth function a(x) will be given by a(ya)Fa.

Divergent integrals are cured by applying another kind of Hadamard partie finie regular-
ization. The regularized value of an integral with class-F integrand is calculated in three
main steps: (i) balls of radius 1 centered on the singular points are extracted from the
integration domain; (ii) terms that diverge near n = 0 are removed; (iii) one goes to the
limit n — 0. The singularities that generate poles in dimensional regularization produce
logarithmic divergences in the Hadamard one. Those are associated with cutoff parameters
s entering terms such as In(n/s4). For consistency between the two kinds of Hadamard
regularizations, all derivatives must be evaluated in the sense of distributions @] The
action of the three dimensional Dirac delta 64 = §3(x — y4) on test functions must also be
generalized to F-class functions by posing F'd4 = (F)4 4.

In this context, the pure Hadamard-Schwartz regularization is an ensemble of prescrip-
tions designed to yield results that are “as close as possible” to those obtained through
dimensional regularization. Those prescriptions demand: (i) to evaluate monomials of the
form a(x)F;...F,, where a(x) is a smooth function and the F}’s are (derivatives of) F-
class potentials, as a(ya)(F1)a...(F,)a; (ii) to evaluate divergent integrals by means of the
Hadamard partie regularization for integrals; (iii) to extend the definition of §4 as explained
above; (iv) to compute all derivatives in the sense of Schwartzian distributions.

The absence of logarithmic cut-offs in the SS piece of the metric up to the order 3PN
suggests that dimensional regularization may safely be swapped for the pure Hadamard-
Schwartz one at this accuracy level. The insensitivity of the calculations to the choice
of regularization procedure has been checked explicitly by evaluating source terms of the
type F'G 04 in the stress-energy tensor as (F')4(G)a d4, thus violating the pure Hadamard-
Schwartz prescription. The results have always turned out to be unaffected by such modifi-
cations.

III. NEXT-TO-LEADING ORDER CONTRIBUTIONS TO THE POST-NEWTO-
NIAN EVOLUTION

We now turn to the computation of the dynamics of a binary system in the post-
Newtonian approximation, at next-to-leading order for the quadratic-in-spin effects, i.e.
at order 1/c (or 3PN) in the equations of motion and at order 1/c¢° in the equations of
precession. We will recover the results for the dynamics obtained in the ADM [62, @@]
and EFT , , @, @, , @] approaches, and extend them towards the completion of the
calculation of the gravitational waves energy flux.

We start with some general definitions in Section [IT'Al Next, we introduce a set of
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potentials parametrizing the PN metric in Section[[TI Bl and express the quantities of interest
in terms of these potentials. In Section [ITLC| we present their computation, and finally in
Section[[IT DI the results obtained for the dynamics as well as various tests of their correctness.
The lengthier calculations are all performed by means of the algebraic computing software
Mathematica® supplemented by the tensor calculus package xAct ﬂﬂ]

A. General definitions

The two objects are represented as quadrupolar point particles as explained above. An
important ingredient of the formalism is the treatment of the infinite self-field of the point
particles, essentially represented by means of Dirac deltas, through the pure Hadamard-
Schwartz regularization procedure discussed in Section [TDl The distributional contributions
yielded by derivatives are handled by using the Gel’fand-Shilov formula @] We found that
at this order in spin, we have to keep track of distributional contributions in the metric
itself to obtain the correct result for the wave generation formalism, as will be detailed in
Section [V Bl

The general structure of the equations of motion and precession is as follows:

A= ANS+ A}j;NjL A§ZN+ A“P N A3PN

1 1 1 1
+ — Ag 0t AlPN+ A§S+

1

— AN+ O(7), (3.1a)

Q= Q Ns + = QlPN + = QSO + 5 QY +0(6), (3.1b)
where the spin order in Eq. (Im) indicates the contribution in € itself, rather than in
S=Qx8S (notably the SO terms feature the constants ;o and actually correspond to SS
terms in S). The 2.5PN NS terms in the acceleration are the first manifestation of radiation
reaction.

We use the same notations as in previous works. Three-dimensional indices are repre-
sented with Latin letters a, b, ... or i, j, ..., and are risen or lowered with the Euclidean metric
di;; we do not distinguish between upper and lower indices. We sometimes use boldface for
Euclidean vectors. The positions and velocities of the two bodies are denoted by yi, yh and
v}, vy. Apart from the separation distance 115 = |y12\ = |y; — yo| which we have already de-
fined, we shall need the separation direction ni, = (yi —y%)/ri2. The symbol 1 <+ 2 indicates
the same expression as the one before it, with the label of the two particles exchanged. The
results are expressed in terms of the spatial components S7’, S5 of the spin tensor S*, as
well as the spin vectors S%, S of conserved Euclidean norm as defined above, in Section [TCl
The mixed components S% of the spin tensors can always be eliminated with the help of the
spin supplementary condition (2.4]). We allow repeated indices in scalars quantities enclosed
by parenthesis, in the absence of a risk of confusion.

In harmonic (or DeDonder) gauge, the gravitational field equations can be rewritten as

167TG 167G
-

Oht = 9T + A™ [h] =

o (32)

where the stress-energy pseudo—tensor T includes both matter and field contributions

through T" and A", the latter source term being at least quadratic in h*¥. The field equa-
tions (B2), when iterated order by order, yield a solution expressed formally in terms of a
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hierarchy of potentials of increasing complexity and post-Newtonian order (see Refs. ﬂﬂ, ]
for the precise definition of this iteration in the near-zone).

Since on the one hand we are working at order 1/c® in the equations of motion, and
on the other hand the spin contributions always come at relative 1/c¢ order at least, only
the so-called 2PN metric and potentials (i.e. necessary for the 2PN non-spinning case) are
required. In fact, we will see below that, among the potentials arising at the order 2PN,
only X turns out to be needed. For completeness, we quote here the result of the iteration
for the 2PN metric, which reads

2 2 8 [ 4 V3
=—14+=-V-2V24+— (X Vi+ — )
Joo +C2V C4V +C6 ( +ViVi+ G )+O(8), (3.3a)
4 8
Joi = —0—3‘/; - —Ri +O(7), (3.3b)
4
gij = 0ij {1 +SV+ 5 VQ] +—Wi; + 0(6) . (3.3¢)
The potentials therein are defined ad]
V =03 [~4rG o], (3.4a)
V; = 03! [-47G o] , (3.4b)

X = D%l |: —47G Vo, + WZ]&]V + 2V;0,0;V + V@fV

3
+§(atv)2 —20,V;0;Vi| (3.4c)
R; = 0! {—47TG (Vo, = Vio) =20,V O, V), — ;@V@V , (3.4d)
Wi = 05! [<47G (045 — Sij0m) — BV V] (3.4e)
where the o, 0;, 0;; quantities are convenient matter source densities defined as
L o0 ii L oi ij
:g(T +1), :ET , oy =TY, (3.5)

while (5! stands for the PN-expanded retarded d’Alembertian operator acting on a function

f(x,t) as ﬂﬂ @]

(O f) (=, t) = ——Z

n>0

_ /d?’x'(\w'|/r0)B|w — /" (2t (3.6)

Here FPz_( denotes the so-called Finite Part regularization, and r is an associated arbitrary
length scale. This regularization is used and described in Section [V A] for the wave gener-
ation formalism, but in Eq. (30) it cures the divergences of the near-zone post-Newtonian
metric at infinity rather than the divergences of the multipolar far-zone expansion at the
origin. At the order we are considering here, it does not matter for the equations of motion.
In particular the final results are all independent of the scale rgﬁ

! Possible contributions to the metric of non-linear tail terms, which are not made of (products |oﬂi> elemen-
]

tary potentials defined by means of the operator D%l, do not arise below the order 4PN
2 At the 3PN non-spinning order, the scale ro does appear in the final results for the dynamics, but it

disappears when considering gauge-invariant expressions such as E(w), the conserved energy as a function
of the orbital frequency.
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B. Matter source and equations of motion in terms of potentials

In this section, we introduce convenient additional definitions for the matter source in
the PN context. In the covariant expression (2.33), the worldline integration contained in
the particle densities ny [see Eq. (Z2)] can be performed explicitly in a definite coordinate
grid (¢, ). This results in

T = 3" [U;;%A + 9 (UF84) + VMVV(UXB“”éA)} , (3.7)

A=1,2

where we have defined

1 1

of _ 0 4 Lpe o

Uy = \/__g<cpAuA SRS (3.82)

