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Summary

Comparisons of genetic variation between humans
and great apes are hampered by the fact that we still

know little about the demographics and evolutionary
history of the latter species [1–4]. In addition, charac-

terizing ape genetic variation is important because
they are threatened with extinction, and knowledge

about genetic differentiation among groups may guide
conservation efforts [5]. We sequenced multiple inter-

genic autosomal regions totaling 22,400 base pairs
(bp) in ten individuals each from western, central,

and eastern chimpanzee groups and in nine bonobos,
and 16,000 bp in ten Bornean and six Sumatran orang-

utans. These regions are analyzed together with ho-

mologous information from three human populations
and gorillas. We find that whereas orangutans have

the highest diversity, western chimpanzees have the
lowest, and that the demographic histories of most

groups differ drastically. Special attention should
therefore be paid to sampling strategies and the statis-

tics chosen when comparing levels of variation within
and among groups. Finally, we find that the extent of

genetic differentiation among ‘‘subspecies’’ of chim-
panzees and orangutans is comparable to that seen

among human populations, calling the validity of the
‘‘subspecies’’ concept in apes into question.

Results and Discussion

Diversity

A total of 22,401 base pairs (bp) (26 independent re-
gions) were amplified in bonobos and chimpanzees,
and 16,001 bp (19 independent regions) were amplified
in orangutans. The regions collected in orangutans
were available from three human populations [6] (re-
gions numbered 1 to 22 in human, see Table S2 in the
Supplemental Data available online), as were 16 of the
19 regions, comprising a total length of 14,000 bp,
from gorillas (O.T., unpublished data). None of the re-
sults described changed qualitatively when we used
only sequences orthologous to the gorilla data (results
not shown). Thus, we kept all sequence data available
for each group, except where noted.

*Correspondence: afischer@eva.mpg.de
Table 1 provides two different summaries of nucleo-
tide diversity (p and qw), as well as the number of single
nucleotide polymorphisms (SNPs) in each group. As
seen previously for mtDNA and nuclear minisatellites
[7], orangutans have the highest diversity levels among
hominoids, with p values of 0.27% and 0.35% for Bor-
nean and Sumatran orangutans, respectively. It has
been suggested that this is the result of multiple origins
of orangutan populations that repopulated the two is-
lands after successive glacial maxima [8].

Western chimpanzees have the lowest diversity levels
among apes, with p values of only 0.08%. The nucleo-
tide diversity of central and eastern chimpanzees (p =
0.19% and 0.16%, respectively) is 1.6 to 2.4 times higher
than that of bonobos and western chimpanzees (p =
0.10% and 0.08%, respectively) and is significantly
higher with respect to both p and qw (p < 0.05 after cor-
rection for multiple testing, two-tailed Mann-Whitney U
test). Central chimpanzees have the highest diversity
levels among chimpanzees, in agreement with other
studies [9–11]. This is consistent with the view that chim-
panzees originated in central Africa [10, 12–16].

Gorillas have diversity levels in the range of eastern
chimpanzees (p = 0.15%). With the exceptions of west-
ern chimpanzees and bonobos, who have diversity
levels close to human ones, all other great apes have
diversity levels 1.2 to 5.8 times higher than those of
humans, in agreement with previous estimates based
on mtDNA, the X chromosome, and autosomal DNA
[7, 10, 11, 15, 17, 18].

Demography
We used a multilocus HKA test to assess evidence for
differences in selective regimes among the 26 regions
in the chimpanzees and bonobos, the 19 regions in
orangutans and humans, and the 16 regions in gorillas
(see Experimental Procedures). No evidence for a depar-
ture from an equilibrium model was detected for any of
the groups.

