
Toll homolog expression in the beetle Tribolium suggests a different mode
of dorsoventral patterning than in Drosophila embryos

JoÈrg Maxton-KuÈchenmeistera, Klaus Handelb, Urs Schmidt-Otta, Siegfried Rothb,
Herbert JaÈcklea,*

aMax-Planck-Institut fuÈr biophysikalische Chemie, Abteilung Molekulare Entwicklungsbiologie, Am Fabberg, D-37077 GoÈttingen, Germany
bMax-Planck-Institut fuÈr Entwicklungsbiologie, Spemannstrabe 35/ II, D-72076 TuÈbingen, Germany

Received 16 February 1999; accepted 19 February 1999

Abstract

The gene Toll (Tl) encodes a maternally supplied interleukin 1 receptor-related transmembrane protein, a key component required to

establish dorsoventral polarity in the Drosophila embryo. We have isolated Tl homologs of a primitive dipteran, Clogmia albipunctata, and

of the beetle Tribolium castaneum. Tribolium Tl protein (Tl) lacks sequences in the C-terminal portion of the cytoplasmic domains that are

conserved in the dipteran homologs. Tl lacking these sequences mediates the ventralizing activity when expressed as a gain-of-function

variant in transgenic Drosophila, indicating that the sequences conserved in the Diptera are not essential for Tl signaling. In contrast to

Drosophila where Tl gene expression occurs maternally and supplies uniformly distributed Tl in the egg membrane, Tl transcripts form a

ventral-to-dorsal gradient in the Tribolium blastoderm stage embryo. This localized expression pattern of Tl transcripts, as compared with the

strong maternal and ubiquitous expression in Drosophila and Clogmia embryos, suggests that dorsoventral patterning in long-germ band and

short-germ band insects involves the same components but different modes of their action. q 1999 Elsevier Science Ireland Ltd. All rights

reserved.
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1. Introduction

Establishment of dorsoventral (DV) polarity in the

Drosophila embryo is initiated by cell±cell signaling events

between the oocyte and surrounding follicle cells (reviewed

in Chasan and Anderson, 1993). These signaling events

activate the Toll (Tl) protein (Tl), a maternally supplied,

ubiquitously expressed membrane-spanning interleukin 1

(IL1) receptor-related protein (Hashimoto et al., 1988).

Local Tl activation occurs in response to spaÈtzle (spz), likely

to encode a Tl ligand with spatially restricted activity in the

perivitelline ¯uid of the embryo (Morisato and Anderson,

1994). Activated Tl mediates DV patterning through a

signaling cascade, which causes the dissociation of a hetero-

dimer composed of the NF-kB-like transcription factor

Dorsal and its IkB-related inhibitor Cactus (Whalen and

Steward, 1993; Bergmann et al., 1996). After their dissocia-

tion and degradation of Cactus (Belvin et al., 1995; Reach et

al., 1996), Dorsal enters the nuclei and forms a ventral-to-

dorsal nuclear gradient in the preblastoderm embryo (Roth

et al., 1989; Rushlow et al., 1989; Steward, 1989). Dorsal

acts as a transcription factor that controls localized expres-

sion of zygotic target genes which specify different cell fates

along the DV axis (Ray et al., 1991). They include twist

(twi) and snail (sna) in the ventral-most position of the

blastoderm embryo (Thisse et al., 1991; Ip et al., 1992).

Twi acts as a transcriptional activator of mesoderm-speci®c

genes, whereas sna functions as a transcriptional repressor

of non-mesodermal genes (Leptin, 1991).

The embryonic regulatory pathway comprising the gene

products between the Tl ligand SpaÈtzle and Cactus, but not

upstream or downstream of them, also plays a major role in

the anti-fungal immune response in Drosophila larvae and

adults (Lemaitre et al., 1996; Ferrandon et al., 1998). Upon

fungal infection, expression of the anti fungal peptide gene

drosomycin is activated in a Tl-dependent manner. The

intriguing structural and functional parallels to the NF-

kB/IkB-dependent mammalian immune response

suggested that the regulatory gene cassette composed of

the IL1 receptor/Tl, IkB/Cactus and NF-kB/Rel/Dorsal is

conserved in evolution (Wasserman, 1993). This observa-
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tion and the ®nding that the early expression patterns of twi

and snail are conserved in embryos of the ¯our beetle Tribo-

lium castaneum (Sommer and Tautz, 1994) led to the propo-

sal that the initial cues and the mode of DV patterning might

be conserved in insects (Tautz et al., 1994).

