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Abstract

Very recent work introduces an asymptotically fast subdivision algorithm, de-
noted ANEwDSsC, forisolating the real roots of a univariate real polynomial. The
method combines Descartes’ Rule of Signs to test intervals for the existence of
roots, Newton iteration to speed up convergence against clusters of roots, and
approximate computation to decrease the required precision. It achieves record
bounds on the worst-case complexity for the considered problem, matching
the complexity of Pan's method for computing all complex roots and improving
upon the complexity of other subdivision methods by several magnitudes.

In the article at hand, we report on an implementation of ANEwDSsC on top
of the RS root isolator. RS is a highly efficient realization of the classical Des-
cartes method and currently serves as the default real root solver in Maple. We
describe crucial design changes within ANEwDsc and RS that led to a high-
performance implementation without harming the theoretical complexity of
the underlying algorithm.

With an excerpt of our extensive collection of benchmarks, available online
at http://anewdsc.mpi-inf. mpg.de/, we illustrate that the theoretical gain in
performance of ANEwDsc over other subdivision methods also transfers into
practice. These experiments also show that our new implementation outper-
forms both RS and mature competitors by magnitudes for notoriously hard
instances with clustered roots. For all other instances, we avoid almost any
overhead by integrating additional optimizations and heuristics.

1. Introduction
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Computing the real roots of a univariate polynomial is one of the fundamental tasks in numerics and
computer algebra, and numerous methods have been proposed to solve this problem. The leading general-
purpose solvers in practice are based on subdivision algorithms that rely on Descartes’ Rule of Signs to

test for the existence of roots in a certain interval.

The computation for an input polynomial P € R[x] can be considered as a binary tree where each

node corresponds to an interval I = (a,b) and a polynomial P; = (x + 1)"P(

ax+b
“1 ). The number v;

of sign changes in the coefficient sequence of P; then exceeds the number of roots contained in I by
an even non-negative number. In the original algorithm [2], the two children of a node are obtained
by a simple bisection on the interval and relative transformations on the polynomials, which yields the
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polynomial P;. Anodeisaleafifv; = Oorv; = 1;inthe first case, I contains no root, whereas, in the latter
case, the interval is isolating for a real root. Considerable efforts have been taken to improve the worst-
case complexity of different variants of the Descartes method, and to provide efficient implementations:
different traversal orders of the subdivision tree to optimize the memory usage [10], the use of interval
arithmetic [8], new strategies to optimize the main transformations [16], extensions to polynomials with
approximate coefficients [11, 5], and many others.

Nevertheless, most formulations suffer from at least one of the following two deficiencies: First, the
subdivision strategies only achieve linear convergence against the roots. In presence of clusters, those
approaches require a large number of subdivisions to separate the roots. Second, the algorithms are
designed for exact arithmetic on the coefficients of P. An unguarded choice of the subdivision points
can impose an unnecessarily large precision demand when such an approach is translated literally to
arbitrary precision dyadic numbers. Even worse, completeness is not guaranteed for polynomials whose
coefficients can only be approximated. For example, consider the polynomial P(x) = (x — 1)(7tx —e)
with roots at (exactly) 1 and e/ 7t =~ 0.865, and assume that its coefficients are given as an oracle for
arbitrarily good dyadic approximations. In this setting, P(1) = 0 cannot be decided without resorting to
a symbolic simplification of the input, which is beyond the means of the root isolation method. Likewise,
the number of sign variations on the intervals (1 — €,1) and (1,1 + €) for any € cannot be determined
with approximate arithmetic. Thus, once an interval is split at x = 1, a straight-forward algorithm will
request better and better approximations of P from the oracle, but will not terminate.

Both shortcomings have been resolved in [19]: The proposed algorithm ANEwDsc combines the bisec-
tion strategy with Newton iteration to achieve quadratic convergence against clusters. Thus, long chains
of intervals I with the same v} are compressed to only logarithmic length (compared to the length when
considering bisection only). In addition, intervals are split at admissible points, where the polynomial takes
a (relatively) large absolute value. This allows the precision demand of the computation to be kept small,
improving by an order of magnitude over previous approaches. Due to the exclusive use of approximate
arithmetic, the method also applies to (square-free) polynomials with arbitrary real coefficients. Both the
number of subdivision steps and the precision demand is optimal up to polylogarithmic factors, and the
bound on its bit complexity is comparable to the record bound [12] that is implied by an algorithm based
on Pan’s near-optimal method [14] for approximate polynomial factorization. We provide more specific
bounds in Section 2.

Unfortunately, asymptotically fast algorithms are often extremely hard to be implemented or do not
exhibit their theoretical performance in practice. The contribution of this paper is to show that, for the
problem of real root computation, we can bridge this gap between theory and practice. We report on
an implementation of ANEWDsc on top of the Descartes-based real root finder inside the RS library. It
preserves the key features of RS, which are a close-to-optimal memory consumption and the intensive use
of adaptive multiprecision interval arithmetic [15].

We present our design changes both to RS and within ANEwDsc that make it possible to achieve
significant performance gains on hard instances on the one hand and proven complexity guarantees
on the other hand without sacrificing efficiency for small or intrinsically easy instances. The analysis is
supported by benchmark results that show that ANEwDsc can defy the leading general-purpose solvers
for real roots in their special domains, and outperforms the existing implementations on notoriously hard
instances.



2. The Descartes Method and the ANEwDsc Algorithm

We briefly review the classical Descartes method [2] as well as the algorithm ANEWDsc as introduced
in [19]. Given an interval Z = (a9, by) C R and a polynomial

P(x) = ppx" + pu_1X" L+ -+ p1x + po € R[x], (1)

the Descartes method recursively subdivides Z into equally sized intervals until each subinterval I =
(a,b) C T has either been shown to contain no root or exactly one root of P. In order to test an interval
for the existence of a root of P, a coordinate transformation x ”;Ilb is considered, which maps R™
one-to-one onto the interval I. Then, Descartes’ Rule of Signs applied to the polynomial

Pi(x) = Yo puid = (e 1) P( D)
states that the number of sign changes v; := var(P,I) := var(P;) in the coefficient sequence of P;
exceeds the number m; of roots (counted with multiplicity) of P in I by a non-negative even integer. In
other words, m; < vyand m; = v; mod 2. In each step of the recursion within the Descartes method,
the number v; is computed. If v; = 0, the interval [ is discarded. If v; = 1, I is stored as isolating.
Intervals with v; > 1 are further subdivided into two equally sized sub-intervals. In addition, it is checked

whether the subdivision point, that is the midpoint m(I) = %t of I, is a root of P.

(2)

Algorithm 1: Classical Descartes Method
INPUT: A polynomial P asin (1) and an interval Z.
REPORTS: Disjoint isolating intervals for all roots of P in Z.

