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Abstract

During the last twenty years, a lot of research was conducted on
the sport elimination problem: Given a sports league and its remaining
matches, we have to decide whether a given team can still possibly win
the competition, i.e., place first in the league at the end. Previously,
the computational complexity of this problem was investigated only
for games with two participating teams per game. In this paper we
consider Debating Tournaments and Debating Leagues in the British
Parliamentary format, where four teams are participating in each game.
We prove that it is NP-hard to decide whether a given team can win a
Debating League, even if at most two matches are remaining for each
team. This contrasts settings like football where two teams play in each
game since there this case is still polynomial time solvable. We prove
our result even for a fictitious restricted setting with only three teams
per game. On the other hand, for the common setting of Debating
Tournaments we show that this problem is fixed parameter tractable if
the parameter is the number of remaining rounds k. This also holds
for the practically very important question of whether a team can still
qualify for the knock-out phase of the tournament and the combined
parameter k + b where b denotes the threshold rank for qualifying.
Finally, we show that the latter problem is polynomial time solvable
for any constant k and arbitrary values b that are part of the input.

1 Introduction

Debating and soccer are deeply rooted in our society. Debating dates back to
the times of the ancient greek when already in 460 BC the citizens of Athens
were meeting in one of the first parliaments of the world for discussions and
votings [7]. This gave rise to the fine art of rhetoric, the skill to speak in
a public debate in a convincing manner, to give a solid argumentation for

∗University of Vienna, Faculty of Computer Science, Vienna, Austria. The research
leading to these results has received funding from the European Research Council under
the European Unions Seventh Framework Programme (FP/2007-2013) / ERC Grant
Agreement no. 340506.
†Max Planck Institute for Computer Science, Saarbrücken, Germany.

1

ar
X

iv
:1

60
5.

03
06

3v
1 

 [
cs

.C
C

] 
 1

0 
M

ay
 2

01
6



the provided claims, and to win the support of the audience for the own
case. Since the ancient Greece the art of debating has developed, and great
speeches became milestones of history such as the famous speech delivered
by Martin Luther King on August 28, 1963 containing the dictum “I have
a dream” [13]. Nowadays, all over the world there are debating societies at
universities and outside academia that are devoted to debates and public
speaking. This has a long tradition, for instance, the Cambridge Union
Society was founded in 1815 and has been run continuously for more than
200 years now [2]. Important for this paper is that there are debating
competitions: teams of debaters meet and argue for and against the case
of a previously specified motion. The roles (pro and contra) are assigned
randomly and thus the debaters do not necessarily argue for the side that
they personally support.

Like debating, soccer is an integral part of the contemporary societies
in many countries. It is played by 250 million players in more than 200
countries which makes it the world’s most popular sport [10]. Even more
people are passionate for watching the matches and supporting their favorite
teams. For instance, the final of the last world cup 2014 was watched by
more than one billion people world wide [1].

It is clear that debating and soccer play a significant role in modern
societies. However, one question has remained open: what is harder, debating
or soccer? Empirically there are only very few indications. There are quotes
by soccer players such as “We lost because we didn’t win.” (Ronaldo [21]),
“I also told him that verbally.” (Mario Basler [5]), “It doesn’t matter if it is
Milano or Madrid as long as it is Italy.” (Andreas Möller [17]), or “I can
see the carrot at the end of the tunnel.” (Stuart Pearce [20]) which suggest
that excelling rhetorically might be harder than playing soccer. On the other
hand, the political careers of heads of states typically surpass their soccer
careers by orders of magnitude. For instance, Gerhard Schröder, the former
chancellor of Germany, played only in the Bezirksliga [23] which is nowadays
the 7th level of the soccer league system in Germany. For the current German
chancellor Angela Merkel we are not aware of any non-trivial soccer abilities.
However, she is known to occasionally frequent the German national team’s
changing room after important matches [18].

From a scientific point of view it is difficult to compare debating and
soccer since they have only few intersection points that allow a scientifically
accurate comparison. One of the few is the following: consider a league in
which soccer/debating teams play matches against each other according to a
pre-defined schedule that indicates on which match days which respective
teams play each other. Consider your favorite team t1. The question is: are
there outcomes for all remaining matches such that t1 wins the championship?

In soccer, this question is polynomial time solvable if there are at most
two remaining matches per team and NP-hard for at most three matches per
team under the three-point rule [6, 14]. The latter is nowadays ubiquitous in
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soccer leagues and tournaments (such as in all FIFA world cups since 1994,
in most national soccer leagues since 1995, and in some of them even much
earlier [9]). It specifies that if a team wins a match it scores three points for
the league ranking and the losing team scores zero points, if the match is a
draw then both teams score one point.

For debating, we focus in this paper on the British parliamentary style
format that enjoys great popularity world wide and is played for instance
in the world universities debating championships [4]. In this format, four
teams are playing in each game and the winning team scores three points,
the second team scores two points, the third team scores one point, and the
fourth team scores zero points. If in the final ranking multiple teams have
the same number of points, then a tiebreaker is used. For simplicity, in this
paper we assume that this tie-breaker is the total number of FUN papers
written by members of the team and that the team t1 has written the most
FUN papers among all participating teams. Thus, t1 wins the championship
if there is no team with more points than t1 and the corresponding problem
is called DebatingLeague.