We have addressed this proposal by characterizing the Tl

homologs from a primitive dipteran, Clogmia albipunctata

(Psychodidae, Nematocera), and from the ¯our beetle Tribo-

lium castaneum (Tenebrionidae, Coleoptera). Clogmia, like

Drosophila, undergoes long-germ band development,

whereas Tribolium is a short-germ band insect (Sander,

1976). Our results show that Tl is conserved, but the cyto-

plasmic C-terminus of the protein, which is conserved in

dipteran Tl, is absent in Tribolium Tl. Tribolium Tl has

the same C-terminal characteristics as vertebrate Tl and

IL1 receptor homologs (Rock et al., 1998). Gain-of-function

experiments in Drosophila show that these conserved C-

terminal domains of the dipteran proteins are not essential

for Tl signaling. Drosophila-like ubiquitous Tl distribution

in Clogmia embryos suggests that the initiation of dorsoven-

tral polarity by localized Tl-activating components is

conserved in the two long-germ insects, whereas the loca-

lized Tl transcripts in Tribolium embryos imply a different

mechanism for establishing dorsoventral polarity in short-

germ insects.

2. Results and discussion

2.1. Cloning of Tl homologs from Clogmia and Tribolium

PCR primers were designed to clone fragments of Tl

homologs from the primitive dipteran Clogmia albipunctata

(Psychodidae, Nematocera) and the beetle Tribolium casta-

neum (Tenebrionidae, Coleopterea). The choice of primers

(see Section 3) was facilitated by comparing the conserved

regions between the Drosophila melanogaster and Droso-

phila pseudoobscura Tl (Yamagata et al., 1994) and verte-

brate IL1 receptor (Mitcham et al., 1996) proteins. After

ampli®cation, we obtained a single PCR fragment from

Clogmia and Tribolium DNA, respectively, and used them

to screen corresponding cDNA libraries prepared from

poly(A)1 RNA of early embryos. From Clogmia, we

obtained a cDNA clone containing the entire open reading

frame of a Tl homologous gene, whereas the open reading

frame of the longest cDNA obtained from Tribolium lacks

N-terminal sequences.

The diagnostic domains described for Drosophila Tl,

such as the signal peptide and the leucine-rich repeats

with their N- and C-terminal ¯anking regions (Hashimoto

et al., 1988; Schneider et al., 1991), are conserved in Clog-

mia Tl. The IL1 receptor-related cytoplasmic domain (57%

identity), a PEST domain and two novel islands of sequence

identity, termed N- and C-box (see Fig. 1), were conserved

between the dipteran Tl homologs. Interestingly, the Tl

homolog of Tribolium lacks these conserved C-terminal

domains; it terminates shortly after the IL1 receptor-related

cytoplasmic domain (56% identity) as has been observed in

vertebrate Tl and the IL1 receptor proteins (Fig. 1). The

conserved C-terminal domain in the long-germ band insects

Clogmia and Drosophila, and its absence from the Tribo-

lium and vertebrate homologs, suggest that they may repre-

sent derived characteristics of Tl function in long germ band

insects. We therefore, performed functional studies asking
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Fig. 1. Comparison of Toll proteins of Drosophila melanogaster (Dm), Clogmia albipunctata (Ca) and Tribolium castaneum (Tc). C-terminal sequences of the

proteins were aligned using the MegAlign (DNA Star) program. Identical amino acids shared by at least two of the proteins are highlighted in yellow; dashes

indicate gaps for optimal alignment. The carboxy-¯anking region 2 (C-¯ank2) with the position of the Toll10b mutation, the IL1 receptor-related signaling

domain (IL-1r-related), the PEST domain and two newly identi®ed regions N-terminal (N-box) and C-terminal (C-box) to the PEST domain are indicated.



whether the conserved C-terminal domains carry an essen-

tial function for Tl signaling in Drosophila embryos.