« Initialize the list of active intervals to A := {Z}.
« While A # @:
> Remove an arbitrary I = (a,b) from A.
> Ifv; = 0, discard I and continue.
> Ifv; = 1, report I and continue.
> Otherwise, add (a, m(I)) and (m(I),b) to A.
If P(m(I)) = 0, additionally report {m(I)}.

If the polynomial P contains only simple roots in Z, the Descartes method yields isolating intervals
for all these roots; otherwise, it converges towards the roots, but does not terminate. If 7 is chosen large
enough to contain all real roots, and all these roots are simple, the algorithm isolates all real roots of P.
The proof for termination relies on the well known One- and Two-Circle Theorems [4, 13], which provide
lower bounds on the width w(I) of any produced interval I.

Regarding the worst-case complexity of the above algorithm, we focus, only for simplicity, on the so-
called benchmark problem of computing all real roots of a square-free polynomial P of degree n with integer
coefficients of absolute value less than 27. Nevertheless, we aim to stress the fact that, for polynomials
with arbitrary real coefficients, more general bounds are known [18, 19], which are expressed in terms of
the separations and the absolute values of the roots of P, thus being more adaptive and meaningful.

We denote by T the subdivision tree whose nodes are the intervals I considered by the algorithm. The
function var(-) is sign diminishing, that s, for any disjoint subintervals I; and I, of I, we have v;, 4+ v;, <
vy; e.g. see [4] for a proof. This implies that 7 has width at most 21, while the lower bound on the width
of the produced intervals implies that its height is in O(7 + log o, 1Y, where op is the minimum root
separation of P. Sincelog 0, ' = O(nT), the bound O(n?7) on the total size of T follows." A more refined

1 The tilde denotes that we omit polylogarithmic factors in 7 or 7.



argument [6, 4], which takes into account the fact that YI'_; log op(z;) ' = O(nT), even shows that
|T| = O(nt). The coefficients of the polynomials P; have bitsize bounded by O(n27), hence the precision
demand for exactly computing P; is also bounded by O(n?T). This yields the bound O(n31) for the bit
complexity of computing P, even when using asymptotically fast methods for polynomial arithmetic.
We conclude that the cost of the classical Descartes method is bounded by O(n*7?) bit operations. This
matches the bound achieved by many other popular subdivision algorithms for real root computation
such as the continued fraction (CF) method [1, 20], the Bolzano method [21], or the Sturm method [3]. We
remark that the O(n*7?) upper bound on the bit complexity is actually tight for the latter algorithms;
see [6, 1, 3].

The main strengths of the Descartes method are its simplicity and the fact that tree subdivision tree
size and running time adapt to the separation of the roots [6, 4, 18]. On well-conditioned inputs, the
performance is significantly better than indicated by the worst-case bounds. Indeed, we observe that, for
many polynomials (e.g. random polynomials), the size of the tree is only logarithmic in 7, in which case the
precision demand does not exceed O(T + n). In such cases, the bit complexity is by several magnitudes
smaller than the worst case bound. However, despite its good behavior for many instances, the method
has two major shortcomings.

First, in order to determine the sign of the coefficients of P; as well as the sign of P at the midpoint of I,
exact arithmetic is assumed. If the coefficients of P are integer or rational, this is feasible, at the expensive
of a precision that exceeds the actual demand by one order of magnitude; see Table 1 and [18, 19] for more
details. However, if the coefficients of P can only be approximated (e.g trigonometric expressions), then
computing the sign of the coefficients of Pj is impossible in general. Another shortcoming is that the
classical subdivision strategies only achieve linear convergence against the roots. For some inputs, this is
not critical as the separations of the roots are large and the subdivision tree has small height. However, if
roots appear in clusters, numerous subdivision steps have to be performed in order to separate distinct
roots from each other, and there exist polynomials® for which the Descartes method produces a sequence
ofintervals [; of length ((nt) with identical v},

subdivision rule and subdivision precision overall bit
model of computation tree size demand complexity
bisection, exact over Z/Q O(nt) O(n?1) O(n*7?)
bisection, approximate O(n7) O(n7) O(n37?)
Newton, exact over Z/Q O(n) O(n?1)* O(n1)
Newton, approximate O(n) O(nt)? O(n® + n?1)

All mentioned bounds are tight for certain classes of inputs.
*Amortized precision demand over the entire tree is only O(nt).

*Amortized precision demand over the entire tree is only O(n + 7).

Table 1: worst-case complexity of variants of Descartes methods for polynomials in Z[x] with degree n
and bitsize T

In [19], the algorithm ANEWDsc? has been introduced. It uses approximate arithmetic and an acceler-
ated subdivision strategy based on Newton’s iteration to address both of the aforementioned shortcomings.
We sketch the main ideas to an extent as needed in the discussion of its implementation. At some points,

As an example, consider the Mignotte-like polynomials from Table 2 having two real roots with pairwise distance 2~ ("),
The algorithm is an approximate arithmetic variant of the algorithm NEwDsc from [17], which exclusively uses exact arithmetic.
The acronym ANEwDsc should be read as “A New Descartes” or, alternatively, as “Approximate Arithmetic Newton-Descartes.”



we simplified the presentation at the cost of mathematical rigor by skipping some rather technical details.
In contrast, our implementation takes into account all details, thus being certified and complete.

ANEwDsc is similar to the classical Descartes method in the sense that it recursively subdivides a given
interval 7 and that it uses a predicate based on Descartes’ Rule of Signs to test for roots. However, it is
tailored to rely solely on approximate computation. For this, ANEWDsc uses the so called “o1-Test”,* that
can be evaluated using approximate arithmetic only. Similar to the original Descartes test, a call of the
predicate on an interval I returns a value ¢; € {0, 1, x} with the following guarantees: If {; = 0, then [
contains no root of P; if t; = 1, then [ isolates a simple root of P; and if t; = %, no conclusion shall be
drawn about the number of roots of P in I. We remark that the o1-Test is stronger than the classical sign
variation test in the sense that v; = 0 (or 1) implies that the o1-Test returns 0 (or 1), too.

The precision demand of the o1-Test on (a, b) is bounded by

O(n +nlog|a| + nlog |b| +log |P(a)| ™! +log |P(b)| ™! +log || Pllec))

bits.” Hence, we strive to choose boundary points a and b where the value of | P| is not too small. This is
realized by an additional layer on the subdivision scheme. Instead of choosing a fixed subdivision point
m (in the classical method, the midpoint m(I) of an interval I) in each step, ANEWDsc chooses a nearby,
so-called admissible point m*, where | P| becomes large. More precisely, for a point m, a positive integer N
with N > n, and a positive value €, we call a point

m* € mle;N| == {m; ==m+i-efori=—[5],...,[5]}
admissible with respect to the multipoint m[e; N| (o7 just admissible) if [P(m*)| > 1 - max; |P(m;)|. Algo-
rithm 2 computes such a point using only approximate arithmetic.® Indeed, since m|e; N] contains at
least one point that has distance € /2 or more to all roots of P, we have max; |P(m;)| > 0, and thus the
algorithm terminates with a precision p that is bounded by 2 - (1 + log max(1, (max; |P(m;)|)~1)).