1.1 Our contribution

In this paper we prove that DebatingLeague is NP-hard, even if there are
only two remaining matches to play for each team. This shows that debating
is computationally harder than soccer in two ways: first, if there are only
two remaining matches to play for each team then in soccer we can decide
in polynomial time whether a given team can still win [6]. Secondly, for an
arbitrary number of remaining matches soccer is easy under the two-point
rule [6], i.e., the winning team scores two points, rather than three. The
two-point rule has the important feature that for each match there is a
given number of points (two) that are completely distributed among the
participating teams. This is also the case in debating: in each match there
are six points available and they are all distributed. While with this feature
soccer is easy, DebatingLeague is NP-hard despite of this which underlines
the complexity of the latter problem. To the best of our knowledge, this is
the first time that the elimination problem has been studied for games with
more than two teams per match. In fact, we prove that our hardness result
even holds in a fictitious setting in which only three teams participate in a
game and they score two, one, and zero points, respectively.

While DebatingLeague is NP-hard if only two matchdays are remaining,
we can show something different for the system that is typically played
in debating tournaments. There, the matches of the teams are defined in
a similar way as in Swiss-system tournaments [3] (which are for instance
common in chess): after each round the teams are ordered according to the
number of points they scored so far. Then the teams ranked 1st-4th play one
match, the teams ranked 5th-8th play the second match, and so on. Since
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the pairings in each round depend on the initial ranking and the outcomes
of the previous rounds, the above hardness result for DebatingLeague does
not apply. In practice debating tournaments have a first phase organized as
above and a second phase that is played as a knock-out tournament. There
is a threshold b specifying that the first b teams of the final ranking after
the first phase qualify for the knock-out phase, denoted as breaking. A key
question that a team typically asks itself during a tournament is whether it
can still break. Formally, we denote by DebatingTournament the problem of
deciding whether t1 can finish on place b or better with k rounds left in the
tournament.

We show that DebatingTournament can be solved in time O(f(k + b) · n),
i.e., the problem is fixed parameter tractable for the combined parameter
k + b. In particular, this implies that for any constant k it is polynomial
time solvable to decide whether t1 can win the tournament, while for k = 2
DebatingLeague is NP-hard. For our algorithm we first prove that if initially
the team t1 is “too far behind”, i.e., has a too large initial rank depending on
k and b, then it cannot break anymore. For the remaining case we provide
an algorithm with a running time of O(f(k + b) · n) for a suitable function f .
Additionally, we show that for constant k the problem is polynomial time
solvable (for an arbitrary value of b that is part of the input). Thus, even
for arbitrary b the case that k = 2 is in P, in contrast to DebatingLeague.

1.2 Other related work

In 1966, Schwartz [22] proved that using flow networks it can be decided
in polynomial time whether a baseball team can still win a baseball league.
In baseball the winner of a game wins a single point and the looser gets
zero points, there is no tie. McCormick [16] generalized this result by giving
a polynomial time algorithm which allowed to fix a number of losses for
the team that is supposed to win the league. Wayne [24] characterised
all teams of a baseball league which can still win the league by giving a
threshold value for the number of points and the number of matches a team
must have to be able to win the league. He further gave a polynomial time
algorithm to compute this threshold. This result was later improved by
Gusfield and Martel [12] who gave thresholds for a bigger set of possible
outcomes of the matches. For baseball leagues they gave a faster algorithm to
determine the threshold and further allowed leagues with multiple divisions
and wild-cards [12].

A major difference between baseball and soccer leagues is which outcomes
are possible in a single game. For soccer leagues with the three-point-rule
it was proven by [14] and [6] independently that it is NP-hard to determine
whether a team can win the league. Pálvölgyi [19] proved that when we are
given the table of a soccer league and a list of games that were played so far
without their outcomes, it is NP-hard to decide whether this table is valid,
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i.e., whether the distribution of points to the teams can be achieved by real
outcomes of games. In [8], the authors construct a hypergraph representing
the teams and their remaining matches. Depending on certain properties of
this graph they prove multiple hardness results for the question whether a
certain team can still win the competition.

In [15], Kern and Paulusma consider games with two teams, but allow a
game to have many different outcomes. They prove that it can be decided in
polynomial time whether a team can still win the competition if and only if
in each match exactly m points can be distributed arbitrarily to both teams
(for any positive integer m).

2 Debating League

In this section we prove that DebatingLeague is NP-hard, even if each team
has at most two remaining matches to play. First, let us define the problem
formally. Let T = {t1, . . . , tn} be the set of teams participating in the
debating league. We denote the set of remaining matches by M ⊂ T 4, i.e.,
we have (ti, tj , tk, tl) ∈ M iff the teams ti, tj , tk and tl still have to play
against each other in a match. We assume that each possible match occurs
at most once; further, throughout the whole section the game schedule of
remaining matches is fixed. The winner of each match scores 3 points, the
second placed team scores 2 points, the third placed team scores 1 point
and the loosing team does not get any point. We are given a score vector
s ∈ Rn with an entry si for each team ti that indicates how many points
team ti already obtained before playing the remaining matches. Notice that
the tuple (T,M, s) encodes all information we need about the competition.
In the DebatingLeague problem we want to find out whether team t1 can still
win the competition.