. 1

U = — e w5 (3.8h)
1

by _ 2 5 e

Ue _uW—_g( S ) (3.8¢)

Here u* = 1/, /—gitvrvr/c?, vt = (c,v") (so that u* = u%v*/c), and the label index A on

metric-dependent quantities means that they are to be regularized according to Hadamard
regularization at the location of the particle A. In terms of partial derivatives, we have

1 1
T8 — |:Ta55A + ) <7-a5M5A> + o V<7-oc5/w5A):| ’ (39)
A:ZL2 ! V=g A V=g A
with
Taﬁ UXB + QPA;WUA (a}\ (a) Uﬁ))xuu
a B)Auv v
+ FA(Ap)\(UA ! Pi&;u/ Fﬁ)ijpAN ) ) (310&)
afp _ [ aBu afvh _ op(a B A
7j4 - (UA + FA l/)\UA 2FA l/)\UA ) ’ (310b)
T = \/=gUs™ . (3.10¢)

By using Egs. (8.8), and the definitions of o, 0, 0;; given in Eqs. ([B.5]), we arrive at the
following expressions in terms of metric potentials

o= miby {1 + 1 (2 2_ v) + Cl4 (;v;‘ 4(v0V,) — 2W + %va + %W)
+ L (2(sutn) - st ) + 5 (— S(Ra) + 1gof
— 1003 (v%V,) — 4(V,V,) + 2(vi0 W) — 302W — 87 + 3—83le
— AV V + 2V + %vf‘ﬂ - évf” —4X - 2“—7%(5%“55”'%1/))]
+ \/1__gak{51 [ - 255;“% + 501’; (= avep+4v,)
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n o (Sabskba v (Sizbs?b)akv)] }
2m106\/_82 <5IS Sfb> 106\/_8tak [51( - o Skb i (Sileilb)Uf>]
N ml\/_ﬁkl{él [Skasla C1 (SkaSza(3 2 21/) - _SkaSlbvlvl
T %(Sbefb)va{ + 5P (=St — StPfv i))”
+1<—>2+O<%>, (3.11a)
o= ot + 5 (3ot~ vat) - %

1 /3 . N .
+ — ( vai 4(viVy)vy — 2WU1 + vlv 1 E V%i)}
c

s =0 (s55008) + \/#__gak {&(if - Sf;j;f”i)}

M 5.0, (51 Slas’fﬂ)

203\/
2mlc4\/

1 A 1,
- Shesiew] — 3SiSif - ZS;asf%g)}

mlc4\/_akl [51<
+1H2+0(§>, (3.11h)

141
o1 = midy [viv{ +— > <2vaiv1 Vvlvl)]

+ ak{al( Sikyi 4+ %S;‘%{)] +1H2+0(é). (3.11c)

1
N
Here we have dropped the indices on the metric potentials, as we recall that, according to
the pure Hadamard-Schwartz regularization, we can indifferently consider any quantity in
factor of a Dirac delta as regularized, according to the rule F'§; = (F');;. Notice however
that the 1/,/—g prefactors must not be evaluated at point y;, i.e. they are still functions of
the field point . These matter sources display explicit factors with spins and other without
spin, but we should always keep in mind that there are secondary spin contributions coming
from the potentials themselves.

Let us now turn to the expression of the equations of evolution in terms of the metric
potentials (34). If we pose P, = p,/m, using d/dr = u°d/d¢, the covariant equations of
motion (ZTa) may be put in the form

dP, 1 c?
d—t“ = I = FPWUV% B %RWPUUVSPU N WJAVMVMRMW +0(5%), (3.12)

where P, = p,/m can be read from Eq. (2.12). For a lower spatial index p = 4, we decompose
P, as (coming back to notations for the body 1)

Py = P}® + P35
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Fyy=FNS 4+ F50 4 %5 (3.13)

Here, the order in spin refers to the order in the spin tensor as it reads in the formulas (Z12)
and (2Tal), but we should recall that there are also spin contributions coming from the
potentials themselves, as well as from the replacement of accelerations using the equations
of motion. We see from Eq. (ZI2) that P; has no SO part in this sense, and its NS part
comes from P; = u"g;,v”/c. The NS part of F; comes from the usual connexion term in the
geodesic equation, the first term in Eqs. (812). As the NS and SO parts can already be
found e.g. in Eqgs. (2.12) of Ref. m] and in Eqs. (3.7) of Ref. ﬂﬂ], we only display here the
SS pieces:

1 . o . . .
PE = 0 { — SS90,V + 287 Si90;,Viy + ST (SY 080,V — 25108 0,V)
1

3 . .
+ K1 {5(55"5?8%1/)@1 — S1aS0,0,V
+ (SS9, V + (SE S ) i,V + SP S,V
+ 2898010,V + S S (—20,V; + 2@%)] } , (3.14a)

) _ _F1 qajqab R | gab gaby o
Iy = W&J& 95:0,V + W{(Sl i) v1 010V
1

+ = (SPPS) 970,V — g(SfiSfbaibV)aiV + (S1°S1") 0,V 9,V

_l_

N — o

(St S9Y 00t 0V — P S0,V 05,V + SobSY (vfatajiv
: 3 1
+ 4&1‘/8)2‘/) + S?]Sfb (28158]1% + vaaﬁbV + 5‘/8)25,‘/)
. . 1
+ 577 (25850t V — S SPutelagY )
+ ST SV (208 040V — 2vgakjiva)} . (3.14D)

In these formulas, the potentials and their derivatives are to be understood as regularized
at the location of body 1.

For the equation of precession of the conserved-norm spin, we decompose similarly the
precession vector into a NS and a SO part, before replacement of the potentials. We obtain

Q) = (Qi)Ns - (Qi)so ’ (3.15)
where (Q})yq 18 given by Eq. (2.19) in ] and where
a 1 i a, b 1 a,a a,b
Wsl @aV + W (%1 (Sl'UlabaV) - 5(511)1)@@‘/ + Sl'Ulaab‘/i

1
— ST (v{v]) 0V + 5 (STv]) v10V — (S{vy) 0iaVa + Silvll’@m%

| - (S00,0,V )0 — g(valfabaV)vi (Se) 20,
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+ 81 (2050,0,V) + (.Y V) + (0500, V) + G2V )
—3@%MQ@V—gw@@w&wwaﬁ@@@w+a@@n
+ 20004, Vi + ;vf&-a\/ — 3V 0,V — 4000,, V4, + 21)11’@1,‘/@)} } : (3.16)

The contributions featuring x; come directly from the second term in Eq. (Z30), while the
other contributions come from the first term there. The time derivatives of the velocities
that enter the definition of the tetrad are replaced by the expression of the acceleration in
terms of potentials, which include SO terms (as given for instance in Section 3 of [24]).

C. Spin contributions in the metric potentials

We now investigate the spin contributions to the metric potentials introduced in Sec-
tion [ITAlL As we are effectively working at the next-to-leading order, calculating these
contributions from the results already presented above will be rather straightforward and
we will only need to resort to well-known techniques.

By inspection of the matter sources (B.11]), one can see that the SO and SS contributions
to the metric potentials start at the following PN ordersf]

Vi =03), V¥=04),
VO =0(), VF=0(4),
X0 =0(1), X%=0(2),
R°=0(1), R®=004),
W2 =0(3), WP =0(4). (3.17)

From Eqs. (B14) and ([BI6]), we see that it is sufficient to compute the new SS contributions
of the potentials V' at the order 3PN (the leading order contribution at the order 2PN being
already known, see e.g. Ref. [33]), V; at the order 2PN, and X at the order 1PN.

We turn now to the caculation of V5% at the 3PN order which actually corresponds to
the relative 1PN order. Truncating Eq. ([B.6]) appropriately, we have (dropping the FPg_g
regularization, which plays no role for compact sources)

A3/ 1d 1 d?
VSS — [ — ot — == /dgz'a(t,x') +—— [ &z —2o(t, )| +O{),
|z — 2| cdt 2¢% dt? ss
(3.18)

Because we are working at the next-to-leading order, various indirect contributions appear.
Aside from the SS terms generated directly by the SS terms of o given in Eq. (B.11al), there
are contributions from the SO 0.5PN part of V; in the SO 2.5PN part of o, from the SS 2PN
part of V in the NS 2PN part of o, and from the acceleration replacement featuring the SS
2PN part of a’ in the second time derivative of the integral of the NS Newtonian part of o
(in the third term above).