Algorithm 2: Find Admissible Point

INPUT: Polynomial P as in (1) and a multipoint m|e; N]|.

OuTPUT: Admissible point m* € m[e; N].

« Forp=2,4,8,...:
> Forall m; € m[e; N|, compute approximations ; of v; := P(m;) with |7; — v;| < 27F.
> Determine a point m;, = m; that maximizes |7;|.
> If |3, > 27F2 return m* = m;,.

In [19], we always choose N = n. Using approximate multipoint evaluation [9], this guarantees that
the cost for the approximate evaluations of P at all points m; does not considerably exceed the cost for
the evaluation at only one point. In addition, in each step, € is chosen small enough (e.g., € ~ w(I)/4
in a bisection step with m = m(I)) such that the size and the structure of the subdivision tree induced
by ANEwDsc does not change (in the worst case) when passing from an admissible point m* € mle; N]
to an arbitrary point in the interval [m — [ e, m + [ ]€]. In fact, choosing m* to be admissible only
affects the needed precision demand in each iteration but not the size of the subdivision tree.

The o1-Test is split into two separate subroutines. Both are modified variants of the classical sign variation tests, where it is
checked whether var(P, J) = O or var(P, J) = 1 for some intervals J. For details and proofs regarding the o1-Test, we refer the
reader to [19, Sec. 2.4].

We remark that the precise bound on the precision demand is slightly more complicated; see [19, Sec. 2.4] for details.

Note that in [19, p. 54], there is a typo in the Admissible Point algorithm: repeat ...until (loop (2)) should read repeat ... while.
However, the proof of [19, Thm. 5 (b)] uses the correct statement.




For simplicity, we will not further specify € (nor N) throughout the following considerations and just
assume that € is chosen small enough; for details, see [19]. In this context, we just say that a point m*
is admissible for m. With a suitable choice of the parameters, subdivision on admissible points reduces
the worst-case precision demand of the Descartes method to O(nT) in the integer setting, improving
upon the classical approach by one order of magnitude. Besides, it allows to process inputs where the
coefficients can only be approximated as we avoid splitting on roots without verifying that P is zero at any
point.

In order to overcome the second shortcoming of the Descartes method, ANEWDsc combines bisection
with Newton iteration. For this, it uses a trial and error approach, called “Newton-Test”, to speed up
convergence towards clusters of roots. In each iteration, the Newton-Test aims to replace an interval
I = (a,b) by some sub-interval I' = (a/,b’") C I of width w(I") ~ w(I)/Ny such that I’ contains
all roots of P in I. Here, N denotes a parameter that corresponds to the actual speed of convergence.
Initially, Ny is set to 4. If the Newton step succeeds, we define Ny := NI2. In case of failure, we fall back
to bisection, that s, I is subdivided into two (almost) equally-sized subintervals I, and I,, and we define
Nj, == Nj, := max(4, V/Nj). In [19, Sec. 3.2], it has been shown that the Newton step succeeds under
guarantee if there exists a sufficiently small cluster C of roots of P that is centered at some point in I and
is sufficiently well-separated from the remaining roots of P.

Algorithm 3: Newton-Test
INPUT: A polynomial P asin (1), an interval I = (a,b), and

an N; € N of the form N; = 22 with] € N>;.

Nyw(I')
w(I)

OUTPUT: FALSE or an interval I’ C I, with € [%, 1], that contains all roots of P in I.

« Forje€ {1,2,3},letdj:=a+ ﬁ -w(I), compute admissible points 5]’-‘ for ¢;and
the Newton correction terms v; = P(@}") /P’(C;‘).
« Forallpairsi,j € {1,2,3} withi < j:
> Compute approximations A; j of A, ; :== &} + k- v;, where k := (gf]* — &)/ (vi —v)),
with |}\i,j — )\i,j‘ < 1/32Nj.
> If;\i,]- & [a, b], discard (i, j). Otherwise, define
Ei,]' = L(j\,,] — ll) . 4N[/ZU(I)J S {O, .. .,4N1},
a;; = a+max{0,£;; — 1} -w(I)/4Ny, and
bi,j =a+ min{4N1, fi,]’ + 2} . w(I) /4Nj.
Ifa;; = a,set al’-‘,]- i=a,andifb;; = b, set bi*,j =b.
Otherwise, compute admissible points a:-"]- and b7 fora;jand b; ;.
> If the o1-Test returns O for both intervals (a, a;ij) and (bi’t]., b), return I' = (a;ij, bi*,j).
Otherwise, discard the pair (i, ).
« Boundary test: If all pairs have been discarded,
compute admissible points 1} and m; for my := a + w(I)/2Nand m, := b — w(I)/2N].
> If the o1-Test yields O for (m], b), return (a, m}).
> If the o1-Test yields O for (a, m}), return (m,b).
> Otherwise, return FALSE.

This is a simplified version of Newton- and Boundary-Test from [19]. For the sake of a concise presentation, some
technical details (e.g. concerning the precision management) are omitted.




~

The method runs in three steps. In the first step, it estimates the multiplicity k of such a cluster.” Then,
in the second step, it performs a corresponding Newton iteration to obtain a A with A — z;| < w(I)/2Nj
for each root z; € C. Finally, the method aims to validate the approximation A of the cluster C. For this,
we apply the o1-Test to the intervals (a,a’) and (b, V'), where I' = (a’,b’) C I is an interval of width
w(I') =~ w(I)/Nj centered at A. If the latter test yields the value O for both intervals (4,4’) and (b, V'),
it follows that I’ contains all roots that are contained in I, in which case we say that the Newton-Test
succeeds. Notice that, even in case of success, we may not conclude that there exists a cluster of k roots,
however, we may conclude that I may be replaced by I’ without discarding any root.

It should further be mentioned that the Newton-Test also integrates a so-called Boundary-Test, which,
by default, always checks whether one of the two intervals (a,a + w(I) /Nj) or (b — w(I) /Ny, b) contains
all roots that are contained in I. Again, for this, the o1-Test is applied to (a + w(I)/ Ny, b) and (a,b —
w(I)/Ny), respectively; see Algorithm 4 and [19, Sec. 3.2] for more details.

Algorithm 4: ANEwWDsc
INPUT: A polynomial P asin (1) and an interval Z.
REPORTS: Disjoint isolating intervals for all roots of P in Z.

« Initialize the list of active intervals to A := {(Z,4)}.
« While A # @:
> Remove an arbitrary (I, Ny) with I = (a,b) from A.
> Ifthe o1-Test on I returns o, discard I and continue.
> If the o1-Test on I returns 1, report I and continue.
> Otherwise: Quadratic (or Newton) step
If the Newton-Test on P and (I, Nj) returns an interval I, add (I, N?) to A and continue.
> Otherwise: Linear (or bisection) step
Compute an admissible point m* for m(I) and add (I’, Ny) and (I”, Ny») to A,
where I' = (a,m*), I” = (m*,b),and Ny := Np» := max(4, /Nj).

