English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Kinneyia: A flow-induced anisotropic fossil pattern from ancient microbial mats.

MPS-Authors
/persons/resource/persons121410

Herminghaus,  Stephan
Group Granular matter and irreversibility, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173687

Thomas,  Katherine R.
Group Granular matter and irreversibility, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons196613

Aliaskarisohi,  Saeedeh
Group Pattern formation in the geosciences, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173520

Goehring,  Lucas
Group Pattern formation in the geosciences, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Herminghaus, S., Thomas, K. R., Aliaskarisohi, S., Porada, H., & Goehring, L. (2016). Kinneyia: A flow-induced anisotropic fossil pattern from ancient microbial mats. Frontiers in Materials, 3: 30. doi:10.3389/fmats.2016.00030.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002A-E73E-E
Abstract
Kinneyia is the commonly-used term to describe a class of trace fossil that is strongly associated with microbial mats. The appearance of Kinneyia (or wrinkle-structures) in the fossil record has recently led to a number of possible mechanisms being proposed to explain its formation. Here we outline, and critically compare, three of these models, involving formation of the characteristic ripple-structures (i) in mats over liquefied sediment, (ii) by oscillatory flow of microbial aggregates, and (iii) by a Kelvin-Helmholtz instability of the mat surface. Of these models, our study shows that the hydrodynamic instability compares most favorably with the corresponding structures in the fossil record. Implications for the conditions under which the fossils formed are then further discussed.