3 It is implicitly understood that the orders n showed in the terms O(n) below take their highest possible

values.
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In the following, to present the result in a more compact form, we adopt short cut
notations: for any vectors a, b and spin tensors S p, we define the scalars (ab) = a'l’,
(SaSp) = S7SY, (aSab) = a’STV, and (aSxSpb) = a'SFSHH (beware of the convention
for the order of the indices on the spin tensors).

We replace in Eq. ([BI8]) the full expression ([B.I1a) for o, perform integration by parts
when derivatives of Dirac deltas occur, and compute the resulting integrals using Hadamard
regularization, i.e. [ d*zFd; = (F);. The metric potentials can be considered as regularized
when appearing in factor of a Dirac delta in the integrals, according to the pure Hadamard-
Schwartz rule E] Fé& = (F1)d;.

An important point is that the derivatives have to be treated in a distributional sense.
For the first time in our formalism, we have to take into account an essential distributional
term in the potential V itself. The leading order result is indeed

Glil

2ctmy

Vs Sk 5Tk, (i) +124+0(6), (3.19)

B
which, along with a non-distributional contribution, yields a distributional term given by

G/{:l i i
J Qv
351 Sl

2ctmyry

4

Vi = ;61 +14240(6). (3.20)

This distributional term will play no role in the derivation of the equations of motion them-
selves, but it will produce a net contribution when computing the mass source quadrupole
moment, as explained below in Section [V Bl Because, in this computation of the quadrupole
moment, the V' potential is only needed at the 2PN order, we will not need to consider pos-
sible distributional terms at the higher 3PN order.

Gathering the different non-distributional contributions we obtain

Gk
SS _ 1
Vion distr = Setmyrd (3(n1S1.51m1) — (S151))
i flﬁ (5151) 3(72,11;1)2 _ (Ul’gl) _ 3Gm2(?12n1) i 3Gm2(1112n2) BG’/T;Q
_3Gm2(nl2n1) _ Gm2 Gm2 _ 3(711511)1)2
47272, 2r3ryy 211, 273
15Gm2(n12n1) 15Gm2(n12n2) 9Gm2 3Gm2
.9 - - -
+(n125151m12) ( 4rd, 4rd, 2rird,  2rord,

+(n15151n1) (_15(711’111)2 N 3(1)11)1) n 3Gm2(n12n1) 3Gm2>

2
47";’ ri{’ 47"?“2 27’%’7"12

+(n125151n1) ( 3Gm2 3Gm2) ('U151351U1) i 3Gm2(n125151n2)]

B 27“%2 27’%7’%2
0 7 S, S _
2t ) + (mzby ”’( 2l ns

—3G(n12n1) i G ) _ 3G(n125152n1)

1
217y

3 2rt,

G
+ E |:(n15152n12) (

+(5155) ( } +162+40(8).

(3.21)

4 3
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For the calculation of V% at its leading order 2PN, we proceed similarly as for V, but
keeping only the first term in the expansion ([BI8). The calculation is simpler, with no
indirect SS contributions. We get

Gk, 4m

G |
" (3(mSiSim) — (S5150)) v — — L 2N (518))6, + 14 24 O(6),  (3.22)

VSS — _
2myctry 2mqct 3

1
where we have included for completeness a distributional term completely analogous to the
one discussed above for the potential V55, but that will not contribute in the rest of our
calculations.

The computation of XSS s different, as it involves non-compact support terms. From
Egs. (84), we see that the only 1PN SS contribution in X is

X5 =0p! [-20,V°0;,V0] + 0(4), (3.23)
with the leading order SO part of V; given by
G o1

V0 = —5Y0,— +1<2+0(3). (3.24)
2c T

We are working at leading order here, so that we keep only the first term in the expanded
inverse d’Alembertian operator, which is just an inverse Laplacian. For the cross term, with
derivatives of both 1/r; and 1/rg, we use the function g = In[ry + o + 12| which satisfies
Ag = 1/(riry) (including the distributional part of the derivatives). With the notations
Al = 0/dyi, 92 = 0/dys, we can writd]

_ 1 1 _ 1

For the “self” terms, we can “factorize” the derivatives as explained in ﬂ&_ﬂ] Since we may
ignore contributions of the form A~ (A /r}é;) for £ + p even, we disregard possible distri-
butional terms generated by space or time differentiation. After factorizing the derivatives,
we transform them into derivatives with respect to y{g and apply A~! straightforwardly on
the argument. The relevant formula is

_ 1 1 1 1
o () e (5)] = s [0 = 5600+ ()

1
+3 (5ik8jl + 52-18jk + 5jk8il + 5jk8il) (ﬁ)

i
1
+ (5ij5kl + 5ik5jl -+ 5il5jk> A (7’_2):| . (326)
i
Gathering these contributions, we find the following simple expression for the leading-order
SS part of the potential X:
Xss G?

2c2rt

1 e
1(5151) — (nlSlSlnl) — 2—6251]5518;k83g +1+ 2+ 0(4) , (327)

where we keep the derivatives in the second term unexpanded.

4 Including properly the regularization FPz—y would yield an additional constant contribution @], which

would vanish after applying the derivatives.
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D. Results for the evolution equations

Using the results of the previous section and the NS and SO parts of the metric potentials
that are already known, we are in position to complete the calculation of the equations of
motion and precession (B.I4) and (B.16). The results for the accelerations a2 and the
precession vectors §2; o must pass several tests checking their validity.

The first one is to make sure of the existence of a set of conserved quantities, in the
absence of reaction reaction at this order, associated with the Poincaré invariance of the
problem: a conserved energy FE, an angular momentum J, a linear momentum P, and a
center-of-mass integral G. We were actually able to construct all those quantities explicitly
by guess work. The higher-order terms in the precession equations intervene only in the
conservation of the angular momentum, whereas the higher-order terms in the equations of
motion intervene in all other conservation relations. We shall exhibit below the expression
of the conserved energy, which will be later used to control the phase evolution of the binary
in the case of circular orbits through the balance equation as explained in Section [V Cl

Another test consists in checking the Lorentz invariance of the dynamics, which must be
manifest since the harmonic gauge choice is Lorentz-preserving. We use the same method
as in Refs. ﬂﬁ, @I], to which we refer the reader for more details, and find that our results
pass this second test.

As the 3PN SS dynamics has been already investigated in both the EFT ﬂZ_lL , @, ,
, @] and the ADM @, @@] approaches, we must be able to recover their results in our
scheme. The equivalence between the ADM and EFT description has been shown to hold
in Refs. @, @, ], so that we will only compare our results to the ADM ones, in keeping
with our previous works. We present this comparison, and the resulting transformation
from harmonic to ADM variables, in Appendix The agreement with the ADM results
also validates the test-mass limit of ours.

Because the expressions produced are rather lengthy, we will give directly their reduced
version in the center-of-mass (CM) frame. As in our previous works, this frame is defined
as the one where the center-of-mass integral G; (which is such that dG/dt = P and hence
d’G/dt? = 0) vanishes. We define @ = rn = y; — y, the separation vector of the binary,
v = dx/dt the relative velocity, m = m; + my the total mass, v = mymsy/m? the symmetric
mass ration and § = (m; — ms)/m the mass difference. We also use, for convenience, the
same spin variables as in the previous works , ], namely

mo my

The vectors S; and Sy are the conserved-norm vectors constructed in Section [ICl Addi-
tionally, we will use the notation kK, = k1 + ko and K_ = Ky — ka.
The positions of the two bodies the new frame read
Yy, = @33 + izz> Yz = _ﬁw + izz> (329)
m c m c

with z being a vector related to the center-of-mass integral G. In general, when working at
the nPN order, only the (n — 1)PN expression of G (or z) is required. This can be checked
explicitly from the Newtonian expressions in the general frame of the quantities of interest,
as explained for instance in Ref. ﬂﬁ] Thus, we would only need the SS 2PN expression of
G in principle, but it turns out that there is no such contribution in G. We can therefore
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translate our results to the CM frame using simply the same rules as in previous works:
namely, we need the NS 1PN and the SO 1.5PN terms in z, as given in the Section 3 of
Ref. [25].