In [19], the bit complexity bit complexity as well as the bounds on the number of iterations and the
precision demand of ANEwDsC are stated in terms of the degree of P and values that exclusively depend
on the roots z; of the polynomial, such as the product of the absolute values of all roots beyond the unit disk
or the product of the pairwise distances between any two roots. Those bounds are both more adaptive to
the intrinsic complexity of the problem and apply for inputs with approximable coefficients. For brevity,
we only restrict to the benchmark problem here: The length of a sequence of intervals I; with invariant
var(P, I;) is now upper bounded by O(log(nT)) compared to O(n) for the classical Descartes method.
This is due to the fact that the Newton-Test succeeds and achieves quadratic convergence for all but
O(log(nT)) intervals. As a consequence, the overall size of the subdivision tree is bounded by O(v7 -
log(nt)) = O(nlog(nt)), which is near-optimal; see also [19, Theorems 27-29]. The bit complexity of
the algorithm is bounded by O(n3 + n?7), which is by three magnitudes better than the bound for the
Descartes method (also see Table 1) and comparable to the best bound known [12, 7] for the benchmark
problem as achieved by an algorithm based on Pan’s near-optimal method [14] for approximate polynomial
factorization. The bound is obtained by an amortized analysis of the cost at each node in the subdivision
tree. The cost for processing a certain interval I is related to the maximum of all products max;, op(z;) -
|P'(z;)|, where the z;’s range over all roots in the one-circle region of I. In the worst-case, the cost at a
node is of size O(n?T), whereas, in average, it is of size O(n(n + T)). The precision demand is upper
bounded by O(nT) in the worst case and of size O(n -+ T) in average.

Algorithm 3 only computes some rational value k. Under the assumption that a cluster C as above exists, we have k ~ k and, in
particular, k equals the integer that is closest to k.




3. Implementing ANEwDsc inside RS

The RS library contains a generic framework [16] that allows to instantiate several variants of the Descartes
method. The choices include several bisection variants as well as continued fraction-based subdivision.
The default configuration, which we will denote as “RS” throughout the following considerations, achieves
its high efficiency by a careful low-level implementation of the bottleneck subroutines as well as a few
sophisticated and—at that time—innovative design choices.

RS uses a hybrid arithmetic strategy. Starting with a low precision (of 63 bits), all predicates are evalu-
ated in interval arithmetic using MPFI [15]. Whenever a predicate cannot be conclusively decided within
the working precision, the computation is interrupted and later resumed with a higher precision. When
it is conceivable that exact arithmetic is less costly than interval arithmetic at high precision, a heuristic
can trigger exact computation; this facilitates further optimizations like (virtual) deflation of exact dyadic
roots.

The realization of the sign variation test in RS is adapted to this interval setting: While we work with
exact polynomials f = Y f;x' in theory, the computations are executed on coefficient-wise interval
approximations [f] = Y[f];x! of f suchthat f; € [f]; foralli. In particular, the value of var( f) is replaced
by a (super-)set var([f]) = {v~,...,v" } of possible sign variations for the family of polynomials in [f],
thatis, var(g) € var([f]) forallg € [f]. In this model, a sign variation test for a polynomial [f] succeeds
if and only if var([f]) = {0}, var([f]) = {1}, or 0,1 ¢ var([f]). Otherwise, the accuracy is not
sufficient to decide the branching strategy for the current interval, and the precision is increased. We
keep this classical test as a filter in ANEWDSC; if it does not succeed, we call the full o1-Test, which again
uses the interval sign variation computation as a primitive.

Another crucial difference between RS and the previous variants of the Descartes method is the traver-
sal of the subdivision tree. In Collins’ and Akritas’ [2] formulation, the subdivision tree is explored in a
depth-first search strategy. This traversal allows to obtain some of the intermediate polynomials with
comparatively little computational effort from previous results, but comes at the expense of storing a
potentially very long list of active nodes. On the other hand, Krandick’s variant [8] with breadth-first
traversal is more memory-efficient, but requires more expensive arithmetic operations; see [16, Sec. 3].
The trade-off which proved optimal for RS was a depth-first search traversal in a near-constant-memory
variant, oblivious of intermediate results. To keep the arithmetic cost of the algorithm close to the opti-
mum for bisection methods, RS uses specifically tailored subroutines for reconstructing the discarded
intermediate polynomials. They are supplemented by a custom garbage collector that ensures that only
an insignificant amount of time is spent for memory management. For details of those design choices,
we refer to the original description of RS [16, Sec. 4].

RS is a promising basis for an implementation of ANEwWDsc due to its high performance as a general-
purpose solver and the availability in Maple. Also, the extensive use of interval arithmetic offers the
flexibility to design a numerical root solver for polynomials with irrational coefficients that can be approx-
imated arbitrarily well. However, to combine the theoretical improvements of the new algorithm with the
long-evolved insights for a practical realization, modifications are required on both ends. In this section,
we will describe the most crucial design decisions in this light.

3.1. Changesover the theoretical ANEwDsc

Random sampling of pseudo-admissible points A tight analysis of the theoretical worst-case bit complex-
ity of any variant of the Descartes method heavily relies on asymptotically fast algorithms for polynomial
arithmetic. However, in practice, many asymptotically fast methods are only effective for inputs larger
than a threshold that is well beyond what can realistically be handled with state-of-the-art solvers. Until



now, careful implementations of the naive algorithms are more efficient except for artificial counterex-
amples.

The most prominent places where such tools are used in ANEWDSC are the basis transformations
from (1) to (2) (so-called Taylor shifts) and the approximate multipoint evaluations within the admissible
point selections. With the advanced methods, both subroutines require only a near-linear number of
arithmetic operations in the coefficient ring, compared to quadratically many for naive approaches. The
Taylor shifts are intrinsic to any Descartes method (although we will discuss a partial remedy for some
situations at the end of Section 3.2). But the multipoint evaluations in the “Admissible Point” routine can be
avoided: In our initial description of ANEWDsC, we choose an admissible point m* € m := mle; n] such
that |[P(m*)| > 1 - maxy,em|P(m;)|. For our implementation, we propose to consider the multipoint
M := m[55;n- 2] instead, which spans the same range as m (i.e. the extremal points in m and M define
the same interval [m — [%4]e,m + [%]€]) but contains 2* times as many points as m. Here, A is a positive
integer of size O(log n). However, instead of choosing an admissible point in M we choose a so-called
pseudo-admissible point, where P is only required to take an absolute value that is related to the current
working precision. For this, we randomly sample a point 7; from M and compute an approximation 7;
of v; = P(m;) (via interval arithmetic) with |5; — vj| < 27P.If |§j| > 27°"2, we keep m;. Otherwise, we
double the precision p and choose a new sample point; see also Algorithm 5.