Definition 1. In the DebatingLeague problem we are given a tuple (T,M, s)
and we want to answer the question whether there are outcomes for all
matches M , such that at the end there is no team that has more points than
team t1.

We will prove that this problem is already NP-hard when each team
has at most two remaining matches. We prove this first for a variant of
DebatingLeague where we have only 3 teams per match and each team has
at most two matches left to play. In a game the winner gets 2 points, the
second placed team gets 1 point and the looser gets 0 points. We still want
to decide whether team t1 can win the competition. We denote this problem
ThreeTeamDebating. It can also be characterised by a tuple (T,M, s) similarly
to above.

Theorem 2. The ThreeTeamDebating problem is NP-hard even when each
team has at most two remaining matches to play.

5



Before we start giving the proof of Theorem 2, we introduce a way to
visualize instances of ThreeTeamDebating as graphs. Suppose we are given
an instance (T,M, s) of ThreeTeamDebating in which each team plays at
most two matches. We visualize its matches via a game graph G = (V,E)
in the following way: For each game g ∈ M , we introduce a game vertex
vg ∈ V . For each team ti that participates in two matches g, g′, i.e. if ti ∈ g
and ti ∈ g′, we introduce an edge ei connecting vg and vg′ . Such an edge will
be called a team edge. Each edge will receive a weight wi which encodes how
many points team ti can still get without obtaining more points than team
t1. If a team has only one game remaining, we do not introduce an edge for
it. Notice that later team t1 will not be part of the game graph as we can
assume w.l.o.g. that it wins all of its remaining games and has no games left.

We prove Theorem 2 via a reduction from 3-Bounded-3-SAT [11] to
ThreeTeamDebating. Let ϕ be a 3-Bounded-3-SAT formula with variables
x1, . . . , xn and clauses C1, . . . , Cm. We can assume that each variable occurs
in two or three different clauses and that it occurs at least once positively
and at least once negatively. We can further assume that each clause has
two or three literals.

We construct an instance (T,M, s) of ThreeTeamDebating. First, we
describe gadgets out of which our construction is composed and prove some
of their properties. Afterwards, we describe how to combine the gadgets to
the final instance. In the sequel, we will prove some properties about our
construction. We will use the term “We can assume that ...” for the claim
that team t1 can still win the championship if and only if it can still win the
championship for outcomes of the matches where the respective following
statement is true. In our construction, t1 has no remaining game to play.
We distinguish the other teams into two-game teams and one-game teams,
where the former type has two remaining games to play and the latter type
has one remaining game to play. For each team, we will define how many
points it can still score without getting more points than t1. We will not
exactly specify how many points each team has initially since it matters only
how many points it can still get without overtaking t1.

For each variable x in ϕ we introduce a ring gadget. Assume that x occurs
in the three clauses Ci, Cj , Ck. The ring gadget for a variable x consists of the
six games given by the set Gx := {g1x,Ci

, g2x,Ci
, g1x,Cj

, g2x,Cj
, g1x,Ck

, g2x,Ck
} and six

teams two-game teams as specified by Tx := {t1x,Ci
, t2x,Ci

, t1x,Cj
, t2x,Cj

, t1x,Ck
, t2x,Ck

}.
If x appears in only two clauses Ci, Cj we use the same setup for a fictitious
clause Ck.

The games of the teams in Tx are visualized in Figure 1. Ignoring teams
which are not from the set Tx and which we will introduce later, the game
g1x,Ci

is played by the teams t2x,Ck
, t1x,Ci

, the game g2x,Ci
is played by the teams

t1x,Ci
, t2x,Ci

, the game g1x,Cj
is played by the teams t2x,Ci

, t1x,Cj
, the game g2x,Cj

is played by the teams t1x,Cj
, t2x,Cj

, the game g1x,Ck
is played by the teams
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t2x,Cj
, t1x,Ck

, and the game g2x,Ck
is played by the teams t1x,Ck

, t2x,Ck
. Thus,

when visualizing the games in Gx and the teams in Tx they form a cycle.
Each team g1x,C`

with ` ∈ {i, j, k} is allowed to get 2 points and each team

g2x,C`
with ` ∈ {i, j, k} can get 3 points. The other teams participating in

the games Gx (to be defined later) will only be able to score exactly 1 point
and hence they will not be able to win a game. Hence, we can assume that
in each game g ∈ Gx one team in Tx that plays in g must score 2 points.
Furthermore, each team in Tx can win at most one game and since there are
six games in Gx and six teams in Tx, each team in Tx must win exactly one
game.

One way to visualize the outcome of the circle games is to orient each
edge in the game graph. The team edge of a team t ∈ Tx points towards
the unique game in which t scores 2 points. In this viewpoint, the following
lemma implies that we can assume that all edges of the cycle are either
oriented clockwise or counter-clockwise.