For the SS contributions to the conserved energy, we find

Gy 1 1 /1 1Gm
Fog = L 2+ <8 8+4 . eé)} , (3.30)

e = 5% (—2ky —4) + (SX) (—20k; — 45 + 2k_) + X2 ((6k_ — ky) + v (24 +4))
nS)? (6ry + 12) + (nX)? ((3ky — 30k_) + v (—6k; — 12))
nS)(nX) (6dk4 + 126 — 6k_) ,
eg = 5% [(nv)? ((60k_ — 6k + 24) + v (6K + 12))
+0° ((—20K_ + 8k4 — 28) + v (264 +4))]
+ (S%) [(nv)? ((—120K4 + 486 + 12K_) 4+ v (60K + 126 — 30K_))
+0 ((106k4 — 526 — 10k_) + v (26K + 40 + 6_))]
+ 3% [(nv)? ((60K— — 6y + 24) + v (=90k_ + 21Ky — 72) + 1° (6K, — 12))
+0° ((—=50k_ + 5ky — 24) + v (0k_ — 11Ky + 76) + 17 (—2k4 — 4))]
nS)? [(nv)*v (—30k4 — 60) + v* (60 — 18k,) + v (—6ks — 12))]
n.S)(vS)(nv) (—186k_ + 18k, — 84) + v (12k + 24))
vS)? (66K_ — 6Ky + 28)
ny)? [( v)? (v (156k- — 15K ) + 1* (30K + 60))
v ((96k— — 9y +48) + v (30K + 15k — 156) + 1 (6K + 12))]
+ (nZ)(vZ)(nv) ((—180K_ + 18k — 72) 4+ v (120K — 48k + 228) + 1 (— 12k, — 24))
(vE)? ((60Kk_ — 6k + 24) + v (—65k_ + 18k, — T6))
+ (nS)(nx) [(nv)*v (—306k4 — 608 + 30k_)

v (180K, + 1080 + 18k_) + v (—60K, — 126 + 6k_))]
(nX)(vS)(nv) ((180k4 — 726 — 18k_) + v (66K + 120 4+ 30K_))
(nS)(vE)(nv) (180K — 846 — 18k_) + v (6dk4 + 120 + 30K_))
(US)( %) ((=120k, + 520 + 126_) + v (—24k_))

—30k_ + 5Ky +8) + (SX) ((8dk4 + 85 — 8k_) + v (12k_))
(4ky —40K_) + v (36k_ — 11k — 10)) + (nS)* (96k_ — 15k, — 36)
+ (n%)? ((125H_ —12k4) + v (—=90k_ + 33k4 + 30))
+ (nS)(nX) ((—240Kk, — 325 + 24K _) + v (—36K_)) .

+ + 4+ +

(
(
(
(

+

4+t o+

(3.31)

The corresponding expressions for the relative acceleration @ = a; — a5 and the precession
vectors € 5 are provided in Appendix [Al

Finally, we further specialize our results to the case of circular, non-precessing orbits. As
discussed in Ref. ﬂﬁ], we have in fact three classes of orbits for the conservative dynamics.
The CM expression are valid for general orbits, for which we make no assumption on the
presence of precession and/or eccentricity. Quasi-circular precessing orbits correspond to
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the case where we allow a generic orientation of the spins, but assume that the separation
is constant at the SO level; as soon as SS and higher-order-in-spin terms are included the
radius and orbital frequency become also variable on an orbital timescale. In Ref. ﬂﬁ] the
definition of such orbits was investigated by perturbing orbital averaged quantities. The
third and simplest class of orbits is that of the circular orbits with spins aligned with the
orbital angular momentum and where precession is absent. As working at the next-to-
leading order makes their determination more complicated, we leave the investigation of
quasi-circular orbits for future work and focus on the circular, spin-aligned, non-precessing
case.

To present results for circular orbits, we use the same definitions as in previous works.
We introduce a moving basis (n, A, £), with n denoting the unit vector along the separation
vector, * = rn, £ = n X v/|n x v| the normal to the orbital plane, and A completing the
triad. When neglecting both radiation reaction and spin precession and assuming the spins
aligned with £ the expressions for the relative velocity and acceleration become v = rw and
a = —rw?n, with w the orbital frequency defined by 72 = w. For the projected value of the
(aligned or anti-aligned) spins along £ , we use the notation S, = S - £. We also introduce
the usual PN parameters v = Gm/rc? and x = (Gmw/c*)?/3, both of order 1PN. In the
following, we only display the SS terms, and refer the reader to Sections 9.3 and 11.3 of
Ref. ﬂﬂ] for NS and SO contributions, and to Ref. @] for the newly computed cubic-in-spin
contributions.

First, we relate r to w by means of the equations of motion. We obtain the following SS
terms for the PN generalization of Kepler’s law:

Yss = # {932 [S? (—% - 1) + SeX (_5/% — 0+ %)
+2§<<%—%) +y(%+1))}
elo((e ) )
s (%) oo (-8 BY)

+37 (1+V(5f£_—f£+—2)+1/2 (%—i—% )]+O(8)}. (3.32)

The result for the energy for circular, spin-aligned orbits is then

1 1
ESS = —§myc2xw {1’2 |ng (_/{-i- - 2) + SZZZ (_5’1{4- — 20 + K'_)

0k_ K
5dk_ 2Bk 50 Y 5
3 | a2 _ B + 9V dRy 2
+x [Sz<< 5 5 +9)—|—I/<6 —|—3))
50ky 250 BK_ 50ky 50 3bk_
» _ a9v I °v
—i—Sez(( 2+3+2)+V<6+3+6)>

5dk_ Bk 5dk_ Bk
I [ o
+2. (( 1 1 —l—5> + l/( 1 + 1 0)
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(Yo

(3.33)

This expression can be shown to be in agreement, in the test-mass limit, with the energy
of a test particle in circular equatorial orbits around a Kerr black hole @] It is crucial to
control the phase evolution through the balance equation (see Section [V CJ).

IV. NEXT-TO-LEADING ORDER CONTRIBUTIONS TO THE POST-NEWTO-
NIAN GRAVITATIONAL WAVES ENERGY FLUX

We now move to the computation of the 3PN spin-spin contribution to the energy flux
radiated by the system. We start by briefly reviewing in Section [V A] the basic elements
of the wave generation formalism that we need here, before providing in Section [V B| some
intermediate results useful in the calculation of the source multipole moments that are
required to this order. The explicit results for the moments in the CM frame are relegated
to Appendix [Bl because of their length. Our explicit result for the GW flux is presented
in Section [V for general orbits in the center of mass in the system and then reduced to
the case of circular orbits in the configuration where the spins are aligned with the orbital
angular momentum.

A. Formalism

We perform our calculation in the framework of the multipolar post-Newtonian approach
to gravitational radiation. This formalism has been developed over many years, see e.g.
ﬂﬂ, @] Since we will only use a simplified version of the full formalism, as we are
working at next-to-leading order, we will refer the reader to ﬂﬂ] for a review, and give only
a brief overview.

The asymptotic waveform is defined from the transverse-tracefree (TT) projection of the
metric perturbation, in a suitable radiative coordinate system X* = (¢ T, X), as its leading-
order term in the 1/R expansion when the distance R = |X] to the source tends to infinity
(keeping the retarded time Tr = T — R/c fixed). It can be parametrized using two sets of
symmetric and trace-free (STF) radiative multipole moments, Uy of mass type and Vj of
current type as

4G <X Np- 20 1
TT TT L2
by = 2R Piji(N) Z 7N [Ule—2(TR) T+ D N €mn(r Vl)nL—2(TR)} +0O (ﬁ) ;

- (4.1)

where we denote by L = i;...7, a multi-index composed of ¢ multipolar spatial indices 7y, ...,
iy ranging from 1 to 3. Similarly L — 1 = 4y...5p—1 and kL — 2 = kiy...ip—o; N = N;,...N,,
is the product of ¢ spatial vectors N;. The transverse-traceless (TT) projection operator is
denoted PE,}} = PuPji — %Piﬂ?kl where P;; = 6;; — N;N; is the projector orthogonal to the

unit direction N = X /R of the radiative coordinate system. Like in the rest of this paper, the
quantity €;; is the Levi-Civita anti-symmetric symbol such that €153 = 1. The symmetric-

trace-free (STF) projection is indicated using brackets or a hat. Thus U, = U, = Uy and
Vi = VL = Vizy for STF moments. We denote time derivatives with a superscript (n).
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In terms of these radiative moments, the energy flux into gravitational waves then reads

+oo
G C+DE+2) w0 4000 + 2) b
) (42
! éz‘;cm {(f_l)”!(%ﬂ)!!UL Vet e na s e e e (42