2.2. The Tl C-terminal region is not required for signaling

To address a possible function of the conserved C-term-

inal region of Tl in signaling, we used a gain-of-function

approach, employing a point mutation (G2.916 ! A) which

causes a constitutively active Tl protein, termed Tl10b, due

to a cystein replacement by threonin within the extracellu-

lar Tl domain (Schneider et al., 1991). Maternal inheritance

of the Tl10b protein, which corresponds to a previously

described dominant gain-of-function mutant protein,

causes a fully penetrant ventralization of embryos (Schnei-

der et al., 1991). In order to demonstrate a possible func-

tion of the conserved C-terminal domains of Drosophila

and Clogmia Tl in signaling, we used the GAL4/UAS

system (Brand and Perrimon, 1993) to express Tl10b

variants containing C-terminal deletions during syncytial

blastoderm stage. In addition, the GAL4/UAS system

was used to express the Tl10b variants in the fatbody of

larvae bearing a drosomycin green ¯uorescent protein

(DromGFP) transgene that can be activated in direct

response to Tl signaling (Ferrandon et al., 1998). This

reporter transgene allowed us to visualize whether the Tl

signaling-dependent anti-fungal immune-response is acti-

vated in the larvae (Ferrandon et al., 1998). This way,

we could assay for Tl signaling activity in the larval cuticle

pattern and test whether the Tl variants are also able to

activate the immune response in larvae.
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Fig. 2. Larval cuticle pattern in response to transgene expression of Tl and Tl10b mutant protein variants indicating that the C-terminus is not essential for

activated Tl signaling. UAS-driven wild type Tl and ®ve truncation mutants of the Tl10b C-terminus (A) were activated by the V32-GAL4 driver line. Note that

the drawing is not in scale. V32-GAL4 expression (B) and V32-GAL4-driven UAS-Tlwt expression (C) had no discernable effect on the cuticle pattern, meaning

that the ventral denticle belts are restricted to the ventral half of the embryo (arrows) and the dorsolateral FilzkoÈrper are present (arrow head). UAS activated

Tl10b, as well as Tl10b C-terminal truncations up to the IL1 receptor related signaling domain result in ventralization of the larvae (D-G), meaning that the

denticle belts form circumferential rings (arrows) and FilzkoÈrpers are strongly reduced or absent. For a detailed description of ventralized embryos see

(Anderson et al., 1985).



Fig. 2A shows the UAS-driven effector genes including

wild type Tl, Tl10b and ®ve different Tl10b variants which

contain different C-terminal portions of Tl. C-terminal dele-

tions of Tl10b variants which lack up to the IL1 receptor-

related domain caused ventralized embryos similar to those

developed in response to UAS-driven Tl10b (Fig. 2B±G) and

DromGFP reporter gene expression in larval fat body

(summarized in Fig. 3). These results indicate that the C-

terminal domains of Tl, which are conserved in Clogmia and

Drosophila, are not required for Tl signaling. Thus, their

absence in the Tl homolog of Tribolium would also not

interfere with this aspect of Tl function. One of the

conserved C-terminal domains of dipteran Tl, the PEST

domain, was previously shown to mediate ubiquitin-depen-

dent degradation of proteins by the 26S proteasome and

thereby to affect the half-life of the protein (Rechsteiner

and Rogers, 1996). Since early development including blas-

toderm formation is prolonged in Tribolium as compared to

Drosophila and Clogmia embryos, one may speculate that

the conserved PEST domain serves to prevent long-lasting

Tl activity in long-germ band embryos, whereas prolonged

Tl activity might be required for short-germ band develop-

ment.

Tl is also expressed in the post-blastodermal Drosophila

embryo and has been proposed to function in cell-adhesion

processes required for cell-cell interactions involved in

movements during embryonic development (Gerttula et

al., 1988; Keith and Gay, 1990; Hashimoto et al., 1991).

We have not addressed a possible adhesion function of Tl

in our studies. Thus, we cannot exclude the possibility that

the conserved C-terminus of Tl participates in such a func-

tion in long germ band embryos.