Proposition 3. We can assume that either the ring gadget is oriented
clockwise, i.e. game gzx,C`

is won by team tzx,C`
for ` ∈ {i, j, k} and z ∈ {1, 2},

or the ring gadget is oriented counter-clockwise, i.e. game g2x,C`
for ` ∈

{i, j, k} is won by team t1x,C`
and the games g1x,Ci

,g1x,Cj
,g1x,Ck

have winners

t2x,Ck
,t2x,Ci

,t2x,Cj
, respectively.

Later, the two possible orientations of the ring gadget for variable x will
correspond to setting the variable x to true or to false. Next, we introduce
a clause game gC for each clause C in ϕ. Let C be a clause with variables
x, y, z. We introduce three two-game teams t4x,C , t

4
y,C , t

4
z,C that play gC and

each of them will play in another game that we will define later. Each of
them can still score 2 points. Intuitively, the team among them that scores
2 points in gC will correspond to the variable that satisfies the clause C in
a satisfying assignment. Note that for the names of the teams we do not
distinguish whether a variable x occurs positively or negatively in C.

We describe now how we connect the clause games with the ring gadgets,
see Figure 1. Let x be a variable that occurs in a clause C. For this
occurrence, we introduced the team t4x,C above. We now introduce a game

g3x,C , a two-game team t3x,C , and a one-game team t3x,C,d. The team t3x,C can

still get 1 point and the team t3x,C,d can still get 2 points. We define that

g3x,C is the second game of t4x,C , the only game of t3x,C,d, and one of the two

games that t3x,C plays. The intuition behind this construction is that if t3x,C
gets 0 points in its second game (that we have not specified yet) then the
team t4x,C can score up to 2 points in game gC (without getting more points

in total than t1). On the other hand, if t3x,C gets 1 point in its other game,

then t4x,C can score only up to 1 point in gC and in particular, it cannot score
2 points in gC anymore. Later, the first case will correspond to the case that
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x satisfies C whereas the second case will correspond to the case that x does
not satisfy C.

Proposition 4. Let x be a variable appearing in a clause C. We can assume
that

• if t3x,C scores 1 point in a game different than g3x,C that it plays, then

t4x,C scores at most 1 point in game gC , and

• if t3x,C scores 0 points in a game different than g3x,C that it plays, then

t4x,C can score up to 2 points in the game gC .

We specify the second game for the team t3x,C (i.e., the game different

than g3x,C that it plays). If x appears positively in clause C then this second

game is defined to be g2x,C , otherwise, this second game is defined to be g1x,C .
If the variable x appears in three clauses Ci, Cj , Ck then three games from
the Gx are still missing one team, exactly one per clause. For these games
we add the one-game teams T d

x := {tx,di , tx,dj , tx,dk}, each of them playing
the game with the corresponding clause in the subscript and each of them
allowed to score 1 point. If x appears in only two clauses then we similarly
add two one-game teams such that each of them is allowed to score 1 point
and by this we ensure that each game in Gx has three teams. This completes
the definition of the instance.

Lemma 5. If ϕ is satisfiable then there is an outcome of the defined instance
of ThreeTeamDebating such that no team gets more points than t1.

Proof. Suppose we are given a satisfying assignment to the variables in ϕ.
From this satisfying assignment we will construct outcomes of the games,
such that team t1 wins the championship. Intuitively, we will want to assign
all points as depicted in Figure 1. We will now describe this formally.

Let x be a variable. If x is true, then we orient the ring gadget of
x counter-clockwise according to the left image in Figure 1; formally, the
winners of the games Gx are assigned as defined in Proposition 3. If x is
false, then the ring gadget of x is oriented clockwise according to the right
image in Figure 1. All one-game teams T d

x will place second in their games
and thus obtain a single point each.

Consider a clause C with variables x, y, z. In the satisfying assignment
one of them must satisfy C. Assume w.l.o.g. that x satisfies C. Then we
let team t4x,C score 2 points in the game gC and we let an arbitrary team

among t4y,C , t
4
z,C score 1 point and the other one 0 points. For the game g3x,C

we let the one-game team score 2 points and team t3x,C score 1 point, team

t4x,C obtains no additional point from this game. Team t3x,C further scores 0

points in its remaining game (game g1x,C or g2x,C , depending on whether x
appears negatively or positively in C) and the remaining point of this game
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t1x`,Ci t2x`,Ci

t3x`,Cj

t4x`,Cj

gCj

g3x`,Cj

g2x`,Ci

g1x`,Ci
g1x`,Cj

g2x`,Cj

t1x`,Cj

t2x`,Cj

t2x`,Ck

t1x`,Ck

g2x`,Ck

g1x`,Ck

2

0

0

1

2

1

2

0

1

20

2

1

2

0

2

1

0

1

1
g3x`,Ci

t3x`,Ci

t4x`,Ci

gCi

t1x`,Ci t2x`,Ci

t3x`,Cj

t4x`,Cj

gCj

g3x`,Cj

g2x`,Ci

g1x`,Ci
g1x`,Cj

g2x`,Cj

t1x`,Cj

t2x`,Cj

t2x`,Ck

t1x`,Ck

g2x`,Ck

g1x`,Ck

1

1

1

0

1

2

0

2

2

12

0

2

1

2

0

0

1

0

2
g3x`,Ci

t3x`,Ci

t4x`,Ci

gCi

Figure 1: An excerpt of the game graph for variable x` which occurs in
clauses Ci and Ck positively and in Cj negatively. In the left image the
outcomes of the games for x` = true are visualised, in the right image we
have x` = false. The edges are directed towards the game that was won by
the corresponding team; the numbers close to the game vertices show how
many points the associated two-game teams win in this game.