The Uy, and V7, can be expressed as (non-linear) functions of two sets of intermediate source
rooted so-called canonical moments M and Sp which are themselves related by a gauge
transformation to a set of two so-called source multipole moments I, J;, (plus 4 gauge STF
moments) which parametrize the most general solution to the Einstein equations outside
the source. The differences between M) and I, (and similarly between J, and Sp) arise at
the 2.5PN order (see for instance B]) and, since we are interested in SS effects which always
add at least a factor 1/c?, we can safely ignore their differences. Using the same argument,
we only need to consider the terms in the relation between the radiative moments and the
canonical ones up to the order 2PN. Furthermore, we can also neglect the tail terms, which
will only generate SS contributions at the order 3.5PN, so we finally have the simple relation

(Ui)ss = (I))ss + O (7) (4.3)
(Vi)ss = (J5)ss + O (7) (4.4)
(Uii)ss = (Io))ss + O (7). (4.5)

Noticing additionally that the leading order spin-spin contribution to any of the I, or J,
(and their time derivatives) is of the order 2PN (as will be clear from the expressions in the
next section), we can express the spin-spin flux in terms of the relevant source moments as

Gl @@ 1 { L @ 16 @3 (3)} 1 [1 (4) (4)”
A N\5Y Y 2 189 WRTHE 45T T b |84 TARTIER ] [

which requires computing the SS parts of I;; to the order 3PN and of J;; and I;;;, to the
order 2PN. We also need the NS parts of I;; up to the order 1PN and of J;; and I;j;; at
the Newtonian order, as well as the SO contributions in [;; and J;; up to the order 1.5PN
and the leading 0.5PN SO contribution to J;;i, all of which are known from previous works.
Remember that the spin-orbit contributions to mass (resp. current) type moments start
at 1.5PN (resp. 0.5PN) order, and that time derivatives of non-spinning (resp. spin-orbit)
expressions generate spin-spin contributions with an additional order 2PN (resp. 1.5PN) at
least.

The matching procedure at the core of the formalism finally allows us to express the
source moments as closed-form integrals over space ﬂﬁ] Instead of reproducing here the
general expressions which can be found in Eq. (123) of Ref. ﬂﬂ], we directly display below
the terms that contribute to the spin-spin corrections at the required orders. They read

B 2
- _ 20 . =) 1
Ij)ss = FP [ d*x [ = R OIS 5 ) B 5 - 4.
(£ij)ss B:O/ X (ro) {IJ{ + 14¢2 212 4% SS+O ) (4.72)

B
T . =SS 1
(Jij)ss = Blf‘:}; /d3x (—) Eab<jyTisady + O (E) , (4.7b)
B
r . =SS 1
(Iijk)SS = gzo /d3X (T_O) xijkz + O (E) , (47(3)
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where FPg_ denotes a finite part operation defined by analytic continuation in the complex
plane for the parameter B, which deals here with the infrared divergences at infinity. An
arbitrary scale rq is introduced, which will play no role in the present calculation and has to
disappear from gauge-invariant results. The basic “building blocks” ¥, ¥; and ¥;; entering
the integrands are defined as

7_00 + Tii 07

h s Zz % , Eij = Tij , (48)

2

where 7 has been defined in (8.2)), and the overline indicates a post-Newtonian (near-zone)
expansion. In identifying the relevant terms in ({7al), we slightly anticipated on the results
of the next subsection (see Eq. (49al)) and used the fact that the SS contributions to ¥, ¥,
and ;; all start at the 2PN order at least.

B. Computation of the source moments

To obtain the relevant SS contributions to the source moments, we first express the sources
¥, ¥; and ¥;; in terms of the potentials parametrizing the metric and the matter sources o,
o; and 0;; defined in (B.5]) (the complete relations can be found, generalized to d dimensions,
in @]) Taking into account the order of the spin corrections in these quantities, the only
terms that yield spin-spin contributions to the orders we are interested in are

—SS 4V

by _{[1+?]U_WG28V8V+ G48V8V}SS+O(7), (4.9a)
—SS 4V

Y, = 1+ ? o; — e 28kV8kV “ + O (5) , (49b)
=SS

¥, =0 (3) . (4.9¢)

The integrals in Eq. (£T7a) can now be performed using the standard techniques described
in @g] handling the UV divergences of the integral through the Hadamard regularization
and the IR divergences through the finite part operation FPg_,.

We highlight here that the distributional parts of the sources have to be treated with
care. In particular, for the first time, we encountered the situation where such contributions
in the metric itself (more precisely in the potential V'), and not just those coming from
derivatives applied to the metric, have to be crucially taken into account.

More specifically, the spin-spin leading order contribution in the potential V' was com-
puted in Egs. (B19) and [320) and contains a term proportional to d; which has to be
accounted for when integrating the 9,V 0;V term of (£9a) in (LT7a). In order to illustrate
this further, let us focus on the second and third terms in Ygg

—ss 4V
Xy :C—20 7TG28V8V (4.10)

which we can rewrite using the identity 20;40;B = A(AB) — AAB — BAA, and the fact
that AV = —4nGo at leading order, as

=SS 1 1
Yo = ——
v 2 m(Gc?

AV, (4.11)
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By reinjecting this second form into ({.7al), integrating by parts, using Az;; = 0 and treating
the surface terms as explained in the Section IV D of @], we readily see that if/s actually
gives a vanishing contribution to /;;. If on the other hand one uses ([£.I0) without including
the distributional part of V', one obtains an incorrect non-zero result.

Our explicit results for the SS contributions to the source moments reduced to the center
of mass are presented in Appendix [Bl

C. Gravitational waves energy flux

Using equation (4.6]), our results for the source moments and the equations of motion and
precession obtained in Section to compute time derivatives, we can finally compute
explicitly the gravitational wave flux. We will give the result already reduced in the center-
of-mass frame, and we use the same notations as already introduced in Section We
obtain

G3m?*? |1 0, Gm ,,  G*m* ,
fss:w{gfﬁ 212(f6 KR f)} (4.12)

with

[l =57 [(nv)?* (—312k; — 624) 4 v* (288K + 576)]
+ (S%) [(nv)* (—3120k4 — 6246 + 312k_) + v* (2880k4 + 5760 — 288k_)]
+ 2% [(nv)? (156K — 156k + 18) + v (312K, + 624))
+v° (—1446K_ + 144k + 6) + v (288K, — 576))]

+ (nS)? [(nv)? (1632k + 3264) + v* (—1008k4 — 2016)]
+ (nS)(vS)(nv) (—696k — 1392) + (vS)* (144K, + 288)
(nX)? [(nv) ((—816dK_ + 816K+ + 18) + v (—1632k, — 3264))

+0v” ((5046k_ — 504k4) + v (1008k + 2016))]

+ (nX)(vE)(nv) ((3480K_ — 348k — 12) + v (696K + 1392))
+ (VX)) ((=T720K_ + T2k4 +2) + v (—144rK, — 288))
+ (nS) (nZ) [(nv)? (16320k+ + 32646 — 1632k_) + v* (—10080k. — 20168 + 1008~k_)]
+(
+

+

nv) (—3480k4 — 6966 + 348k_) + (nS)(vXE)(nv) (—3480kK+ — 6968 + 348k _)
1440k, + 2886 — 144k_) |
V=92 [( ) (2274&@ + 12918k + 35436) + v (—14112k, — 28224))
+(nw)?v? ((—25920K_ — 17544k, — 51984) + v (17928k, + 35856))
v* ((3660K_ + 5034k, + 18276) + v (—4584k, — 9168))]
+ (S%) [(nv)* ((106446k4 + 506528 — 10644%_)
v (—141120K, — 282240 + 5016 _))
+(nv)*0? ((—149520K, — 696726 + 14952k _)
+v (179285k, + 358560 — 7560k_))
v* ((46680k4 + 208126 — 4668k_) + v (—45840k, — 91686 + 3120k_))]
+ 2% [(nv)* ((—53220kK— + 5322k + 9714) + v (47826K_ — 15426k, — 64788)

