Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Optimizing gravitational-wave searches for a population of coalescing binaries: Intrinsic parameters

MPG-Autoren
/persons/resource/persons104895

Dent,  Thomas
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1311.7174.pdf
(Preprint), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Dent, T., & Veitch, J. (2014). Optimizing gravitational-wave searches for a population of coalescing binaries: Intrinsic parameters. Physical Review D, 89: 062002. doi:10.1103/PhysRevD.89.062002.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002A-F92E-3
Zusammenfassung
We revisit the problem of searching for gravitational waves from inspiralling compact binaries in Gaussian coloured noise. For binaries with quasicircular orbits and non-precessing component spins, considering dominant mode emission only, if the intrinsic parameters of the binary are known then the optimal statistic for a single detector is the well-known two-phase matched filter. However, the matched filter signal-to-noise ratio is /not/ in general an optimal statistic for an astrophysical population of signals, since their distribution over the intrinsic parameters will almost certainly not mirror that of noise events, which is determined by the (Fisher) information metric. Instead, the optimal statistic for a given astrophysical distribution will be the Bayes factor, which we approximate using the output of a standard template matched filter search. We then quantify the possible improvement in number of signals detected for various populations of non-spinning binaries: for a distribution of signals uniformly distributed in volume and with component masses distributed uniformly over the range $1\leq m_{1,2}/M_\odot\leq 24$, $(m_1+m_2) /M_\odot\leq 25$ at fixed expected SNR, we find $\gtrsim 20\%$ more signals at a false alarm threshold of $10^{-6}\,$Hz in a single detector. The method may easily be generalized to binaries with non-precessing spins.