goes to the team which can obtain 3 points in total. In the game g3y,C we let

the team t4y,C score 1 point and team t3y,C scores 1 point from its game in
Gy. For the teams and games for variable z we use the same distribution of
points as for y. We define the outcomes of the games in the same way for
each clause C. See Figure 1 for a sketch of the outcomes described above.

All games distribute all of their points: In the above assignment, for
each clause game gC we have distributed all points by construction. For all
x,C, the games g3x,C have a one-game team as a winner and by construction

the second place goes to either t3x,C or t4x,C . It is left to to argue about the
games from the Gx. For each gzx,C ∈ Gx with z ∈ {1, 2} we must have a
winner since we assigned the winners as defined in Proposition 3. If gzx,C
has a one-game team participating then this team can place second in our
construction and hence all points are distributed. If gzx,C has only two-game
teams, then we constructed our variable assignment such that gzx,C gives its

last point to t3x,C , if x was not used to satisfy C. If x was used to satisfy C,
then 1 point goes to its participating team which can still get 3 points (by
the orientation for the ring gadget we picked, this team cannot have won
gx,C). Finally, by construction there is no team that scores more points than
we had specified, i.e., there is no team that scores more points than t1.

Lemma 6. If there is an outcome of the games in the defined instance of
ThreeTeamDebating such that no team gets more points than t1 then the
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formula ϕ is satisfiable.

Proof. Suppose there is an outcome of the games such that no team gets
more points than t1. We construct an assignment to the variables in ϕ that
satisfies the formula. Let x be a variable. Consider the ring gadget for
x. Due to Proposition 3 for the scores of the teams in Gx there are two
possibilities. We set x to be true if its ring gadget (as presented in Figure 1)
is oriented counter-clockwise in the sense of Proposition 3, otherwise, we set
x to false.

We prove that this variable assignment satisfies ϕ. Consider a clause C
with three variables x, y, z. Assume w.l.o.g. that t4x,C scores 2 points in game

gC . We claim that then x satisfies C. Proposition 4 implies that since t4x,C
scores 2 points in game gC , team t3x,C cannot get any points in game g3x,C .

Hence, the other game g of t3x,C must be won by a team which can get 2
points and have a second placed team which can achieve 3 points.

If x appears positively in C, then by construction we have g = g2x,C . But
then with the previous observation and Proposition 3, the ring gadget is
oriented counter-clockwise and thus we have set x to true. Thus, x must
satisfy C. On the other hand, if x appears negatively in C, then we have
g = g1x,C . This implies that the ring gadget is oriented clockwise and thus
we have set x to false and hence x satisfies C.

Finally, we observe that in the above construction each team has at most
two remaining matches. This completes the proof of Theorem 2. Now we
can show that DebatingLeague is NP-hard.

Theorem 7. The DebatingLeague problem is NP-hard even if each team has
at most two remaining matches to play.

Proof. Let (T ′,M ′, s′) be an instance of ThreeTeamDebating. We modify it
to an instance of DebatingLeague. We begin by letting team t1 win all of
its remaining matches in the ThreeTeamDebating instance and updating the
score vector accordingly for all teams. In each of the games won by team
t1, we replace t1 by a dummy team that plays exactly one match and can
still score two points. Now we update the instance to have four teams per
match: For each game g, we add a dummy team that plays only in g and
that can still score three points. Let (T,M, s) denote the resulting instance
of DebatingLeague. Observe that in this instance t1 is not participating in
any game.

If (T ′,M ′, s′) ∈ ThreeTeamDebating, then we can copy the outcomes of
all games to (T,M, s) and then assign 3 points to each dummy team. This
gives a solution for DebatingLeague.

On the other hand, consider an outcome of (T,M, s) where t1 wins the
championship. Then the newly added dummy teams do not necessarily
have to win their respective games. However, we can resolve this in the
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following way: For each game won by a non-dummy team, we change the
outcome of the match such that the newly added dummy team and the
winning non-dummy team change positions. Hence, a newly added dummy
team obtains 3 points and the other teams just get fewer points than before.
Thus, all newly added dummy teams win their respective games. We do
a similar manipulation to make sure that the dummy teams that replaced
t1 score exactly 2 points and we replace them by t1. This implies that the
outcomes of the matches disregarding the dummy teams give a solution for
(T ′,M ′, s′).