5}

~—

/-\
’p‘\_/\_/
A/‘\’—\
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v? (14112k4 + 28224))
+(nv)*0? ((TA7T60K_ — TAT6k, — 14286)
+v (—63720k_ + 21324k, + 86316) + 1> (—17928k4 — 35856))
0! ((—23346k_ + 2334k + 3796) + v (19260Kk_ — 6594+, — 23336)
+17 (458454 + 9168))]
+ (nS)? [(nv)* ((129306k— — 90570k, — 81570) + v (71520k + 143040))
+(nv)*v? ((—81240K + 81636k + 65220) + v (—62976k — 125952))
v ((5708k_ — 14778k, — 6546) + v (13632k, + 27264))]
+ (n9)(vS) [(nv)? ((—197526k_ + 51816k + 16464) + v (—29184k, — 58368))
+(nv)v? ((95226k_ — 19890k, — 180) + v (4092k 4 + 8184))]
+ (vS)? [( v)? ((63780k_ — 9114k, + 7794) + v (5100k ., + 10200))
v* ((—16686k_ — 324k, — 6478) + v (120K, + 240))]
+ (n%)? [( v)* ((517500k_ — 51750k, + 18420)
+v (—486908 K + 152190k, + 60960) + v* (—71520k, — 143040))
+(nv)?v? ((—448800k_ + 44880k, — 8112)
+1(396120K_ — 129372k, — 79608) + 1 (62976k. + 125952))
0! ((76746k_ — T6T4ky + 3090) + v (—73860k_ + 22734k, + 10884)
+1° (—13632k, — 27264)) ]
+ (nX)(vE) [(nv)? ((—357848k_ + 35784k, — 33534)
+v (343446K_ — 105912k + 48858) + 1/ (29184%., + 58368))
+(nv)v? ((147060K_ — 14706k + 7782) + v (—115685k_ + 40980k, — T794)
+1° (—4092k, — 8184))]
+ (vE)? [(nv)? ((T7460K_ — T746k, + 14124) + v (—89280K_ + 24420k, — 36432)
+1% (—5100k — 10200))
+0? ((—6720K_ + 672k, — 2242) + v (16080%_ — 2952+, + 9788)
V2 (=120 — 240))]
+ (nS)(nX) [(nv)* ((—1035008k4 — 709208 + 103500k )
+v (715200K, + 1430408 — 123240k _))

+(nv)*? ((897600k, + T18088 — 89760k )
v (—629765k. — 1259525 + 95472k _))

v* ((—1534868k, — 86640 + 15348k _) + v (136320K,. + 272640 — 15912k_))]
+ (nX)(vS) [(nv)? ((357845/<a+ — 154020 — 35784r_)
+v (—145920k, — 291840 + 540965 _))
+(nv)v? ((—147065k+ + 81900 + 14706K_) + v (20460k + 40926 — 21090%_))]
+ (nS)(vE) [(nv)? ((357840k — 2406 — 35784k._)
v (—145920K, — 291846 + 54096k _))
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+(nv)v? (1470604 — 51240 + 14706k_) + v (20460k, + 40926 — 21090%_))]
+ (vS)(vE) [(nv)* ((—154926k 4 + 230526 + 15492k _)
+v (51000k4 + 102008 — 30612+_))
+v° ((13446K4 — 81888 — 1344k _) + v (1208k+ + 2406 + 6552r_))]
fe = 5% [(nv)® ((—27726k_ + 23844k, + 48872) + v (—1320k4 — 2640))
v* ((25726K_ — 21028k, — 41832) + v (720K, + 1440))]
+ (S%) [(nv)? ((266166 K4 4+ 551765 — 26616K_) 4+ v (—13205k+ — 26400 + 12408k_))
v* ((—236000k — 488728 + 23600r_) + v (7208k4 + 14406 — 11008k_))]
+ 2% [(nv)? ((—133080k_ + 13308k + 1208) + v (34320k_ — 30048k — 61736)
+17 (13204 + 2640))
+0? ((118005K_ — 11800k — 4408) + v (—29320K_ + 26532k + 56288)
v (—720k, — 1440))]
+ (nS)? [(m;)2 ((287888k_ — 135588k — 300528) + v (2028k . + 4056))
v? ((—123808K_ + 77736k + 182752) + v (—1992k, — 3984))]
+ (nS) (v )( v) ((—204728k_ + 64056k, + 123000) + v (1932k, + 3864))
+ (vS5)? ((46646K_ — 14652k, — 27240) + v (—168k,4 — 336))
+ (nX)? [(nv)? ((821880K_ — 82188k — 5604) + v (—298026k_ + 194178k, + 264672)
v? (—2028k, — 4056))
+0? ((—450580k_ + 45058 + 9700) + v (133766k_ — 103492k, — 185532)
+17 (199254 + 3984)) ]
+ (nX)(vE) (nv) ((—422646k_ + 42264k, — 9808) + v (195066 — 104034k, — 69804)
+1° (—1932k, — 3864))
+ (vX)? ((96585K_ — 9658k + 4784) + v (—45805K_ + 23896k, + 9808)
v? (168k. + 336))
+ (nS)(nX) [(nv)? ((—1643766 K, — 2824446 + 164376k_)
+ (20285k 1 + 40565 — 117180k_))
+v” ((901160%4 + 1837160 — 90116k_) + v (—19926k 4 — 39846 + 51512k_))]
+ (nX)(vS)(nv) ((422640k 4 + 464320 — 42264K_) + v (96604 + 19328 + 39978k _))
(nS)(vY)(nv) ((422640k, + 507446 — 42264k _) + v (9666K4 + 19325 + 39978k _))
( S)(vY) ((—193166k, — 184800 4 19316k _) + v (—1686k, — 3365 — 18488K_))
fo =52 ((160K_ + 144k + 368) + v (=576, — 1152))
(SY) ((1288k + 2240 — 128k _) 4+ v (=5760k, — 11526 + 512K _))
+ X? (640K + 64k + 24) + v (2720k_ — 400K, — 384) + v* (576k + 1152))
(nS)? ((—486k_ — 432k, — 936) + v 1728k, + 3456))
+ (n%)? ((1920K_ — 192K, — 16) + v (—8166k_ + 1200k, + 928)
v (—1728k, — 3456))

+ +

+

_|_
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+ (nS)(nX) ((—3848k, — 7846 + 384rk_) + v (17286 + 34565 — 1536k_)) . (4.13)

After reduction to the case of spin-aligned, circular orbits, using the notations already
introduced in Section [IIDI for the energy, we obtain

2 2 .5,..5 1
Fog = S22 {gﬂ [Sg (264 +4) + S5y (205, + 46 — 25_)

5 G G2t
1
—i—E?(( dK_ +K++16)+V(_2K+_4>)}
A6k 271k, 5239 A3k, 43
3| o2 . + _ + =
e lsf« 16 112 504)+”< A 2))

2796k, 8176 279k
N _ _
St f(( 56 56 56 )

y _435/—@ B 4_35 . K
4 2 2

452 <<2795m_ ~ 20964 %) Ly <455l€_ . 243K+ n %)

112 112 8 16 112 21
43 43
12 (220 L 22N o) (4.14)
4 2
Using this result as well as the expression of the orbital energy ([B33), we can write the
balance equation F = —dFE/dt for circular orbits to obtain the phase evolution of the

binary. Different ways of mixing analytical and numerical integration give rise to different
approximants (see for instance @] for a comparison of these different approximants). For
simplicity, we will give here only the phasing formula for the Taylor'T2 approximant: we
re-expand d¢ = 2wdt = 2w(—F/(dE/dt)) and integrate term by term to obtain the phase
of the wave ¢ (here ¢ is the phase of the leading 22 mode, hence the factor of 2) as a function
of w or equivalently of x. We get for the SS contributions

r52 1

(S)ss = — 32v G?mA

{:ﬁ [Sj (—25k, — 50) + SeXy (—255k, — 500 + 25k_)

250k_ 2Bk 5
»? e 2

22150k_ 15635k, 31075
3| @2 +
+x {SZ (( 13 + <1 196 ) + v (30K +60))
470350k, 97756 47035k
% -
o (( 336 42 336

)
i)

(305m+ + 606 —

52 ((_470355/{_ . 47035k 4 410825)

672 672 2688
< 29350k 4415/~€+ 23535)
+v | — —
48
+12 (=30K4 — 60)) } + O(7) } (4.15)
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The known NS and SO contributions are summarized in Sections 9.3 and 11.3 of ﬂﬂ], and

[LIGO/Virgo| 10M,, + 1.4M, 10M,, + 10M,, |
Newtonian 3558.9 598.8
1PN 212.4 59.1
1.5PN| —180.9 + 114.0x1 + 11.7x2 —51.2 + 16.0x1 + 16.0x2
2PN| 9.8 —10.5x% — 2.9x1x2 4.0 — 1.1x3 — 2.2x1x2 — 1.1x3
2.5PN|  —20.0 + 33.8x1 + 2.9x2 —7.1+45.7x1 +5.7x2
2.3 —13.2x1 — 1.3x2 2.2 — 2.6x1 — 2.6x2
3PN
—1.2x% — 0.2x1x2 —0.1x% — 0.2x1x2 — 0.1x3
5 5pn| 18 11X + 082 + (SS) —0.8 4+ 1.7x1 + 1.7x2 + (SS)
—0.7% — 0.3x2x2 —0.05xF — 0.2x3x2 — 0.2x1x3 — 0.05x3
4PN| (NS) — 8.0x1 — 0.7x2 + (SS) (NS) — 1.5x1 — 1.5x2 + (SS)

