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Foreword

Iron oxide and iron oxyhydroxide minerals comprise more than 5 wt% of the
Earth’s crust. Hematite (α-Fe2O3), the most abundant iron oxide in the crust, has
been widely used by humans for millennia, mostly as durable pigments for artistic
and personal adornment. Following the discovery, about 2000 years BCE, that it
could be smelted to yield iron metal, hematite obtained economic significance
as iron ore for the production of iron and, after the mid-nineteenth century,
steel. Thus hematite played a significant role in the building of the modern,
industrialized world. It is curious in this regard that the detritus of all corroded
iron and steel exposed to molecular oxygen and water is rust, a hydrous variant of
hematite. The corrosion process is catalyzed by bacterial respiration, that is, the
transfer of electrons from the metal surface to molecular oxygen. An interesting
example is the so-called rusticles on the hulk of the Titanic on the North Atlantic
seafloor.

Hematite is antiferromagnetically ordered below 250 K; at 300 K it has a weak
magnetic moment (0.02𝜇B). The second most abundant iron oxide, magnetite
(FeO⋅Fe2O3), is the most magnetic crustal mineral (4.1𝜇B). A naturally magne-
tized piece of magnetite is known as a lodestone. The attraction between lode-
stone and pieces of iron was first described in the sixth century BCE in China
and in the fourth century BCE on the Aegean coast of Asia Minor. The earli-
est reports of a lodestone navigation device date to the twelfth century CE in
both Asia and Europe. In subsequent centuries, marine magnetic compasses were
fashioned from an iron needle that had been stroked along its length with lode-
stone. Columbus carried such a compass on his voyages across the Atlantic. The
iron needles slowly lost their magnetization and had to be regularly treated with
the lodestone in order to restore their magnetization. The importance of the mag-
netic compass cannot be over emphasized. It allowed navigators to keep their
heading over long distances in the open ocean, even when the sun and stars were
obscured. In this sense, iron oxides facilitated the great voyages of discovery that
commenced in the fourteenth century.

Iron oxides have a longer connection to the biosphere. Iron is essential for all life
forms because many essential proteins have active sites that contain iron. How-
ever, it is difficult for organisms to obtain iron from the environment because
ferrous iron spontaneously oxidizes to ferric when exposed to molecular oxygen,
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and ferric iron is very insoluble. In order to protect excess accumulated iron for
future use, it is deposited as a ferric oxyhydroxide, ferrihydrite, inside the pro-
tein ferritin, a quasispherical protein shell of diameter 12 nm with an 8 nm storage
pocket.

Magnetite has been reported in organisms as diverse as chitons, trout, hon-
eybees, pigeons, turtles, lobsters, and magnetotactic bacteria. The latter deposit
magnetosomes, nanoscale magnetite crystals in intracellular vesicles, arranged in
chains. The chain of magnetosomes comprises a permanent magnetic dipole that
causes a cell to be oriented in the geomagnetic field and thus keep its heading as
it swims.

Iron Oxides provides a comprehensive look at the geochemistry, biochemistry,
and synthesis of iron oxides, especially at the nanoscale. It also presents recent
advances in experimental methods for their study. Finally, it looks forward
to applications of iron oxide minerals in chemical catalysis, environmental
remediation, and medicine.

January 2015 Richard B. Frankel
San Luis Obispo, CA, USA
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Preface

Iron oxides are ubiquitous in Nature. They can be found in geological settings as
different as the surface of Mars where they mostly account for the color of the
red planet or for the acidic mine drainage on Earth where their presence can help
to reduce pollution. Different types of iron oxides can also be biomineralized
by organisms, which in turn are used for purposes as different as iron storage,
magnetic, or mechanical properties. Iron oxides are not only widely present in
the environment but also have a large variety of applications that make them
irreplaceable, for example, from paintings to the reconstruction of past climate
and to magnetic resonance imaging. Therefore, this scientific field has evolved as
a multidisciplinary field between areas as diverse as geology, biology, chemistry,
and even medicine.

As a graduate student, I early on considered the book by Cornell and
Schwertmann as a “must.” I was studying the formation of magnetite with
potential application for the search of life on Mars and as soon as I had any
problem, I was able to find at least some hints for the answer in this book. I had to
suffer since the book was not available in France for some time (no longer printed
before reedition). Now that I have my own research group, I see my students
still using this book on a nearly daily basis. Participating in conferences on the
subject, I could also recognize how this book was widely used in the community.
However, the last edition of the book appeared about a decade ago, and though
some fields have not evolved much, some have dramatically changed. I therefore
happily and positively answered the offer of Dr Reinhold Weber from Wiley-VCH
to update the knowledge gained during these years in the field when we met at a
conference from the German Society of Chemistry in 2014.

The book thus aims at presenting the different fields associated with iron
oxides, and where those play a critical scientific role. In particular, the book starts
by general overviews that cover the geological and the synthetic facets as well
as the biological formation of dedicated phases in organisms such as limpets,
chitons, and bacteria and also in humans. The second part of the book presents
modern characterization techniques that are used to analyze iron oxides. Finally,
the third part addresses some current and potential applications of iron oxides,
with a particular emphasis on magnetic iron oxides, which are at the core of these
applications because of their magnetic properties.
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I thank the authors of the different chapters for accepting to take part in this
adventure. I would like to particularly thank my past and present group members
who provided several of the chapters. I also particularly appreciate R. Frankel for
providing the foreword of the book. I also thank the editorial team at Wiley for
their support in getting the chapters in time, formatting, and proofreading those
materials. I acknowledge the support of several colleagues who reviewed the
manuscripts and in particular of my close collaborator Dr. Jens Baumgartner who
helped with numerous chapters. My wife Nathalie, apart from others support,
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Potsdam, February 2016 Damien Faivre
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