2.3. Localization of Tl transcripts in Tribolium embryos

Previous results showed Drosophila-like expression of

sna and twi homologs in Tribolium embryos (Sommer and

Tautz, 1994). Therefore it was assumed that the modes of

DV pattern formation in short and long-germ band embryos

are conserved (Tautz et al., 1994, see also Brown and

Denell, 1996). This assumption implies that the Tl tran-

scripts are, like in Drosophila, maternally expressed and

evenly distributed in eggs and early embryos of both Clog-

mia and Tribolium. We tested this proposal by visualizing

the Tl transcript patterns in oocytes and early embryos of

Clogmia and Tribolium, respectively.
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Fig. 3. Activation of Tl-dependent immune response in Drosophila larvae. Tl and Tl derivatives (see Fig. 2) were expressed in drosomycin GFP (DromGFP)

reporter gene-bearing larvae using a fat body-speci®c GAL4 driver (fatGAL4) and UAS-driven Tl transgenes. Third instar larvae were examined for the

absence (A) or presence of GFP activity (B) to indicate whether the immune response was activated in response to ectopic Tl signaling. Control ¯ies carrying

only the GFP transgene, GFP and GAL4 transgenes, or both in combination with UAS-Tlwt showed only background level of DromGFP reporter gene activity in

0±4% of the larvae, whereas the Tl10b derivatives found to provide Tl signaling activity in the embryo (see Fig. 2) also caused DromGFP activation (C). Tl10b-Stu, a

mutation deleting the C-terminal region including the last 24 amino acids of the IL-1r-related signaling domain, is inactive in signaling. Note that only about

25% of the larvae are of the fatGAL4, UAS-Tl and DromGFP transgene genotype which allows for the expression of the reporter gene in response to activated Tl

signaling.



Fig. 4 shows that the high amounts of Tl transcripts of

Clogmia are evenly distributed in the growing oocyte (Fig.

4A,B). The ubiquitous distribution is maintained in embryos

during syncytial stages (Fig. 4C) and ceases during the

cellular blastoderm stage. Thus, no signi®cant difference

was observed by comparing the Tl transcript patterns of

Clogmia and Drosophila (Gerttula et al., 1988). This implies

that the DV coordinates of Clogmia are generated in a

Drosophila-like fashion, meaning in response to the loca-

lized activity of a ventralizing ligand (Morisato and Ander-

son, 1994). In other words, localized activation of

ubiquitous Toll determines where Dorsal is transferred

into the nuclei serving as a prerequisite for the Dorsal-

dependent regulation of the zygotic target genes involved

in DV patterning.

In contrast to both Drosophila and Clogmia, the Tl tran-

scripts in Tribolium accumulate in a restricted pattern (Fig.

4D±J). Only barely detectable levels of Tl transcripts were

observed during early stages of oogenesis. We can not

unambiguously decide whether the weak staining represents

background or transcript concentrations at the detection

limit. No staining was observed in mature oocytes and in

embryos during the early syncytial development of the

embryo (Fig. 4D±F). However, at early blastoderm stage,

Tl transcripts appear in a localized pattern, forming a

concentration gradient along the DV axis (Fig. 4G). Since

morphology is not a reliable criterium to distinguish the

prospective dorsal and ventral regions in Tribolium

embryos, we performed double stainings of the embryos

using antibodies directed against Tribolium Twist (K.H.

and S.R., manuscript in preparation) and in situ hybridiza-

tion to detect the Tl transcripts in parallel. The co-localiza-

tion of the two gene products (Fig. 4H±J) establishes that the

Tl transcripts are located at the prospective ventral side of

the embryo. Also, the pattern of nuclear Dorsal expression is

conserved in Tribolium embryos and overlaps the patterns

of Twist expression and Tl transcripts transiently (G. Chen

and S.R., unpublished results). Thus, the components known

to play key roles in DV patterning of Drosophila (Chasan

and Anderson, 1993) are conserved in Tribolium embryos.

2.4. Different modes for DV polarity initiation in long- and

short-band insects?

The localization of Tl transcripts at the blastoderm stage

could mean that maternal transcripts, present at undetect-

able levels, accumulate to detectable levels at the prospec-

tive ventral side of the embryo. Such a process would

require transport within the syncytial embryo. Although

transport of mRNA has been shown to localize the mRNA

of maternal key factors along the anterior±posterior axis of

the oocyte and early embryo, no such mechanism has been

reported for mRNA along the DV axis (St Johnston and

NuÈsslein-Volhard, 1992). Therefore, and in view of the

high amounts of transcripts appearing during the stage

when zygotic expression of segmentation genes was

reported in Tribolium embryos (Wolff et al., 1995), it

appears likely that the localized Tl transcripts observed in

embryos are the result of zygotic expression.