Algorithm 5: Find Pseudo-Admissible Point
INPUT: A polynomial P(x) as in (1) and a multipoint

M := m[5;2"n] with A € N>, and A = O(logn).
OuTPUT: A point m’ € M with value P(m’) # 0.

« Forp = 63,127,255, .. .:
> Pick a random m; among the points in M.
> Compute an approximation @; of v; = P(m;) with |0; — v;| <27
(using interval arithmetic).

> If 0| > 27PF2 return m’ := m;.

The following lemma guarantees that, with high probability, we choose a point m’ € M for which
|P(m')| is not much smaller than max,.em |P(m;)|.

Lemma 1. Algorithm 5 returns a point m’ € M such that
log |P(m")| = 2F - O(nlog n 4 log max(1, (mgx|P(mi)|)_1))
m;em
with probability 1 — 27 > 1 — 27k,

Proof. LetM* C M denote the subset consisting of all points in M whose distance to all roots of Pis atleast
€27 Letm € mbe a point with |P(771)| = maX,em|P(m;)], and let pg := [logmax(1, |P(m)|~1)].

For any complex root z of P and any point m; € M*, we have ‘|:;1_:ZZ|‘ > 1;? > 2—A-1-logn and thus,
]

P(m; . .. . .

‘\P((Z]))” > 2-n(A+1+logn) Syuppose that, in a certain iteration of Algorithm s, we have o> po+n(A+

1 +1logn) + 2. Then, it holds that 27P+2 < |P(m;)| for all m; € M*; hence, the algorithm terminates
if we pick such an ;. Since M* contains at least 24 (1 4+ 1) — 2n points, the probability of choosing a
point from M* is at least 1 — 2~(A~1), Hence, with probability 1 — 2-*(A=1) we terminate with a p of
size 2€ - O(nlogn + log max(1, (maxy,em|P(m;)])71)). O

Our analysis shows that, in expectation, there might be an increase in precision by an additive term of
size O(n log n) when choosing a pseudo-admissible point instead of an admissible point; in practice, we




observe that the increase in precision is entirely negligible. We further remark that the complexity bounds
as derived in [19] are not affected, since a term of size O(n) already appears in the bound on the precision
demand of the o1-Test. Yet, our implementation only models the theoretical result in a Las-Vegas setting
due to the random choice of a pseudo-admissible point.

Heuristics to delay invocations of the Newtonstep  The asymptotic cost of the calls to the Newton-Test is
dominated by the Taylor shift which is part of the sign-variation test for any interval. However, in practice
there is a noticeable impact of unsuccessful Newton-Tests on the performance due to the expensive o1-
Tests for the siblings (a, a; j) and (b:j, b) of the candidate intervals (a; i bl.*,j). Thus, we strive for calling
the Newton-Test only if it will succeed with high likelihood; vice versa, in the generic situation of well-
distributed roots without any distinguished root clusters, as little computation time as possible should be
wasted.

We say that a linear step on an interval I to I’ and I” leads to a proper split if var(P, I') and var(P, I")
are both non-zero. In this case, ObreshkofPs One-circle theorem [4, 13] asserts that there is at least one
root in the neighborhood of I” that is not part of a potential cluster within I’, and the symmetric argument
holds for I”. There are two explanations for such a situation: If the goal on the convergence speed was too
optimistic (that is, the value of N was set too high), the candidate interval in the Newton-Test might not
comprise the entire cluster of roots. In this case, a success of the Newton step on I’ and I” with a coarser
resolution Ny = Nj» = /N is not entirely unlikely. However, if N; = 4 was already at the minimum,
the roots near I’ and I are well-separated compared to the resolution Ny, and an immediate success of
the Newton-Test would be an unexpected artifact.

We installed a heuristic to distinguish those situations and inhibit Newton-Tests in the latter case. For
each node I in the subdivision tree, we keep track of the distance to its closest ancestor | with Nj = 4 that
lead to a proper split. If this distance is smaller than log 1, we immediately process I with bisection® and
keep N; = 4. On intervals with well-separated roots where we never achieve nor profit from quadratic
convergence, this strategy renders it likely that there is never even an attempt to call a Newton-Test, and
the overhead of ANEWDsc compared to the variant ADsc without the Newton-Test is almost zero. On
the other hand, the size of the subdivision tree is increased by at most a factor of size O(log 1), and thus
stays soft-linear in n and polylogarithmic in 7 in the worst case.

3.2. Changes over the classical RS

Full caching instead of constant-memory version The default instantiations of RS use a near-constant-
memory strategy. None of the intermediate local polynomials are cached, but are computed from the
previously considered node. In general, this means that larger round-off errors are accumulated, and
expensive recomputation from scratch is potentially required more often. Yet, performance comparisons
show a clear benefit of this approach due to the drastically reduced costs for memory management and RS’
sophisticated way of performing incremental computations between adjacent nodes in the subdivision
tree [16, Sec. 4].

However, the fast transformations rely on certain structural properties of the subdivision tree: in a
pure bisection algorithm, all emerging intervals are of the form (5, C;l ) for some integers ¢ and e. In this
setting and with the strong specification of the traversal order of the tree, a good portion of the arithmetic
operations for Taylor shifts can be achieved by cheap bitshift and addition operations. In contrast, a
general Taylor shift requires noticeably more expensive multiplications of arbitrary precision interval
values.

In the terminology of [19], proper splits occur on a subset of the special nodes of the subdivision tree, and we allow paths of [log ]
many ordinary nodes before further Newton-Tests.
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These relations between the intervals are lost when Newton steps are performed or the canonical dyadic
subdivision points need to be replaced by (pseudo-)admissible points. Furthermore, optimizations such as
the delayed Newton calls are incompatible with strategies that keep only one interval in memory at a time,
because the behavior of the algorithm on some interval is no longer independent of the neighborhood:
whether a quadratic convergence step is pursued becomes conditional on the outcome of the o1-Test on
its sibling.

Fortunately, using the Newton technique, long chains of intervals with a unique descendant in the
bisection tree are compressed to only logarithmic height, thus shrinking the entire tree by an order of
magnitude in the worst-case and even two orders of magnitude for some special instances (e.g. sparse
polynomials with clustered roots such as Mignotte polynomials). In this light, the impact of the constant-
memory strategy is much less pronounced, and it is advisable to switch back to the naive approach of
caching all intermediate results. We stress that, without the Newton iteration, the memory consumption
in a depth-first traversal would be prohibitive for particular examples with strongly clustered, ill-separated
roots such as Mignotte polynomials.