TABLE I. Number of cycles associated to the different PN terms in the phasing formula, between
the starting frequency for advanced detectors (10Hz) and a cut-off chosen to be the Scwarzschild
ISCO z = 1/6. We show the result for typical black hole/neutron star and black hole/black hole
systems. Spin-aligned, circular orbits are assumed, and we use the dimensionless spins x 4 such that
Sar = Gm%x 4. We ignore contributions that are at least quadratic in the spin of the neutron star.
We gather all contributions known to date, the ones still unknown are indicated in parenthesis.

additional cubic-in-spin 3.5PN contributions can be found in @] We give in table [l the
number of cycles of the signal resulting from each term in the phasing formula, for the
frequency band of advanced LIGO/Virgo detectors. Notice however that these results are
illustrative, as they are specific to the TaylorT2 approximant and as these number of cycles
give only a rough idea of the relevance of these terms in actual data analysis applications.

We can check that our result (AI4]) is in agreement, in limit of a test particle orbiting a
Kerr black hole, with the result of @] obtained in the framework of black hole perturbation
theory. We leave for future work the comparison of our results with the so far incomplete
results (given only at the level of the multipole moments) of [43, [44]. Natural extensions
of the work presented here include the investigation of quasi-circular precessing orbits, the
computation of the spherical harmonic decomposition of the waveform (or, equivalently, the
full polarizations h; ), and the implementation of these results for the factorized waveforms
of the Effective-One-Body formalism with spins (see e.g. @@])
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Appendix A: Explicit results for the equations of evolution

We gather in this appendix explicit results for the equations of motion and precession
obtained in Section [[II D] that are too long to be shown in the main text. We present them
already reduced to the center-of-mass frame.

For the precession vectors () 2, We have found simpler to keep the variables S and &y 2
instead of S, Y and k1. We get

(Ql)so = 373 {w&o + 2 (w570 + Tw&l)} +0O(7), (A1)
with
i i i Sf1=0
wy o = 3(nSo)n' — 95 + 3K1(nS1)n =, 1),

- - 30 3v 15 30 v 9
i Qi 2 (Y 97 - 2(_ v = <
w5 o = S, {(nv) ( 1 5 + 1 ) + v ( 1 5 4)]

4o {(nSl)(nv)zl-@l (—157”) + (nS,) (nv)? (‘1%6 + 157V - 14_5)

30 1-6 9 30 3v 91-9
2 e J— _— J— J—
+(nSy)v (( 5 3 5 T 2) + K1 ( 55 T35 5 3))

(5 35+31— O\, (B 91-d 9
Ho)S) \\TH+55, 1)t 5 "33 T3
+o' |(nS) 35+31_ N e (2221209
ot (nS)( 2 2) "M\ % T2 T3
3v 9 )
+(7’LSQ)(TL’U) (—Z — 7 — Z) + (USQ) (5 + 2)
35 31—-0 9 1-6
. . 56 5 96 1—6 57
wé’lznl {(nSQ((Z—l—%—E)—l—fﬁ (—Z—l2 2V +Z))
3§ » 39 ; 13 5

For the relative acceleration a’ = a} — a}, we obtain (coming back to the S,% and k.
variables)

,. G 1, 1/1 1Gm
(@)ss = i, [10‘4,0 T3 <8%o T % 1)] +0(8), (A3)
with

gy =S [(nS) (—12k, — 24) + (D) (66K, — 126 + 6/<;_)]

+ [ (1) (~60k, — 126+ 65_) + (1) (605 — 6) + v (126 +24))]
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+ [52 (—6ry — 12) + 22 ((36K_ — 3k4) + v (655 +12)) + (nS)? (30 + 60)
+ (S%) (=66k, — 126 + 6K_) + (nX)? (156, — 156k_) + v (—=30k, — 60))
+ (nS)(nT) (306K, + 606 — 30f<;_)] ,

— g [(nS) ((n0)? ((60r4 — 600k_) + v/ (60k4 + 120))
+0” ((126K_ — 36k4 — 48) + v (= T2k — 144)))
+ (nX) ((nv)? ((600k, — 1200 — 60k_) + v (300K + 608 4+ 90k_))
+0° ((24k_ — 240K4) + v (—360k4 — 720 + 12K_)))
+ (vS)(nv) ((300k_ — 30Ky + 84) + v (—12k4 — 24))
+ (v3)(nv) ((—300k4 + 1326 + 30k_) + v (—66K L — 120 — 54/{_))]

)
ty [(nS)(nv)2 (608K — 60k_) + v (308K + 605 + 90k_))
)

nY)(nv)? ((—606k_ + 60k — 120) + v (306k_ — 150k4 + 240) + v (—60k4 — 120))
vS) ((—300k4 + 485 + 30k_) + v (—60k4 — 120 — 54K_))
vY) ((300K_ — 30Ky + 96) + v (—240K_ + 84k — 276) + 1° (12K, + 24))
nS)v* ((—246k, — 240 + 24k_) + v (—=360k, — 720 + 12k_))

)

nS)o? (240K — 2Asy +24) + v (2405 +24x,) + 12 (7265 + 144))]

n'|(nS)?(nv)?v (—210k, — 420) + (nv)*S? ((306k_ — 30k + 120) + v (30K + 60))

(
(nX)(nv)?v (—2108k, — 4208 + 210k_) + (vS5)? (65K_ — 6y + 84)
*(nv)? (v (1056K_ — 105k4) + v* (210K + 420))
nw)*(SY) ((—600k + 2400 4 60k_) + v (308K, + 605 — 150k_))
nv)*L? ((300k_ — 30k4 + 120) + v (—456k_ + 105k, — 360) + v* (—30k4 — 60))
nS)(nv)(vS) ((—300k_ + 30k4 — 420) + v (604 + 120))
nv)(vS) ((30dk4 — 2408 — 30k_) 4+ v (3004 + 600 + 30k_))
nv)(vE) (300K — 4208 — 30k_) 4+ v (300K + 600 + 30K_))
nv)(vE) ((=308k_ + 30k4 — 240) + v (900 — 60k, ) + > (60K, — 120))
vY) ((—120k4 + 1320 + 12k_) + v (—24K_))
((60k_ — 6Ky +48) + v (—65k_ + 18k — 180))
v? ((60k4 + 120) + v (180k, + 360))
S22 ((—60K_ — 6y — 48) + v (—36Ky — 72))

e i o S S T

e e e e e e e e s N e
?ﬂ
~—

( S)(nX)v? (605K, + 1200 — 60k_) + v (1808k + 3605 — 180k_))
+ (nX)*0* ((30k4 — 308k_) + v (—=908k_ + 30k, — 120) 4+ v* (—180k4 — 360))
+ (SY)v? ((—720) + v (—368k, — 720 + 60k_))

+ 3207 (=24 + v (240K — 24k, + 96) + 12 (36K, + 72))}

+ o [(nS)z(nv) (=240, ) + v (12064 + 240))
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+ (nv)S? ((—120K_ + 60k, — 48) + v (—24k, — 48))
+ (nS)(nX)(nv) ((—2408k, + 2408 + 240k_) + v (1205, + 2405 — 120K_))
+ (nX)?(nv) ((1200K_ — 120k + 240) + v (—605k_ + 300k, — 480)
+1% (—120k4 — 240))
) (728K, — 1446 — T2k_) + v (—246k, — 486 + T2k_))
(=368 + 36K, — 96) + v (240K_ — 96K+ + 240) + v* (24K, + 48))
((65k_ + 90k, + 84) + v (—36K, — T2))
((420k4 — 42k_) + v (—180kK4 — 360 + 6K_))
(4204 4 360 — 42k _) + v (—185Kk, — 360 + 6K_))
((

420k + 4204 — 48) + v (120K — 96k +12) + 1 (36k4 + 72))} ,

SE

—~

nv

S S

M E/\_/
= 2
O}/\

)
vS)
)

S
n

3
U=

—~ A/\/:\/-\/-\
nn
<
N

+ o+ + + o+

v

)
(nS) ((—246k_ + T2, + 164) + v (3655 + 72))

Q

[l
I
R

+ (nX

~—

((480k5 + 726 — 48k_) + v (186K, + 365 + 3of<;_))]

+ 5 [(nS) (4867 + 846 — 48k ) + 1 (185K, + 366 + 305_))
+ (nX) (48K, — 486k_) + v (60K_ — 102k, — 148) + v* (— 365, — 72))]

[(nS)2 ((480k_ — 192k, — 420) + v (=96, — 192))

S? ((—83k— + 40k + 72) + v (20K + 40))
nS)(nY) ((—2408k, — 3966 + 240k _) + v (—965k. — 1926 — 96k_))
3)? ((1200K- — 120k4) + v (240k4 + 372) + 1% (96K + 192))

N
+ (
+ (nX)
+ (S%) ((486K4 + 720 — 48k_) + v (2004 + 409 + 12k_))

+ 52 ((24ky — 240k_) + v (=20K_ — 46k, — T2) + % (—20k, — 40))} . (A4)

Appendix B: Explicit results for the source multipole moments

We list in this appendix explicit results for the newly computed SS contributions to the
source moments, the computation of which is described in Section [V Bl We recall that the
brackets indicate the STF projection.

