
Generating Realistic Synthetic Population Datasets
Hao Wu1,3, Yue Ning2,3, Prithwish Chakraborty2,3

Jilles Vreeken4,5, Nikolaj Tatti6, Naren Ramakrishnan2,3

1Department of Electrical and Computer Engineering, Virginia Tech, USA
2Department of Computer Science, Virginia Tech, USA

3Discovery Analytics Center, Virginia Tech, USA
4Max Planck Institute for Informatics, Saarbrücken, Germany

5Cluster of Excellence MMCI, Saarland University, Saarbrücken, Germany
6HIIT, Department of Information and Computer Science, Aalto University, Finland

Abstract

Modern studies of societal phenomena rely on the availability of large datasets capturing attributes and
activities of synthetic, city-level, populations. For instance, in epidemiology, synthetic population datasets are
necessary to study disease propagation and intervention measures before implementation. In social science,
synthetic population datasets are needed to understand how policy decisions might affect preferences and
behaviors of individuals. In public health, synthetic population datasets are necessary to capture diagnostic
and procedural characteristics of patient records without violating confidentialities of individuals. To generate
such datasets over a large set of categorical variables, we propose the use of the maximum entropy principle
to formalize a generative model such that in a statistically well-founded way we can optimally utilize given
prior information about the data, and are unbiased otherwise. An efficient inference algorithm is designed
to estimate the maximum entropy model, and we demonstrate how our approach is adept at estimating
underlying data distributions. We evaluate this approach against both simulated data and on US census
datasets, and demonstrate its feasibility using an epidemic simulation application.

1 introduction
Many research areas, e.g., epidemiology, public health, social science, study the behavior of large populations
of individuals under natural scenarios as well as under human interventions. A key need across these domains
is the ready availability of realistic synthetic datasets that can capture key attributes and activities of large
populations.

For instance, in epidemiology, synthetic populations are necessary to study disease propagation and interven-
tion measures before implementation. Information from the US census is typically used to model such synthetic
datasets. In social science, synthetic populations are necessary to understand how policy decisions might affect
preferences and behaviors of individuals. Finally, in public health, synthetic populations are necessary to capture
diagnostic and procedural characteristics of patient records without violating confidentialities of individuals.

Typically, the constraints underlying synthetic population generation are assumptions on the supporting
marginal or conditional distributions. Although there exist prior research in estimating probability distributions
subject to constraints (e.g., Monte Carlo methods), they are primarily focused on continuous-valued data. Many
domains on the other hand, such as those studied here, feature the need for multi-dimensional categorical
datasets.

As a case in point, in epidemiology, one important task is to simulate disease spread and potential outbreaks
on the city- or nation-level, and provide useful information to public health officials to support policy and
decision making. To make such simulations as accurate as possible, synthetic populations that have the same
structural and behavioral properties as the real population are needed. In domains like health care, privacy is

1

ar
X

iv
:1

60
2.

06
84

4v
3

 [
cs

.D
B

]
 2

5
Fe

b
20

16

categorical patterns

data schema Maximum Entropy Model

synthetic data

Figure 1: Process of generating realistic synthetic data with our proposed approach.

an additional issue motivating the design of synthetic populations. In these applications, the necessary datasets
to be generated can be represented as tuples with categorical data attributes.

Motivated by these emerging needs, we focus our attention on constructing a generative model that captures
given characteristics of categorical population attributes, and best estimates the underlying data generation
distribution. However, modeling multi-dimensional categorical data and estimating distributions can be quite
challenging due to the exponential possibilities of data spaces in terms of the number of dimensions of categorical
data tuples. To address these challenges and difficulties, we take the first step here to study this problem.
To model categorical data with statistical constraints, we apply the classical and statistically well-founded
maximum entropy model. We construct a generative maximum entropy model wherein the probabilities of
certain categorical patterns are required to satisfy given constraints. In this way, the maximum entropy model
maintains the selected characteristics of the underlying categorical data distribution. By sampling the categorical
tuples from the maximum entropy model, synthetic population datasets can be generated.

Generally, solving maximum entropy models can be infeasible in practice. In this paper, we show that by
leveraging the structure of the categorical data space in our setting, the maximum entropy model could be
inferred quite efficiently. We also propose a heuristic together with the Bayesian information criterion (BIC) to
select a simple as well as an informative model. To summarize our approach in a nutshell, our contributions are:

1. We formalize the problem of generating synthetic population datasets via a generative maximum entropy
model for categorical data, which captures the statistical features of the underlying categorical data dis-
tributions.

2. By exploring the structure of the categorical data space, we propose a partition scheme to make the
maximum entropy model inference more efficient than the general case. We also present an efficient graph-
based model inference algorithm.

3. We propose a BIC-based heuristic to perform model selection wherein the simple and informative maximum
entropy model will be chosen.

4. Using results on both synthetic datasets and real US census data, we demonstrate that the proposed max-
imum entropy model is capable of recovering the underlying categorical data distribution and generating
relevant synthetic populations.