Irrespective of the cause of the localization, the results

show that the mode of generating DV polarity in the long-

J. Maxton-KuÈchenmeister et al. / Mechanisms of Development 83 (1999) 107±114 111

Fig. 4. Whole mount in situ detection of Clogmia and Tribolium Tl tran-

scripts in oocytes and embryos. Like in Drosophila (Gerttula et al., 1988),

the Clogmia Tl transcripts are strongly expressed in a uniform pattern

during oogenesis (A, B) and preblastodermal embryonic development

(C). During Tribolium oogenesis,Tl transcripts are barely detectable during

early stages (D, E). However, no transcripts were observed during the late

stages of oogenesis (E; arrow) and in freshly laid eggs (F). In early blas-

toderm stages, Tl transcripts are expressed in a restricted pattern at one side

of the embryo (G). Double staining of Tl transcripts (blue) and Twi protein

(anti Twist antibody staining; brown) of a blastoderm embryo shows that Tl

transcripts form a gradient with highest concentration at the ventral side (H)

as established by cross-sectioning (I, enlarged in J). Orientation C±H: ante-

rior to the left, dorsal side up. I, J: dorsal side up.



germ band embryos of Drosophila and Clogmia differs with

respect to how localized Tl activity is generated in a short-

germ band embryo such as Tribolium. In Drosophila, the

activating ligand of Tl, SpaÈtzle, is thought to be generated in

limiting amounts at the ventral side of the embryo (Morisato

and Anderson, 1994). High and uniform levels of Toll

receptors in the plasma membrane bind the ligand and

thereby limit its diffusion. This mechanism accounts for a

sharp ventral maximum of Tl activation, resulting in the

formation of the nuclear gradient of the transcription factor

Dorsal (Morisato and Anderson, 1995). In this view, local

expression of the receptor Tl in Tribolium might lead to a

local sequestration of the activating ligand.

Mechanisms and factors to account for the control of a

local expression of Tl in Tribolium embryos might be unre-

lated to the DV cascade in Drosophila or it could be that the

Tl ligand upregulates its receptor by establishing a positive

feedback-loop. Indeed, nuclear accumulation of Dorsal

protein seems to parallel the local expression of Tl in the

Tribolium embryo, suggesting that local Tl expression is

signaling-dependent (G. Chen and S.R., unpublished

results). A positive feedback mechanism, on the other

hand, would generate a localized pattern only if the ligand

is supplied from a localized source or if the ligand-induced

feedback-loop is coupled to a lateral inhibition mechanism.

In the latter case, a weak asymmetry in ligand distribution

would be suf®cient to produce a localized pattern, which

implies that DV axis formation could be initiated with

very little extraembryonic spatial information. It is interest-

ing to note that even in Drosophila, where an elaborate

follicle cell pattern provides asymmetric spatial cues for

DV axis formation (Nilson and SchuÈpbach, 1998), Dorsal

gradient formation involves a lateral inhibition mechanism

(Roth and SchuÈpbach, 1994) and that the production of the

Tl ligand SpaÈtzle is under the control of an inhibitory

mechanism which depends on nuclear Dorsal activity

(Misra et al., 1998). In Tribolium, a comparable inhibition

mechanism might be coupled with the transcriptional up-

regulation of the receptor Tl.

Coupling of positive feedback regulation and lateral

inhibition mechanism would account for the regulative

capacity of the DV axis which has been observed in

many classical embryological studies on short and inter-

mediate germ-band insects (Sander, 1976). Ligations separ-

ating dorsal and ventral egg halves of the leaf hopper

Euscelis can result in two normal looking twin embryos,

one in each half of the ligated egg (Sander, 1971). Further-

more, cold shock treatment of the egg of the beetle Atra-

chya causes the development of up to four embryos with

normal body axes (Miya and Kobayashi, 1974; Sander,

1976). Both phenomena could be accounted for by a

local activation of axis specifying factors and/or lateral

inhibition mechanisms that modulate or newly generate

DV axis formation in the embryo (Meinhardt, 1989;