We would like to point out that the above construction can easily be
adapted to show that it is also NP-hard to decide whether t1 can finish
among the b best teams for any constant b (and thus in particular if b is part
of the input). This can be achieved by simply adding b− 1 dummy teams
that do not participate in any game and initially have more points than t1.

3 Debating Tournaments

In this section we will consider the DebatingTournament problem: We are
given a set of teams T = {t1, . . . , tn}, where n is a multiple of 4, and a vector
s ∈ Rn, where entry si specifies how many points team ti has scored so far.
We further get a parameter k which indicates how many rounds (i.e., match
days) are left to play. Contrary to the league setting from the previous
section, the fixtures are not determined beforehand. At each match day the
teams with ranks 4r+1, 4r+2, 4r+3, and 4r+4 for each r ∈ N0 play a game.
The points for winning the games are distributed as in the DebatingLeague
setting. Additionally, we are given a parameter b. We want to decide whether
there are outcomes for all remaining matches such that at the end there are
at most b− 1 teams with more points than t1. Since we assume that in case
of ties t1 is always preferred, this means that t1 finishes among the b best
teams. This is an interesting question since in debating tournaments it is
common to have several rounds in the above format, after which only the
best b teams are promoted to the playoffs in which a knock-out elimination
mode is played. Teams who manage to finish among the b best teams are
said to break. Note that for b = 1 this problem is identical to the question
whether team t1 can still place first. We prove that the problem is fixed
parameter tractable (FPT) if both k and b are taken as parameters by giving
an algorithm with a running time of O(f(k + b) · n).

Recall the assumption that in tie-breaking t1 is always preferred. For
the other teams, we assume w.l.o.g. that we have a fixed total order for the
teams that specifies how to break ties if two teams have exactly the same
number of points. The next lemma states a necessary condition for when t1
can still break: t1 has to be among the best 4kb teams in the initial ranking
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s. For our algorithm, we use this lemma to output “no” if t1 is not among
the first 4kb teams in s.

Lemma 8. Let t be a team that is among the best 4`b teams when there are
` ∈ {0, ..., k} rounds left to be played. Then it has to be among the best 4`+1b
teams when there are ` + 1 rounds left to be played. If a team is among the
best b teams at the end of the tournament then it must be among the best
4kb teams when there are k rounds left to be played.

Proof. We start with the first claim. Assume for contradiction that team t is
at a position larger than 4`+1b when there are ` + 1 rounds left to be played
and it is among the best 4`b teams when there are ` rounds left to be played.
Observe that in the round when ` + 1 games are left, the 4`+1b best placed
teams will play 4`b matches. Each of these games must have a winner and
among the participating teams 4`b teams must win their respective match
(i.e., score 3 points) and thus will have more points than t when ` rounds
are left, even if t wins its match. Hence, with ` rounds left to play, team t
must have a position worse than 4`b.

The second claim can be shown by induction using the first claim as the
inductive step: If a team t is among the best b teams when ` = 0 rounds are
left to be played then it must be among the best 4b teams before the last
round, among the best 42b teams before the last two rounds, . . . , and among
the best 4kb teams when there are k rounds left.

Now we describe a recursive FPT algorithm with parameters b and k,
that solves a given instance of DebatingTournament. We define two sets
S>t1 := {ti|si > s1} and S≤t1 := {ti|si ≤ s1}. Both sets can be constructed
in time O(n). If |S>t1 | > 4kb, then the algorithm stops as team t1 cannot
break anymore by Lemma 8. Otherwise, the algorithm finds the best 4kb
teams by taking team t1, all teams from S>t1 and filling the remaining
4kb − |S>t1 | − 1 slots with teams from S≤t1 in descending order of points.
This step can be implemented in time O(4kb ·n): we iterate over all elements
of S≤t1 and keep track of the best team that was not yet added. When the
iteration finished, we add the best team we found and mark it as added.
We have one iteration over O(n) elements for each free slot of of the O(4kb)
teams, and thus we need a running time of O(4kb · n). Denote by T (k) the
obtained set of teams.

The teams in T (k) play 4k−1b matches. We guess the outcomes of all
these matches that still allow t1 to be among the best b teams at the end.
For each match there are 4! possible outcomes and thus there are (4!)4

k−1b

possible game outcomes to enumerate. We update the scores of the teams
accordingly. Denote by T (k−1) the first 4k−1b teams in the resulting ranking.
Lemma 8 implies that in any outcome of all matches of the n given teams
all teams in T (k−1) must also be in T (k). This justifies that we enumerate
only the matches for the teams in T (k), rather than the matches for all n

12



given teams. Then we guess the outcome of the 4k−2b matches for the teams
in T (k−1) that allows t1 to break eventually. We continue recursively for all
remaining rounds. For each guess of the outcomes of a round, e.g., when
there are only ` rounds remaining and we have 4`b teams left to consider,
we make one recursive call to our routine with `− 1 remaining rounds and
4`−1b remaining teams.

To evaluate the complexity of the algorithm let us observe that for a
single matchday there are at most (4!)4

k−1b possible outcomes, since each
match has 4! possible outcomes and during a single round of the tournament
there are at most 4k−1b games to be played. The recursion depth is k which

yields an overall running time of
(

(4!)4
k−1b

)k
= 2(2b)

O(k)
of our algorithm.