2 Preliminaries
LetA = {A1, A2, . . . , Aq} denote a set of categorical random variables (or attributes), andR(Ai) = {a(i)

1 , a
(i)
2 , . . . , a

(i)
ki
}

represent the set of ki possible values for random variable Ai. Here, | · |, e.g. |R(Ai)|, is used to represent the
cardinality of a set.

By a random categorical tuple, we mean a vector of categorical random variables, e.g. T = (A1, A2, . . . , Aq),
which is generated by some unknown probability distribution. The notation of T (Ai) is used to represent the
value of attribute Ai in tuple T . The space of all the possible categorical tuples is denoted by S =

∏q
i=1R(Ai),

where
∏
· is the series of Cartesian product over the given sets. Given a categorical pattern, which is defined

as an ordered set X = (Ai | Ai ∈ C,C ⊆ A) over a subset of random variables C ⊆ A, let SX =
∏

Ai∈C R(Ai)

2

represent the space that contains all the possible values of pattern X. An instantiation of pattern X is defined
as x =

(
a

(i)
j | a

(i)
j ∈ R(Ai), Ai ∈ C,C ⊆ A

)
, and X(Ai) is used to represent the value of attribute Ai in the

pattern X.
For any pattern value x associated with pattern X, we use the notation of T = x if the corresponding random

variables in T equal to the values in x and p(T = x) to denote the probability of T = x. Given a categorical
dataset D, p̃(T = x | D) is used to denote the empirical probability of T = x in the dataset D. An indicator
function IX(T = x) : S → {0, 1} of pattern X, which maps a categorical tuple to a binary value, is defined as:

IX(T = x) =
{

1, if T = x,
0, otherwise.

Given a probability distribution p over the categorical tuple space S, the entropy H(p) with respect to p is
defined as:

H(p) = −
∑
T∈S

p(T) log p(T) .

The Maximum Entropy principle states that among a set of probability distributions P that comply with the
given prior information about the data, the maximum entropy distribution

p∗ = argmax
p∈P

H(p)

will optimally use the current prior information and best summarize the data. Otherwise, it is fully unbiased.

Problem Statement Given a set of categorical patterns X with associated empirical frequencies as the prior
information of a dataset, we would like to find a probabilistic model p that best utilizes such prior information
and helps to regenerate categorical datasets that conform to the given prior information.

3 Categorical Maximum Entropy model
3.1 Categorical MaxEnt Model Specification
Suppose we have a set categorical patterns X = {Xi | i = 1, 2, . . . , n} and an associated set of empirical
probabilities P̃ = {p̃(T = xi,j | D) | xi,j ∈ SXi

, i = 1, 2, . . . , n} as prior information about dataset D. Here, xi,j

denotes the jth value of the pattern Xi. Notice that it is not necessary that every possible value of pattern Xi

in SXi is provided as part of the prior information here. Such prior information identifies a group of probability
distributions P over S which agree with the empirical probabilities of the given categorical patterns. That is:

P = {p} s.t. p(T = xi,j) = p̃(T = xi,j | D), (1)
∀p ∈ P, Xi ∈ X , and p̃(T = xi,j | D) ∈ P̃

Following the Maximum Entropy principle, for all p ∈ P, we are particularly interested in the Maximum Entropy
distribution which optimally represents the given prior information. The famous theorem in [5] (Theorem
3.1) shows that the Maximum Entropy distribution has an exponential form. In our categorical scenario, the
Maximum Entropy distribution could be written as

p∗(T) = u0
∏

Xi∈X

∏
xi,j∈SXi

(ui,j)IXi
(T =xi,j)

, (2)

where ui,j ∈ R are the model parameters associated with each model constraint specified in Equation (1), and
u0 is the normalizing constant.

3

3.2 Incorporating Individual Attribute Frequ-encies
The frequencies of individual attributes play an important role in the pattern analysis and discovery. Such
frequencies characterize the attribute marginal distributions which convey basic information about the data
currently under investigation, and yet are relatively easy to calculate from the data. Incorporating such individual
attribute frequencies will enrich the categorical Maximum Entropy model, and make it more informative.

Although such individual attribute frequencies can be trea-ted as part of the categorical pattern set X ,
considering the computation efficiency which will be explained in detail in the next section, the categorical
Maximum Entropy model treats them separately. Let vi,j denote the model parameters corresponding to the
individual attribute model constraints, then, the Maximum Entropy distribution can be factorized as:

p∗(T) = u0
∏

Xi∈X

∏
xi,j∈SXi

(ui,j)IXi
(T =xi,j) ×

∏
Ai∈A

∏
aj∈R(Ai)

(vi,j)IAi
(T =aj)

. (3)

Notice that the second component involved with vi,j also follows the exponential form described in Equation (2).
By introducing a normalizing constant v0, an independent Maximum Entropy distribution pA(T) that only
involves individual attribute constraints could be defined as:

pA(T) = v0
∏

Ai∈A

∏
aj∈R(Ai)

(vi,j)IAi
(T =aj)

. (4)

Combining Equation (3) and (4), the Maximum Entropy distribution that incorporates individual attribute
frequencies would be specified as:

p∗(T) = pA(T)u0

v0

∏
Xi∈X

∏
xi,j∈SXi

(ui,j)IXi
(T =xi,j)

. (5)

4 Model Inference
In this section, we develop an efficient algorithm to infer the categorical Maximum Entropy model. Our algorithm
is built on the well-known Iterative Scaling [6] framework. The general idea of the algorithm is that starting
from the uniform distribution, it iteratively updates each model parameter to make the distribution satisfy the
corresponding constraint until it converges to the Maximum Entropy distribution.