We used the Tajima’s D statistic to assess the fit of the
data to the standard neutral model of a randomly mating
population of constant size. Under these conditions, the
expectation for Tajima’s D is roughly zero, whereas
a negative value of D reflects a relative excess of low-fre-
quency polymorphisms, as is seen after a population ex-
pansion. The mean D is not significantly different from
zero for western and eastern chimpanzees, gorillas, or
the three human populations (Table 1). Goldberg and
Ruvolo [1] showed that the mismatch distribution
among 262 HVR1 mtDNA sequences in eastern chim-
panzees is similar in shape to the distribution in humans
and indicative of a recent expansion [19, 20]. Given that
the mean D for eastern chimpanzees is not significantly
negative for the 26 nuclear regions (D= 20.16, p=0.29)
studied here, such an expansion may have taken place
recently enough not to be reflected in nuclear DNA se-
quences. This is similar to the situation in human popu-
lations, where none of the three populations considered
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Table 1. Summaries of Polymorphism Data in All Groups Included

Species Population n Length p (%) qw (%) # SNPs # Singletons Tajima’s D

Bonobos

18 22401 0.1 0.12 87 26 20.42a

Chimps

All 60 22401 0.19 0.28 286 100 ndb

Central 20 22401 0.2 0.24 182 75 20.43a

Eastern 20 22401 0.16 0.17 134 45 20.14

Western 20 22401 0.08 0.09 70 19 20.23

Gorillas

Western 30 14017 0.15 0.14 74 12 0.13

Orangs

All 32 16001 0.36 0.35 210 53 nd

Bornean 20 16001 0.27 0.27 132 24 0.45a

Sumatran 12 16001 0.35 0.32 148 49 0.37a

Humans

All 90 16001 0.12 0.14 114 28 nd

Hausa 30 16001 0.13 0.13 81 16 20.07

Italian 30 16001 0.07 0.06 45 5 0.18

Chinese 30 16001 0.06 0.07 46 13 20.18

a Significant at the 5% level.
b nd: not determined.
have a negative Tajima’s D, although mitochondrial DNA
sequences reveal signs of expansions [21]. An alterna-
tive formal possibility is that positive selection would
have affected the mtDNA in eastern chimpanzees and/
or humans. The mean D for bonobos and central chim-
panzees is significantly negative. The most likely expla-
nations for these negative values are population expan-
sion or fine-scale population subdivision [22–25]. It has
been suggested that the latter explanation is most likely
in this sample of central chimpanzees [9]. For bonobos,
conclusions are probably premature, given that the
samples used came from European zoos and may not
be representative of the wild population.

The two orangutan populations have a significantly
positive Tajima’s D, because of an excess of inter-
mediate frequency alleles, which is best explained by
a recent reduction in population size or by population
subdivision. Using 14 microsatellites, Goossens et al.
[3] showed that the excess of intermediate allele fre-
quencies in an orangutan population from Borneo can
be explained by a very recent decline in population
size, mainly as a result of human activity. Because it
would take much more time to be able to detect this
effect in nuclear DNA, and because our orangutan sam-
ples come from different local groups (see Table S1),
population structure is a more likely explanation of our
observation.

Our results point to different demographic histories in
most or all of the groups considered. Thus, this should
be taken into account when patterns of genetic variation
are compared between homologous regions in humans
and apes, for example in order to detect signs of positive
selection in human genes.

Differentiation among Groups

Four ‘‘subspecies’’ of chimpanzees have been desig-
nated on the basis of geographical barriers [14, 26,
27]: western chimpanzees, Nigerian chimpanzees, cen-
tral chimpanzees, and eastern chimpanzees. These are
separated from one another by the Dahomey gap, the
Sanaga River, and the Ubangi River, respectively. Simi-
larly, Bornean and Sumatran orangutans have been re-
garded as two ‘‘subspecies’’ on the basis of geographi-
cal origin [12, 28]. However, morphological differences
among the chimpanzee [29, 30] and orangutan ‘‘subspe-
cies’’ are small and hard to define [28, 31–34], and al-
though behavior varies drastically among local chim-
panzee and orangutan groups, no consistent
differences among ‘‘subspecies’’ have been demon-
strated [35, 36]. In the absence of clear morphological
and behavioral differentiation, genetic support for chim-
panzee and orangutan ‘‘subspecies’’ has often been in-
voked [2, 7, 15, 27, 37–39], mainly on the basis of mtDNA
or microsatellites [1, 15, 37]. Some authors have even
suggested that western chimpanzees, as well as Bor-
nean and Sumatran orangutans, should be elevated to
the rank of species [15, 39]. These suggestions have
led to much debate [2, 27, 37, 40, 41]. Because mito-
chondrial DNA is maternally inherited, it reflects only
the history of females. In addition, mtDNA has a lower ef-
fective population size, and both mtDNA and microsa-
tellites have high mutation rates compared to nuclear
nonrepetitive DNA sequences. Therefore, they are
more likely to show large genetic distance between
groups even in the absence of any substantial differen-
tiation across the nuclear genome.