In total, we need time O(4kb · n) for the first phase of the algorithm in
which we determine the best 4kb teams. For the simulation of all possible
outcomes we need time 2(2b)

O(k)
. Note that if we set b = 1, the algorithm

decides in time n · 22O(k)
whether t1 can place first in a tournament without

playoffs. Thus, this problem is FPT for parameter k

Theorem 9. If there are k remaining rounds to be played in a debating
tournament, there is an algorithm that decides in time n · 2(2b)O(k)

whether t1
can place among the first b teams at the end of the tournament.

3.1 Constant number of rounds

We present an algorithm that decides in time nO(k4) whether a team can
still break if there are k more rounds to play. In particular, this implies that
for any constant k the problem is polynomial time solvable, in contrast to
DebatingLeague.

As before, suppose we are given a ranking with n teams where for each
team ti we are given a value si that denotes how many points team i has
scored so far. Again, assume that after the last round the first b teams in the
ranking break (and thus participate in the play-offs). Also, we are given a
value k that denotes the number of remaining rounds and we want to decide
whether t1 can still break. Consider a round such that including this round
there are only ` ≤ k more rounds to play. For each team ti let s`i denote its
score at the beginning of the round. We distinguish three types of teams:
teams ti with s`i > s`1 + 3`, teams ti with s`1 − 3` ≤ s`i ≤ s`1 + 3`, and teams
ti with s`i < s`1 − 3`. Denote those teams by T `

T , T
`
M , and T `

B, respectively
(for top, middle, and bottom). At the end of the tournament, the final score
for each team ti will be in {s`i , ..., s`i + 3`}. Thus, during the last k rounds
team t1 cannot overtake any of the teams in T k

T and none of the teams in
T k
B can overtake t1. Thus, intuitively, only the exact scores teams in T k

M are
relevant when deciding whether t1 can still break. Our algorithm enumerates
all possible remaining outcomes of the remaining matches but in doing so,
it does not keep track of the scores of the teams in T k

T ∪ T k
B. For the initial
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scores of the teams in T k
M there are only O(k) possibilities and during k

rounds a team can score at most O(k) points. Thus there are also only O(k)
possibilities for the scores of teams in T k

M during the last k rounds. In order
to describe the ranking for those teams, up to permutations it sufficies to
keep track of the total number of teams with each of the O(k) possible scores.
This yields nO(k) many possibilities in total which allows us to solve the
problem via a dynamic program.

Formally, we will pretend that all teams in T k
T have exactly the same

number of points initially and that the same is true for all teams in T k
T . This

is justified by the following lemma.

Lemma 10. Assume that there are only ` rounds left to play. Consider an
initial ranking given by a number of points s`i for each team ti. Then t1 can
still break if and only if it can still break in any initial ranking given by a
number of points s̄`i for each team ti such that

• s`1 = s̄`1,

• there is a bijection f : T `
M → T̄ `

M := {ti|s̄`i − 3` ≤ s̄`1 ≤ s̄`i + 3`} such
that for each ti ∈ T `

M we have that in s` and s̄` the teams ti and f(ti)
have the same rank and the same scores and f(t1) = t1,

• |T `
T | = |T̄ `

T | := |{ti|s̄`i > s̄`1 + 3`}| and |T `
B| = |T̄ `

B| := |{ti|s̄`i < s̄`1− 3`}|.

Proof. We prove the claim by induction. For ` = 0 it is immediate since t1
can still break if and only if |T 0

T | < b. Suppose now the claim is true for
some value ` and we want to prove it for ` + 1. It is immediate that t1 can
break in the initial ranking s`+1 if it can break in any initial ranking s̄`+1

with the above properties since s`+1 satisfies these properties.
Now suppose that t1 can break in the initial ranking s`+1 and consider

an initial ranking s̄`+1 with the above properties. Consider the outcome
of the games in the current round for the ranking s`+1 such that t1 breaks
after the last round. We construct an outcome of the games of the current
round for the initial ranking s̄`+1. Consider a game ḡ in which the teams
{t̄(1), t̄(2), t̄(3), t̄(4)} participate. There is a corresponding game g, played by
team {t(1), t(2), t(3), t(4)} according to the initial ranking s`+1 such that for
each j ∈ {1, 2, 3, 4} we have that

• if t̄(j) ∈ T̄ `
M then t(j) = f−1(t̄(j)) ∈ T `

M and thus in s`+1 and s̄`+1 the
teams t̄(j) and t(j) have exactly the same rank and the same score,

• if t̄(j) ∈ T̄ `
T then t(j) ∈ T `

T , and

• if t̄(j) ∈ T̄ `
B then t(j) ∈ T `

B.