Degree truncation through partial Taylor shifts We can consider any univariate polynomial P(x) as a
function P(x) = py - T/ (x — z;) in its (not necessarily distinct) complex roots z;. When the domain
of interest is restricted to a small region in the complex plane, say, a disk D C C, the relative influence of
each root z; on P scales with the distance of z; to the points x € D. If there are only k < n rootsin D and
all other roots are well-separated from D, the distance to the remote roots is almost stable forall x € D,
and P|p is dominated by the roots in D.

In this situation, the local behavior of P is captured in its partial Taylor expansion around a point within
D up to the k-th term. Hence, an approximation of P by its truncated Taylor expansion might suffice
for computing isolating intervals for the real roots. We consider this approach whenever a Newton step
succeeds and suggests the existence of a well-separated cluster of k < 1 roots around an interval I. We
remark that the multiplicity guess k := round (k) is already computed within the Newton-Test. To ensure
correctness, we conservatively take into account the truncation error as the interval evaluation of the
Lagrangian remainder term.

More precisely, whenever the inclusion-exclusion-predicates of ANEwWDsc call for sign variation tests
on some Pj, we work on an approximation for the intermediate polynomial Qy := Y%, g; ;x' := P(a +
(b—a)x)onl = (a,b),

~ _ , (k)
Qi) = T q’ + P, e > T,

where the coefficient [r]; x of the Lagrangian remainder is evaluated on the entire interval I in conservative
interval arithmetic. The root exclusion test on the truncated polynomial remains almostidentical; however,
we modify the certificate for inclusion of a single root.

Lemma 2. Let P be a polynomial asin (1) and I = (a, b) and Q be as above. Define G := (x + 1)* Qr((x +
D Yand Ay == (x + 1)1 Qh((x +1)71).

1. Ifo; := var(Gy) = {0}, then P has no root in .?

2. Ifo; = {1} and, additionally, ¢, := var(H;) = {0}, then P has exactly one simple real root in I.

Proof. We consider the polynomials Q;, G; and H; simultaneously as polynomials with interval coeffi-
cients and as the set of exact polynomials with coefficients contained in the intervals. Assume that 7; = 0,
but Phasaroot{ = a+ A(b — a) € I. By the Lagrange representation of the truncation error in Taylor’s

Recall that var(+), called on an interval polynomial, returns a (super-)set of the possible numbers of sign variations; see the
remarks about the use of interval arithmetic in RS in Section 3.

11



. . _ ; )
theorem, there exists a § € I such that the polynomial F;(x) := Zf:(} qrix' + %xk of degree k hasa

root at . Hence, Descartes’ Rule of Signs asserts var((x + 1)¥ F;((x +1)~1)) > 0. Since F; € Qy, it fol-
lows that (x + 1)* F;((x +1)~!) € Gy because the transformations in interval arithmetic overestimate
the possible values. This contradicts the assumption that §; = 0.

For the second part, an analogous argument on the derivative shows that P is strictly increasing or
strictly decreasing on [ if &' = {0}. Since 7 = {1}, we know that P takes values of different sign at the
endpoints of I; hence, P has exactly one rootin I. O

If a o1-Test in the processing of a node is unsuccessful, we usually double the working precision. How-
ever, if the local polynomials are only partial Taylor expansions, the source of the loss in accuracy may
also stem from the truncation. Hence, before increasing the working precision, we gradually double the
multiplicity guess k until we eventually compute the full polynomial. This approach guarantees that, in the
worst case, after log 1 steps the heuristic falls back to the theoretical model. Hence, even if the heuristic
is unsuccessful, the complexity increases at most by a factor of log 7.

We observe that partial Taylor shifts give a tremendous speedup for polynomials with tight clusters of
low multiplicity. In such situations, we can consider the technique as a partial substitute for the current
deficiency of asymptotically fast Taylor shifts. For instances with clusters consisting of constantly many
roots, the expected speedup is linear in #: if the heuristic applies, the local polynomials on each active
region in the subdivision tree have to computed up to only constantly many coefficients of the Taylor
series. This prediction is accurately reflected in the benchmarks.

4. Experiments

We present and discuss a short excerpt of our extensive benchmark suite; the entire collection is available
online at http://anewdsc.mpi-inf.mpg.de/. The objective is to illustrate that the integration of ANEwWDSsC
into RS entails very small overheads for instances with well-distributed roots and shallow subdivision
trees, but huge performance gains in challenging situations with clustered roots.

The classical RS serves as a baseline in a configuration similar to the one used in Maple, but without some
crucial optimizations to improve comparability. In particular, we disabled the hardware floating-point
phase, which is not yet supported for ANEWDsC, as well as the heuristic for switching to exact arithmetic
that can improve performance, but destroys the guarantees on the expected precision demand. Besides
the full-fledged ANEWDsc (denoted as AND in the tables), we also list the intermediate variant ADsc. It
includes subdivision on pseudo-admissible points and full caching, but neither Newton iterations nor
degree truncation.

We compare to three well-established competitors: MPSolve (named MPS in the tables) is the leading
complex root solver. It is known to keep up with the most efficient real root isolators even though it solves
a more general problem. Given our more modest goals, we restrict the region of interest to the real line,
and call MPSolve in its latest version 3.1.5 with unisolve -au -Gi -SR -Dr -Of -j1 -01048576.

CF denotes the continued fraction-based variant of the Descartes method available in Mathematica 10. We
bypass the high-level interface of the computer algebra system via System'Private'RealRoots to eliminate
the effect of preprocessing stages that are applied by the usual RootIntervals call (e.g. the detection and
special handling of sparse polynomials or simplifications for even or odd polynomials).

Finally, we compare against Carl Witty’s variant of Eigenwillig’s bitstream Descartes method in Bern-
stein basis [5], which constitutes the default real root isolator in the Sage 7.0 open-source computer algebra
system. We invoke the algorithm in the optimized variant for 64-bit architectures with real_roots (f, skip_-
squarefree=True, wordsize=64).

12
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n T MPS CF Sage RS ADsc AND

257 0.7 0.1 1.6 7.6 7.7 0.1
513 2.9 0.2 2.4 87.6 89.1 0.2
1025 13.8 1.1 4.8 > 600 > 600 0.7
2049 14 78.5 7.2 12.8 2.9
4097 486.3 67.6 85.8 11.2
8193 > 600 224.3 > 600 43.2,
16385 > 600 188.1
128 1.2 0.3 0.5 26.2 25.1 0.1

512 5.9 3.8 3.9 378.5 293.8 0.4

129 2048 43.4 78.4 > 600 > 600 > 600 3.3
8192 274.7 > 600 20.8

32768 > 600 96.8

131072 503.0

Table 2: Mignotte: x" — ((27/2 —1)x — 1)?

n T ‘ MPS CF Sage RS ADsc AND
260 2.7 1.0 1.9 1.6 1.7 0.4
516 9.5 21.6 3.3 18.0 18.0 0.8
1028 140 67.8 565.0 > 600 230.3 232.4 7.1
2052 283.6 > 600 > 600 > 600 13.1
4100 > 600 88.4
8196 394.0
160 3.1 1.4 0.3 2.2 2.3 0.9

‘ 640 5.8 14.9 call 20.8 19.2. 0.9
260 2560 33.7 222.6 stack 301.2 254.0 3.7
10240 248.0 > 600 over- > 600 > 600 31.4

‘ 40960 > 600 flow 341.2

Table 3: nested Mignotte: [Tf_; (x/4 — ((27/8 — 1)x% — 1)%)

All instances are passed as dense integer polynomials, filtered in a preprocessing stage to factor out
side effects of optimizations unrelated to the solver. It involves the trivial algebraic simplification of even
and odd polynomials, verification of square-freeness and reduction to the primitive part. The values in the
tables are runtimes in seconds, measured on a single run on the same machine. Degree and coefficient
bitsize are denoted by n and .