For each pair of closely related groups, we tabulated
the proportion of all SNPs that are shared across the
two groups, that are unique to one of the two groups,
or that are fixed differences between the two groups
(see Figure S1). No fixed differences were found be-
tween eastern and central chimpanzees, Sumatran
and Bornean orangutans, or among the human popula-
tions. Overall, 31% and 27% of the SNPs found are
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Table 2. Fst and pb Values, above and below the Diagonal, Respectively, for Each Pairwise Comparison
shared between eastern and central chimpanzees and
between Bornean and Sumatran orangutans, respec-
tively. These estimates are close to those between
Hausa and Chinese or Italians (38%), but lower than be-
tween Chinese and Italians (57%). Only 7% to 8% of
SNPs are shared between western and eastern or cen-
tral chimpanzees, respectively, whereas more are
shared between the other two chimpanzee groups.
This is probably the result of more genetic drift due
the relatively small effective population size of the west-
ern chimpanzee.

To further investigate the amount of differentiation be-
tween ape groups, we estimated pairwise Fst values and
pb by using the homologous regions available for each
pair of groups (Table 2). Fst represents the fraction of di-
versity attributable to between-group differences, and
pb is the mean pairwise sequence difference between
two populations. As expected, the Fst values between
the different species are high. Within the species, Fst be-
tween eastern and central chimpanzees is 0.09 and thus
as low as between Chinese and Italians. Western chim-
panzees are more differentiated from other chimpanzee
subgroups (Fst 0.29 and 0.32), and so are the two sub-
groups of orangutans (Fst = 0.28), whereas human pop-
ulations have Fst between 0.09 and 0.15, in agreement
with earlier work [42, 43].

Given that it might be inappropriate to compare the Fst

values between species because of differences in effec-
tive population sizes [44], we performed permutations to
test whether the observed Fst values are higher than
would be expected under random mating by randomly
assigning individuals to populations and calculating Fst

values 500 times. For all three comparisons of chimpan-
zee groups, the comparison of the two orangutan
groups, and the comparison of the human populations,
we reject a null model of random mating (p < 0.05 after
correction for multiple tests).

The values of pb (Table 2) are in general agreement
with published data [45], but yield a different picture
from the one based on Fst values in that pb is highest be-
tween the Bornean and Sumatran orangutans (0.41%),
even higher than between bonobos and chimpanzees
(0.31% to 0.32%). The lowest values are between human
populations (0.09% to 0.14%), whereas subgroups of
chimpanzees are intermediate to these extreme com-
parisons (0.20% to 0.21%). However, the high pb seen
between orangutans should be viewed in relation to
the amount of diversity within orangutan groups (Table
1), which is so high that two randomly chosen individ-
uals from one ‘‘subspecies’’ are likely to be genetically
as distant as two individuals belonging to different ‘‘sub-
species.’’

With respect to the duration of physical separation,
the Dahomey gap that separates western and central
chimpanzees was covered with rainforest until about
five thousand years ago [46], and Sumatra and Borneo
were physically connected until ten to twenty thousand
years ago [47]. Thus, the time of separation of the ‘‘sub-
species’’ by geographical barriers has certainly been too
short for complete lineage sorting by genetic drift and
shorter than the separation of many human groups. In
addition, migration between the groups may have oc-
curred subsequent to the emergence of these geograph-
ical barriers [48]. Indeed, we speculate that a more geo-
graphically complete sampling of chimpanzees and
orangutans with noninvasive samples from the wild as
well as samples from museum specimens in areas where
apes are now extinct will eventually demonstrate that the
overall picture of genetic variation within chimpanzees
and orangutans is one of isolation by distance, as is
largely the case among humans [49, 50].