Note that the first property implies that if t̄(j) = t1 then t(j) = t1. For
defining the outcome of ḡ we simply the take of the outcome of game g from
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the known outcomes for all remaining matches that let t1 break eventually.
For each j ∈ {1, 2, 3, 4} we assign the team t̄(j) exactly the same score as
team t(j) in those outcomes. We do this operation with all games ḡ. Denote
by s̄` the resulting ranking and by s` the ranking resulting if we apply those
outcomes to s`+1. Based on the induction hypothesis, we claim that t1 can
still break in s̄`. First, it is clear that s`1 = s̄`1 since f(t1) = t1. Consider
a team ti. If ti ∈ T̄ `−1

T then ti ∈ T̄ `
T and also if ti ∈ T `−1

T then ti ∈ T `
T .

Similarly, if ti ∈ T̄ `−1
B then ti ∈ T̄ `

B and also if ti ∈ T `−1
B then ti ∈ T `

B.

Finally, if ti ∈ T̄ `−1
M then

• ti ∈ T̄ `
M if and only if f−1(ti) ∈ T `

M and then ti and f−1(ti) have the
same score in s` and s̄`

• ti ∈ T̄ `
T if and only if f−1(ti) ∈ T `

T , and

• ti ∈ T̄ `
B if and only if f−1(ti) ∈ T `

B.

Therefore, |T `
T | = |T̄ `

T | and |T `
B| = |T̄ `

B| and also there is a bijection f : T `
M →

T̄ `
M with the properties required by the induction hypothesis. Thus, the

induction hypothesis implies that t1 can still break when starting with the
initial ranking s̄`.

We use Lemma 10 to justify that we can work with a new initial ranking
s′ instead of s. Note that the sets T k

B∪̇T k
M ∪̇T k

T form a partition of the
participating teams. For each team ti ∈ T k

B we define s′i := 0. For each team
ti ∈ T k

M we define s′i := si. For each team ti ∈ T k
T we define s′i := s1 + 3k + 1.

The next proposition follows immediately from Lemma 10.

Proposition 11. The team t1 can break with the initial ranking s′ if and
only if it can break with the initial ranking s.

In our algorithm, we use a dynamic program in order to enumerate all
possible outcomes of the remaining k rounds when starting with the initial
ranking s′. Key is that there are only O(k) different scores that a team can
have during these k rounds since there are only O(k) different initial scores
and each team can score at most 3k many points. We call two score vectors
s̃, s̃′ equivalent if s̃1 = s̃′1 and if for each value x the number of teams with
exactly x points is the same in s̃ and s̃′. The team t1 can clearly break for
an initial score vector s̃ if and only if it can still break in any equivalent
initial score vector s̃′.

Lemma 12. When starting with the score vector s′, there are only nO(k)

equivalence classes for the score vectors arising during the last k rounds.

Proof. For the number of points of t1 there are only O(k) possibilities. The
other teams there can have at most O(k) different scores. Thus, in order to
describe an equivalence class it suffices to specify the points of t1 and how
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many teams there are with each of the O(k) possible different scores. This
gives only nO(k) different possibilities in total.

Our dynamic program works as follows: we have a DP-table entry (`, C)
for each ` ∈ {0, ..., k} and each equivalence class C of the possibly arising
score vectors. We store either “yes” or “no” in this cell, corresponding to
whether or not t1 can still break if there are ` more rounds to play and we
start with a score vector that is equivalent to C.

Lemma 13. Let ` ∈ {0, ..., k}. Suppose we have computed the entry of the
cell (`, C ′) for each equivalence class C ′. Then in time nO(k4) we can compute
the entry for a cell (` + 1, C).

Proof. Consider a score vector corresponding to C. We distinguish the
different types of the games arising in the current round. We say that two
games with teams {t(1), t(2), t(3), t(4)} and {t̄(1), t̄(2), t̄(3), t̄(4)}, respectively,
are of the same type if there exists a bijection g : {t(1), t(2), t(3), t(4)} →
{t̄(1), t̄(2), t̄(3), t̄(4)} such that t(j) and g(t(j)) have exactly the same score for
each j ∈ {1, 2, 3, 4}. There are only O(k4) types of games at only 4! different
outcomes for each game. Thus, in order to enumerate all possible outcomes
of all games it suffice to guess how many games of each type have which
of the 4! possible outcomes. Finally, there are 4! possible outcomes for the
game that t1 participates in. This gives nO(k4) possibilities in total and for
each possibility we obtain a cell (`, C ′) for some equivalence class C ′.

Thus, in time nO(k4) we can fill the entries of all DP-cells. There is one
cell (k,C) such that C corresponds to the equivalence class that contains s′.
The entry of this cell is “yes” if and only if t1 can still break.

Theorem 14. There is an algorithm with running time nO(k4) that decides
whether a given team t1 can still break if there are at most k remaining
rounds to play in a tournament, for an arbitrary breaking threshold b that is
part of the input.
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[6] Thorsten Bernholt, Alexander Gülich, Thomas Hofmeister, and Niels
Schmitt. Football elimination is hard to decide under the 3-point-rule.
In Proceedings of the 24th International Symposium on Mathematical
Foundations of Computer Science, MFCS ’99, pages 410–418, London,
UK, UK, 1999. Springer-Verlag.

[7] Mark Cartwright. Athenian democracy. Ancient History Encyclopedia
http://www.ancient.eu/Athenian Democracy. Accessed: 2015-12-18.
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