Polynomials of Mignotte type are classical benchmark instances. Their ill-separated pair of roots at ap-
proximately 2~ 7/2 4 27"7/2 forces a huge subdivision depth in bisection approaches. This behavior is
mitigated by the quadratic convergence in ANEwDsc: The subdivision tree size shrinks from approxi-
mately 33500 nodes for RS and ADsc to a mere 47 for ANEwWDsc for (1, 7) = (129,512), and even an
instance with T = 26 leads to a tree with only 65 nodes. For such instances, CF presumably exhibits
an almost optimal subdivision tree due to the rational center of the cluster; however, the performance
is spoiled by the use of exact arithmetic. The class of nested Mignotte polynomials, shown around an
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n T ‘ MPS CF Sage RS ADsc AND

1024 ‘ 2.5 0.3 4.1 0.6 0.6 0.5
2048 9.8 0.9 8.4 1.6 1.7 1.7
4096 1024 37.5 2.7 29.1 3.8 3.7 3.5
8192 159.4 22.1 183.5 36.0 36.3 36.5
16384 ‘ 578.9 376.6 > 600 275.1 280.9 279.0

Table 4: dense with uniformly random coefficients in (—27,27) N Z

n T \ MPS CF Sage RS ADsc AND
256 506 4.7 34.1 1.6 18.2 19.1 1.1
512 762 25.9 456.9 3.7 107.7 110.4 3.0

1024 1274 207.5 > 600 22.5 > 600 > 600 23.6
2048 2296 >600 > 600 132.2
4096 4343 596.6

Table s: clustered: f2 — 1for f = ¥ ai(?)l/in/\/i + 1 with a; drawn from a normal Gaussian distribu-
tion, rounded to Z[x|

irrational center in Table 3, shows the robustness of ANEwDsc both to the higher multiplicity 20 and the
irrational center of the cluster.

Random polynomials have a low number (©(logn)) of well-separated real roots; they require only
low precision for the isolation and induce flat subdivision trees. Hence, we can expect no gain from the
improvements in ANEWDsc. On the other hand, the experiments confirm that the enhancements incur
almost no additional cost. We observe similar overheads of low constant factors compared to RS on other
classes of polynomials with well-distributed roots, such as Wilkinson polynomials with evenly spaced real
roots, different classes of orthogonal polynomials, or resultants of random bivariate polynomials that
arise in projection-based polynomial system solving and the topology analysis of real algebraic curves.

Finally, polynomials with normal Gaussian-distributed coefficients have, in expectation, significantly
more real roots (@(1/n)). By squaring and perturbing such inputs, we construct benchmark instances
with many clusters of multiplicity two. We find that ANEwDsc quickly detects the clusters, succeeds in
the Newton steps, and computes the appropriate number of terms in the partial Taylor shifts.

The benchmarks are performed on polynomials with exact integer coefficients. Nevertheless, we empha-
size that ANEWDsc can process inputs with arbitrary approximable, possibly irrational coefficients. We
observe that the performance is unaffected if, for example, the coefficients of the random instances (Ta-
bles 4 and 5) are drawn from a continuous distribution, or the coefficients of the Mignotte-like polynomials
are irrational numbers of comparable magnitude.
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A. Comparison to other solvers

Polynomial root solving is a prevailing and fundamental task in numeric and symbolic computation. Many
different approaches have been successfully implemented with different objectives. Still, the most success-
ful solvers in widespread use today are variants of only two classes of algorithms: different approaches
based on Descartes’ Rule of Signs and the Aberth-Ehrlich iteration for complex root finding.

We compared our implementation of ANEWDSC to the state-of-the-art solvers that we are aware of.
In the following section, we give a brief survey of the characteristics, weaknesses and strengths of the
main candidates for comparison. We do so without any claim for completeness; it is impossible to give
due credit to all capabilities of those mature solvers. Also, we ignore methods based on Sturm sequences
or Pan’s asymptotically near-optimal polynomial factorization, as we are not aware of competitive imple-
mentations of those methods.

MPSolve As the only complex root solver, MPSolve stands out in this list. It is based on the Aberth-
Ehrlich root finding iteration, a modified Newton method that simultaneously refines approximations
for all complex roots. This numerical method is very efficient in practice, despite the fact that it lacks
theoretical convergence guarantees. The computations are done in pure multiprecision arithmetic without
interval arithmetic, but the results are certified based on a priori round-off error bounds an a posteriori
Gershgorin-type argument.

A major selling point of MPSolve is its triple-stage approach: first, the root isolation is tried with pure
hardware floating-point numbers. If this is unsuccessful, a double type with extended exponent range
is employed, and only if absolutely necessary, multiprecision arithmetic is used. Hence, MPSolve excels
for instances where the roots can be isolated within low precision. In such situations, it is on par with
dedicated real solvers despite answering a more general problem. Since version 3, another still unique
feature of the solver is its full support for multithreading.

Unfortunately, until this date the Aberth-Ehrlich iteration comes without any termination or even
worst-case complexity guarantees. In constrast to all other methods in the comparison, the method is
intrinsically global; solutions or clusters of roots can be excluded in the later stages of the algorithm, but the
boundaries of the region of interest is fuzzy, and nearby roots affect the behavior of the algorithm. Finally,
the certification method is extremely sensitive to a very careful theoretical analysis and an accurately
matching implementation. For example, once fast polynomial becomes beneficial for real-world instances,
the necessary modifications of the validation routines require a new explicit analysis of the round-oft
error bounds."

For our benchmarks, we use MPSolve in the most recent development version 3.1.5. MPSolve 2.2 is
still very slightly superior on selected instances, but both for MPSolve 2.2 and the most recent secsolve
algorithm (which used a dedicated solver tailored for secular equations), we experienced minor bugs in
the certification phase. The authors are currently investigating the problems and already corrected some
of the issues." For the time being, we only run the unisolve configuration of MPSolve 3 using the call
unisolve -au -Gi -SR -Dr -Of -j1-01048576 on dense inputs with exact integer coefficients. We remark that
the -SR option restricts the region of interest to the real line, in agreement with our more modest goals.