Conclusions

Among ape groups, diversity levels based on DNA se-
quences from multiple nuclear noncoding regions show
that different groups of apes have different demo-
graphic histories. Thus, the demographics of ape popu-
lations must be carefully considered if their within-group
diversity is compared to humans, for example in order to
detect signatures of selection in humans. The extent of
genetic differentiation among groups of orangutans
and chimpanzees lends no support to the notion that
‘‘subspecies’’ are genetically distinct entities. This may
be of relevance for the management of wild and captive
ape populations.
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Experimental Procedures

Samples

A total of 55 individuals were used for this study. Thirty unrelated

common chimpanzees were considered, including ten central chim-

panzees (Pan troglodytes troglodytes) born in Gabon, ten western

chimpanzees (Pan troglodytes verus) from Sierra Leone, and ten

eastern chimpanzees (Pan troglodytes schweinfurthii) from the

Sweetwater Reserve in Kenya. The nine unrelated bonobos (Pan

paniscus) considered were sampled from European zoos. Further-

more, we used ten Bornean (Pongo pygmaeus pygmaeus) and six

Sumatran orangutans (Pongo pygmaeus abelii), all of known origin

and sampled from most existing populations on the two islands (Ta-

ble S1). In addition to these samples, the DNA sequences of 15 low-

land gorillas (Gorilla gorilla gorilla) from Cameroon were used (O.T.,

unpublished data), and previously published sequence information

from 45 human samples were used [6].

Genomic Regions and Characteristics

We sequenced 19 noncoding, autosomal regions, ranging from 650

bp to 1500 bp in length and representing a total of w16,000 bp, in the

orangutan, chimpanzee, and bonobo samples. These regions con-

sist of one side of nine locus pairs previously sequenced in chimpan-

zee and human populations and were selected to have large-scale

recombination rates and GC contents close to the genome average

[6, 9, 51]. With the gorillas, the dataset was reduced to 16 regions,

because three of the 19 PCR products could not be amplified. An-

other seven regions were extended to a length of 800 bp from Yu

et al. [11] and additionally amplified for the chimpanzee and bonobo

samples (Table S2). Thus, for chimpanzees and bonobos, we have

a total of 26 regions, corresponding to a total amount of w22,400

bp per individual.

GC content for each region was determined with Editseq from the

DNAstar sequence-analysis package (DNAstar, Madison, Wiscon-

sin). We checked for conserved regions between mouse and human

sequences by using the Berkeley genome pipeline (http://pipeline.

lbl.gov/).

DNA Extraction

The DNA from the central chimpanzees was taken from the same

samples extracted and used in a previous study by Fischer et al.

[9]. The DNA from eastern chimpanzees was extracted from blood

samplesvia the GuSCN/silica protocol [52]. Two hundred microliters

blood were mixed with 43 volumes of guanidinium thiocyanate

buffer for 1 hr. The DNA contained in the GuSCN buffer was purified

by binding to silica, with 20 ml silica suspension. The mixture was

then centrifuged (12,000 rpm), and the supernatant was discarded.

Washing of the silica pellet and elution of the DNA were completed

as described in Hofreiter et al. [52]. DNA was eluted in a volume of

50 ml. For western chimpanzees and orangutans, the DNA samples

were provided after this step by the BPRC (Netherlands) and Ste-

phen O’Brien (USA).

PCR Amplification

Polymerase chain reaction (PCR) primers were designed by using

the human and chimpanzee sequences. Two sets of primers were

used to independently amplify and sequence each DNA segment

taken from each individual in order to minimize the risk of allelic

dropout, which may result if a primer fails to amplify one allele in

an individual. Amplification reactions were performed in a 96-well

microtiter-plate thermal cycler (Applied Biosystem). The PCR reac-

tion mixture (100 ml) contained a standard buffer (10 mM Tris-HCl,

5 mM MgCl2), the four deoxynucleotide triphosphates (0.25 mM

each), primers (0.5 pM each), Amplitaq GoldTM (Perkin Elmer), and

genomic DNA (30 ng). Thermal cycling was performed with PCR of

30 cycles with an initial denaturation step at 95ºC for 5 min, followed

by 16 cycles of denaturation at 94ºC for 45 s; primer annealing for 1

min at 57ºC, 59ºC, and 63ºC, depending on the primer pair; and

primer extension at 72ºC for 2 min.

