English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Thermal and electronic fluctuations of flexible adsorbed molecules: Azobenzene on Ag(111)

MPS-Authors
/persons/resource/persons21814

Liu,  Wei
Theory, Fritz Haber Institute, Max Planck Society;
Nano Structural Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology;

/persons/resource/persons127591

Poltavskyi,  Igor
Theory, Fritz Haber Institute, Max Planck Society;
Physics and Materials Science Research Unit;

/persons/resource/persons22175

Tkatchenko,  Alexandre
Theory, Fritz Haber Institute, Max Planck Society;
Physics and Materials Science Research Unit;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

1603.03363v1.pdf
(Preprint), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Maurer, R. J., Liu, W., Poltavskyi, I., Stecher, T., Oberhofer, H., Reuter, K., et al. (2016). Thermal and electronic fluctuations of flexible adsorbed molecules: Azobenzene on Ag(111). Physical Review Letters, 116(14): 146101. doi:10.1103/PhysRevLett.116.146101.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002A-1230-2
Abstract
We investigate the thermal and electronic collective
fluctuations that contribute to the finitetemperature
adsorption properties of
flexible adsorbates on surfaces on the example of the molecular
switch azobenzene C12H10N2 on the Ag(111) surface. Using first-principles molecular dynamics simulations
we obtain the free energy of adsorption that accurately accounts for entropic contributions,
whereas the inclusion of many-body dispersion interactions accounts for the electronic correlations
that govern the adsorbate binding. We find the adsorbate properties to be strongly entropy-driven,
as can be judged by a kinetic molecular desorption prefactor of 1024 s-1 that largely exceeds previously
reported estimates. We relate this effect to sizable
fluctuations across structural and electronic
observables. Comparison of our calculations to temperature-programmed desorption measurements
demonstrates that finite-temperature effects play a dominant role for
flexible molecules in contact
with polarizable surfaces, and that recently developed first-principles methods offer an optimal tool
to reveal novel collective behavior in such complex systems.