Continued fraction-based solverin Mathematica The implementation in Mathematicaisahighlyefficient
pure real root solver. As RS and the other real solvers, it relies on Descartes’ Rule of Signs, but uses a

10 Private communication with Leonardo Robol.
I While the bugs in secsolve have been resolved, it will be difficult to backport the necessary fixes for MPSolve 2.2 (private commu-
nication with Leonardo Robol).
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different subdivision strategy: successive computations of root bounds for local polynomials are exploited
to compute continued fraction approximations of the roots.

The major benefit of this approach is an extremely fast convergence to rational roots and the choice
rational subdivision points with low bitsize of numerator and denominator. For polynomials with mostly
rational and well-separated roots, this method is often superior to other competitors.

However, the price paid in the present variant of the solver is that exact arithmetic is used. Hence, there
is no easy way to adapt for bitstream inputs where it can be impossible to decide conclusively whether a
subdivision point is a root or not, and termination is not clear without specific safety measures if a root is
chosen. Furthermore, even if the algorithm can quickly solve an instance f € Z[x], the algorithm can be
forced into extremely expensive exact computations on inputs with high bitsize, say ¢ - f — 1 for some
huge ¢ € Z, despite the fact that the intrinsic difficulty as a numerical problem remains the same.

The continued fraction scheme achieves optimal convergence against rational roots. However, ir-
rational algebraic numbers are not necessarily easy to approximate in this setting: the golden ratio
® = (1 ++/5)/2is a notoriously hard example and shows the slowest convergence rate possible. Thus,
it is easy to construct instances that force continued fraction-based solvers into linear convergence. For
example, the Mignotte-like polynomial x" — (a x — 1)? for an integera € Z.1 has roots at approximately
1/a 4 a="/2. A subdivision at exactly 1/a is easily achieved by the method and a perfect split for the
cluster of two roots. However, this is merely an artifact by construction: the polynomial x" — (a x> — 1)?
fora € Z-1 not a square number has roots at approximately 1/+/a + a~"/*. But until the algorithm
arrives at a sufficiently good rational approximation of the center of the cluster to split the roots, it has to
go through through Q)(n) iterations with only linear convergence.

Those shortcomings are responsible for a loss of one and two orders of magnitudes in the worst-case
complexity, and can be easily be enforced by an adversary.

For a fair comparison, we call the continued fraction solver in Mathematica 10 with its default con-
figuration directly via System‘Private’RealRoots to bypass the high-level interface. The latter performs
several preprocessing operations, such as detection and optimized handling of sparse polynomials or the
replacement of even polynomials f(x?) by f(x) and reconstruction of the original roots later on.

Sage The computer algebra system Sage collects a wealth of high-quality packages and libraries from
the open source world in one easily accessible framework, complemented with original implementations
of new algorithms. It includes a real solver written in Cython by Carl Witty, which is loosely based on
the Bitstream Descartes method by Eigenwillig [4]. The routine by the apt name real_roots is unique as a
very efficient root finder written in a high-level language, but relies on the well-established MPFI library
for interval arithmetic in arbitrary precision. All computations are performed in Bernstein basis using
de Casteljau’s algorithm, and heuristics for degree reduction are used to achieve similar effects as the
partial Taylor shifts in ANEwDsc. With respect to the convergence speed, the implementation notes state
that a hardware-oriented strategy is used for the selection of the subdivision points. To the best of our
knowledge, however, there is no thorough description or analysis of worst- or expected-case complexity
of the algorithm.

Sage’s real_roots is a very good general-purpose solver. Due to the extensive use of approximate arith-
metic, it stays close to the optimum precision demand and is conceptually suited to be used as a bitstream
solver. In our experiments, real_roots converged quickly to tight clusters. Nevertheless, such situations
seem to be its Achilles” heel: In contrast to the competitors, real_roots is implemented in a recursive rather
than iterative fashion. For inputs that force a very deep computation tree, the algorithm is prone to call
stack overflows when there are deeply nested clusters and no tail call elimination applies.

We call the solver in release 7.0 of Sage, using the default settings without square-free decomposition
as a preprocessing step, via real_roots (f, skip_squarefree=True, wordsize=64).
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Classical RSin Maple The classical RS version has already been described before. It serves as a general-
purpose solver in the Maple computer algebra system. Over the course of fifteen years of development, a
collection of many optimizations and heuristics have been integrated to suit the requirements both as an
internal routine in Maple and for direct users.

Some of these improvements are incompatible or significantly less effective when combined with
ANEwDsc. Others sacrifice the theoretical optimality or are not suited for bitstream inputs; most promi-
nently, this applies to the heuristics for switching to exact arithmetic. Despite the fact that exact compu-
tations are only selectively used, the classical RS version can be forced into asymptotically bad behavior
with high bitsize inputs in a similar manner as the solver in Mathematica. Hence, the baseline for our
experiments is not the version inside Maple, but rather a simplified variant that focuses on simplicity and
provably asymptotic optimality. In particular, so far none of the new routines for ANEWDsc are available
for interval arithmetic with hardware floating point numbers.

The loss in performance of the stripped-down version is often negligible, but can raise up to a factor
of 10 for very particular instances with low intrinsic difficulty such as Wilkinson polynomials, where all
roots are real and well-structured, exact arithmetic is asymptotically optimal with respect to the precision
demand, and optimizations apply to greatest extent.

B. Benchmark suite

All our measurements are performed on a server with four Intel Xeon E5-2680 v3 processors with twelve
cores each, clocked at 2.5 GHz. The CPU has 30 MB shared L3 cache, and each core has 256 KB L2 cache.
The server has a total of 256 GB RAM and runs on Debian 8 “jessie” 64-bit. The measurements are taken
from a single run with a timeout of 10 minutes; for timings above 0.1 seconds, we experienced a very stable
timing with deviations between runs below one percent for all solvers. However, since the running times
are not averaged over many runs, the results on random inputs are only comparable horizontally, not
vertically: the solvers are called on the same polynomials, but only one instance for each magnitude is
considered. All polynomials are passed as dense polynomials with arbitrary precision integer coefficients.
The parsing time for the input is not factored out: we noticed that the parsing in our preliminary interface
for ANEWDsc is very slow, and for random high-bitsize inputs can take significantly longer than the total
time to completion for other solvers. For the time being, the instances are of moderate size such that
reading the input is almost negligible even for the variants of RS.

Our full benchmark suite as well as our software for popular architectures (Linux, OSX and Windows)
is available online at http://anewdsc.mpi-inf.mpg.de/. The readers are invited to verify our results, include
their favorite alternative solvers, and inform us about meaningful extensions. We hope that the collection
of polynomials grows to a representative corpus of inputs to put polynomial root isolators to the acid test,
and look forward to suggestions of both artificial and realistic instances.
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