For the mass quadrupole moment, we obtain

) — » 1] ]
()ss = mct [ > T 8 (ZG’O T 1671)] : (Bla)
with

iy =— SS9 6k + ki) + 4SS vk + SV V(0K — kL)

igy = 295787702 (0K — ki) + 58 SVET70? (ko — 0ky) — 2uk_)
+ NP0 (290K — Ky ) 4+ V(290K + 8Tk, + 140)) + 66 (Sv) S’ (ky — 6k_)
+ 66 (S0) S~ ((6ky — k_) + 2vk_) + 66 (Sv)X"07 ((dky — K_) + 2vK_)
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+6 (S0)X?” (11(ky — 0k ) + v(118k_ — 33Ky — 28)) + 22 S* v~"07” (6k_ — k)
+ 44 (S~ ((k_ — 0Ky) — 2vK_)
+ 2% 0 (11(0k_ — Ky ) + v(—110Kk_ + 33K; + 14)) ,
ig1 = 6 (nS)*n~n?> ((Tk_ + 18k + 36) — 40v(ky + 2))
+ 28 n~'n?> ((—=116k_ + 8ky — 48) + 30v(ky + 2))
+6 (nS)(nX)n~"n?> (115K + 366 — 11k_) + 4v(—105k; — 208 + 3k_))
+3(nX)*n~'n?” (11(ky — 6k) + 20(136k_ — 24k, — 36) + 80v° (k. + 2))
+2(SY)n~"n?” (199K, — 485 — 19x_) + 2v(156k, + 308 + Tr_))
+ X2 n~'n” (19(ky — 0k_) — 2v(46k_ + 15k, + 8) — 600 (k4 + 2))
+ 12 (nS)n~"S?” ((20Kk_ — 13k4 — 22) + 5v(ky + 2))
+2 (nX)n<'S7” (5(—90k4 — 26 + 9k_) + 3v(5dk 4 + 105 — 13k_))
+ 251877 (175K + 109k
+ 2 (nS)n<"%7” (458K, — 1226 + 45k_) + 3v(56k 4 + 106 — 13k_))
+ 6 (nX)n<'27” (15(0k— — kv) + v(=90k_ + 39k + 44) — 100% (k4 + 2))
+ 887> (23(6ky — k) — 1Tvk_)
+ 2859 (46(ky — 0k_) + v(—170Kk_ — T5k4 + 56)) . (B1b)

The current quadrupole moment reads at leading order (see also Ref. ﬂﬂ] for leading order
expressions at any multipolar order)

ij v
(J])ss =~ 9%dm

1 ( — 26_S<IT®S vy + (=3 — Sk + Ky )STEIZPY
ctm

+ (=0k- + k) SV S vy + (—k + 0Ky + 26_v) SV, 0,) . (B2)

Finally, for the mass octupole moment, we find @]

~ 3 . . . .
(1) g = 5™ (~26-875" 4 2y = 65 ) STE o+ Oy — i+ 26_1)T/E)
(B3)

Appendix C: Correspondence between the spin vector and spin tensor variables

This appendix provides the link between the spin tensor and the conserved-norm spin
vector variables which we use to present our PN results. We recall that the spin tensor
variable S is the spatial part, in harmonic coordinates, of the spin tensor introduced in
Section [[TA] and that the spin vector variable has been defined in Section [I(l as S* = S,
with S, given by Eq. (2.14) and ¢ being a spatial index referring to the tetrad e * constructed
in the same section. a

We display below the SS contributions to the expression of the spin vector in terms of the
spin tensor, in the general frame. These contributions complete those computed at the SO
order in Ref. ﬂﬁ], Egs. (B.1) (notice that the spin tensor components there were denoted as
S% instead of S%). We have

7 o a .boaj ojk _ibk 7 a Qaj qbi _bij 7 a Qaj qbi _bij
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—§ncf2S§“ (vS7e™) — SiPe' (nf,uySsY) + 571‘&55“ (v5.5Ye™)
+S7%" (nf,v885°) | + O(7), (C1)

where we have authorized the repetition of indices appearing in scalar quantities enclosed
with parenthesis. At this order, there appear S;.S terms only and thus no S?, S? terms.

Appendix D: Equivalence with ADM results for the dynamics

In this appendix, we compare our results for the dynamics with those previously obtained
in the ADM @, @@] and EFT , , @, @, , @] approaches. As the equivalence
of ADM and EFT results has been already demonstrated in Refs. @, @, ], we actually
restrict ourselves to the comparison of our findings with the ADM ones, in line with our
previous works.

The two results have been obtained in different gauges and the spin variables differ in
their definition. It is thus important to take properly into account the transformation of the
particle positions and spins from one formalism to the other. In the following, we will denote
the ADM variables with an overbar and resort to the convenient notation w4 = p,/ma. Let

us now introduce the contact transformation Y4 (&, p, S) and the rotation vector 84(Z, p, S)
such that the harmonic variables are related to the ADM ones by

Ya = YA(E,]_?, S) + 0(7) ) (Dla)
S :§A+0A(f,ﬁ,§) X§A—|—O(6). (le)

The ADM spin variables and ours have the same Euclidean norm Sy -S4 =S4 -84 = s2,
which is precisely the conserved norm introduced in Section [TAl Since the first corrections
enter as 84 = O(4), we see that the transformation for the spins necessarily takes this form.

Now, if we denote by A4(Z, P, S) and Q4(Z, P, S) the function that converts to ADM
variables the harmonic-coordinate acceleration and precession vector, and by €4 the pre-
cession vector of the ADM spins, such that dS4/dt = Q4 x S 4, the two relations to impose

for the dynamics to be equivalent are

Ay ={{Ya, Hapm}, Hapu} + O(7) (D2a)
{04, Hypu} + 04 x Q4= Q4 (Z,9,5) — Q4+ 0O(6), (D2b)

where Hapy is the ADM Hamiltonian (which can be found for instance in Section 6.2 of
Ref. [62]) and {,} is the usual Poisson brackets extended to spin variables. Here the term
0.4 x Q4 is actually negligible, for 84 = O(2) and Q4 = O(4).

We find that there are no contributions at leading order in the transformations (D), i.e.
(Ya)ss = O(6) and (04)so = O(5). Using the method of undetermined coefficients then
leads to a unique solution for the higher-order terms in the transformations. For the rotation
vector we obtain

G [my 5,1 5,2
(B0 = oy | 2207 4672+ 00), (03)
with (adopting the same notations as in the rest of the paper for scalar products)
3K1_ 1, —= = 3k1_ ,_ — 1 =
9?’1 = —717112 [(7?251) + (71127T2)(711251)} - 71772(711251) - 5771(711251),
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1-— 1 — — 1 _
02 = —552(%2@) + 57 [(7252) — 3(71272) (M12592)] + §f2(ﬁ1252) . (D4)

We recall that SO terms in 6 actually correspond to SS effects in the dynamics. For the
contact transformation, we arrive at the simple expression

(Y1)gq GLzQ 51(51251) — ﬁ12(§1§1)] +O(8). (D5)

— 3 6=
2mic®ry,

The relevant NS and SO contributions to these transformations are given for instance in
Ref. [24] and Refs. [24, 23],

The existence of a solution relating our variables to the ADM ones validates our results,
the problem of finding such transformations being largely over-constrained.
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