DNA Sequencing

The PCR primers were used for sequencing. Additional internal se-

quencing primers were designed to anneal approximately every

400 bp, for complete coverage in both orientations for each locus.
After DNA amplification, PCR products were purified on Millipore

plates, and the amount of purified DNA was estimated via electro-

phoresis in a 1% agarose gel and measurement with a spectropho-

tometer. Ten nanograms of the purified sample was used as a se-

quencing template. Cycle sequencing was performed according to

the manufacturer’s instructions with the BigDye Terminator Cycle

Sequencing kit and the DNA analyzer 3730 (Perkin Elmer Biosys-

tems).

Chromatograms were imported into Seqman (DNAstar) for assem-

bly into contigs and the identification of single nucleotide polymor-

phisms (SNPs). Diploid sequence was determined by inspecting

each nucleotide position in high-quality chromatograms.

Hardy-Weinberg equilibrium was tested for each polymorphic site

with Arlequin version 2.0 (http://lgb.unige.ch/arlequin/). Overall,

there were no more departures than expected by chance (data not

shown).

For insertions/deletions that made direct sequencing difficult, we

utilized the following procedure: After the PCR was performed, the

products were cloned with the TOPO TA-cloning kit (Invitrogen).

Ten clones were then sequenced, following the same procedure

as above, for each individual.

Statistical Analyses

We used the program DNAsp [53] to obtain a number of commonly

used statistics. To summarize diversity levels, we calculated the av-

erage pairwise difference, p [54], as well as qw [55], a diversity mea-

surement based on the number of polymorphic sites. We also calcu-

lated one summary of allele frequencies, namely Tajima’s D [56].

We tested the goodness of fit of the data to a standard neutral

model of a random-mating population of constant size for each pop-

ulation, excluding regions that were not polymorphic, by asking how

often the mean Tajima’s D across the considered regions are as low

or lower than observed in 10,000 simulations. We also assessed

whether there was significant heterogeneity in the ratio of polymor-

phism to divergence across regions, by using a multilocus Hudson-

Kreitman-Aguadé (HKA) test [57], in which human was used as the

outgroup for all the apes and chimpanzee was the outgroup when

testing human populations. These three tests were implemented

with the program HKA, available from Jody Hey’s home page

(http://lifesci.rutgers.edu/wheylab/).

Initially, we attempted a set of coalescent-based Markov chain

Monte Carlo (MCMC) analyses designed to estimate effective popu-

lation sizes, times of divergence, and strength and directionality of

migration, as well as mutation rates. We attempted this with two

such computer programs, IM [58] and Lamarc (http://evolution.gs.

washington.edu/lamarc.html). In no case were we able to obtain

convergence of the Markov chains. Although we have collected

a large amount of sequence data at many loci, we hypothesize

that the combination of very recent divergence and slow mutation

rate does not provide enough information to allow the MCMC algo-

rithm to converge on any true population parameters of interest.

Differentiation among Groups

We tabulated the proportion of all polymorphisms that are shared

between any two groups, fixed between groups, or found in only

one group. We reduced data sets, where needed, so that we had or-

thologous sequences for both groups. To summarize differences in

allele frequencies between the different chimpanzee populations

and bonobos, we calculated Fst values for each pair of populations.

Fst is defined as 1 2 Hw/Hb [59, 60], where Hw is the average pairwise

difference between sequences taken from the same population and

Hb is the average pairwise difference between sequences taken

from different populations. Fst values were estimated with DNAsp.

We also estimated the diversity levels between groups (pb).

Supplemental Data

Supplemental Data include one figure and two tables and are avail-

able with this article online at: http://www.current-biology.com/cgi/

content/full/16/11/1133/DC1/.
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