Roth, 1993). The localized Tl expression in Tribolium

embryos is consistent with the proposal of an inducible

and self-amplifying activation system that causes molecu-

lar asymmetry in embryos of short germ band insects. An

alternative could be that there is a second Tl in Tribolium

which performs the maternal function and thereby activates

the Dorsal nuclear translocation on the ventral side of the

Tribolium embryo. In turn, this could be suf®cient to acti-

vate the zygotic Tl gene. Despite intensive searches that

were based on PCR approaches and hybridization experi-

ments under low stringency conditions (not shown), we

were not successful in isolating a second Tl gene in Tribo-

lium. Therefore, we favor the idea that the mode of initiat-

ing dorsoventral polarity in Tribolium is different from

Drosophila and Clogmia. The localized zygotic expression

of Tl in a short-germ band embryo provides an entry point

towards the analysis of the mechanisms underlying DV

patterning in such insects.

3. Experimental procedures

3.1. Cloning of Tl homologs

Genomic fragments were isolated from Clogmia or Tribo-

lium DNA by PCR with degenerate primer-pair Tl5 0 �AAR

GAY AAR AAR TTY GAY GCI TT and Tl3 0 � CCC CAY

TTI ARR TAI GTR TTC AT (with R � A or G, Y � C or T

and I � Inosin) corresponding to positions 3137±3160 and

3494±3517 of the Drosophila Tl sequence (Hashimoto et al.,

1988). The genomic fragments were used to screen embryo-

nic Clogmia and Tribolium (Wolff et al., 1995) cDNA

libraries. The Clogmia albipunctata `maternal' cDNA

library was constructed from 0±2 h embryonic mRNA

using the ZAP-cDNA synthesis kit (Stratagene, La Jolla,

Ca). At least three independent clones were analyzed on

sequence level for both organisms.

3.2. Egg collections and staining

Clogmia embryos were ®xed and stained essentially as

described for Drosophila (Tautz and Pfei¯e, 1989) with an

additional sonication step after ®xation to remove the vitel-

line membrane. Handling and staining of Tribolium and

Clogmia embryos were done as published (Schmidt-Ott et

al., 1994; Wolff et al., 1995). For double stainings the in situ

hybridization was followed by an antibody stain, both

according to standard protocols. For stageing Tribolium

embryos were counter stained with DAPI before mounting

them in glycerol (Wolff et al., 1995). For photography of the

in situ patterns, embryos were mounted in araldite.

3.3. UAS constructs

pUAS-10bNar (cuts after base pair number 3825), pUAS-

10bNae (cuts after base pair number 3681) and pUAS-10bStu

(cuts after base pair number 3482) were obtained by restric-

tion digest of the Tl10b cDNA with Nar1, Nae1 and Stu1,

respectively, and blunt end cloned in pUAST. The pUAS-
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10b3559 truncation was produced by introducing a stop

codon in the Tl10b cDNA after base pair 3559 by PCR.

This truncation corresponds to the minimal version of the

IL1 receptor shown to be active in signaling (Heguy et al.,

1992). Detailed cloning protocols are available on request.

P-element mediated transformation was done as described

(Brand and Perrimon, 1993). For each construct, at least two

independent transgenic lines were analysed.

3.4. Fly work

The maternal V32-GAL4 driver line containing a GAL4

DNA binding domain/V16 activation domain fusion

expressed under the control of the maternal a4tubulin

promoter was provided by D. St Johnston (HaÈcker and

Perrimon, 1998). Virgin V32-GAL4 females were crossed

to males carrying the different UAS-Tl transgenes and kept

at 258C. Cuticle preparations were performed from the

progeny 24±36 h AEL (Roberts, 1986). An enhancer trap

line driving GAL4 in the fat body (obtained from G. Tech-

nau) and a drosomycin-green ¯uorescent protein (GFP)

reporter line (Ferrandon et al., 1998) were used for the

immune system assay. Combining homozygote stocks in

a two step crossing scheme, 25% of the F2 generation

were expected to carry GAL4, UAS-Tl and the GFP repor-

ter together. Third instar larvae were collected and GFP

expression observed under an UV microscope.
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