4.1 Efficient Model Inference
The main challenge in the Iterative Scaling framework is how to efficiently query the Maximum Entropy model
during the iterative updates of the model parameters. In order to achieve that, we need to explore the particular
structure of the tuple space S determined by the given pattern set X . After examining the exponential form of
the Maximum Entropy distribution in Equation (2), we observe that for any two categorical tuples T1 and T2 in
S, if they contain the same subset of categorical patterns in X , they will have the same probability under the
Maximum Entropy distribution inferred X . In another word, ∀T1, T2 ∈ S, if IXi

(T1 = xi,j) = IXi
(T2 = xi,j)

holds true for all Xi ∈ X and p̃(T = xi,j | D) ∈ P̃ , then p∗(T1) = p∗(T2). Based on such observation, we have
the following definition of tuple block.

Definition 1. A tuple block B is a set categorical tuples such that ∀T1, T2 ∈ B, IXi
(T1 = xi,j) = IXi

(T2 = xi,j)
holds true for all Xi ∈ X , xi,j ∈ SXi , and p̃(T = xi,j | D) ∈ P̃ .

With the definition of tuple block, we could partition the entire categorical tuple space into several tuple
blocks. When |X | � |A|, the partition scheme introduced here could greatly reduce the dimensionality of the
space we are working on. Here, we use BX to denote the tuple block space generated based on pattern set X .
Also, the definition of tuple block let us extend the indicator function defined over tuple space to the domain of
tuple block, which is defined as:

IXi
(B | xi,j) = IXi

(T = xi,j), ∀Xi ∈ X , T ∈ B.

4

Algorithm 1: Constructing tuple Block Graph
input : A set of categorical patterns X , and associated empirical probabilities P̃ .
output: tuple block graph G.

1 Let G← {∅};
2 foreach Xi ∈ X ,xi,j ∈ SXi

s.t. p̃(T = xi,j) ∈ P̃ do
3 foreach Bk ∈ G do
4 Bnew ← createBlock(Bk, Xi);
5 if Bnew 6= Null then
6 findPosition(∅, Null, Bnew);
7 end
8 end
9 end

10 return G;

By introducing tuple blocks, we transfer the problem of computing categorical pattern probability p(T = xi,j)
on tuple space to the block space, which makes it possible to calculate p(T = xi,j) in a reasonable time. In the
context of tuple blocks, the pattern probability p(T = xi,j) in would be

p(T = xi,j) =
∑

B∈BX ,
IXi

(B|xi,j)=1

p(B) ,

where p(B) is the probability for tuple block B. Since the probabilities for the categorical tuples within the
same block are all the same, the probability for the tuple block B is defined as:

p(B) =
∑
T∈B

p(T) = |B| × u0
∏

Xi∈X

∏
xi,j∈SXi

(ui,j)IXi
(B|xi,j) .

Now, our problem comes down to how to organize the tuple block space BX and efficiently compute the
number of categorical tuples in each block, or in other words, the size |B| of each tuple block B. In order to
achieve that, we introduce a partial order on BX . Let

attr(B) =
⋃

Xi∈X ,
IXi

(B|xi,j)=1

Xi ,

which represents the set of attributes involved by tuple block B. Then, we have the definition about the partial
order over BX as described below.

Definition 2. Given any tuple blocks B1, B2 ∈ BX , B1 ⊆ B2 if and only if the following conditions hold true:
1. attr(B1) ⊆ attr(B2);
2. B1(Ak) = B2(Ak), ∀Ak ∈ attr(B1) ∩ attr(B2).

Here, B(Ak) denotes the value of attribute Ak in the tuple block B. It is easy to verify that Definition 2 satisfies
the property of reflexivity, antisymmetry and transitivity.

With the partial order ⊆ defined on BX here, it is natural to organize the tuple blocks into a hierarchical
graph structure. That is, if tuple block Bk ⊆ Bl, block Bl is organized as the child of block Bk. Algorithm 1
illustrates how such block graph is constructed and maintained. The algorithm starts with the graph that has
only one block represented by ∅ indicating that none of the categorical patterns is involved in this block (line 1).
We will refer this block as root block in the rest of this section. Then, for each of the pattern set Xi ∈ X and
its possible value xi,j , we attempt to create a new tuple block by merging it with every existing block Bk from
root level to leaf level (without child blocks) in the current block graph G if they are compatible (line 4). A

5

Algorithm 2: findPosition procedure
input : Current block Bcurr , last visited block Blast , new block Bnew.
output: Success or Fail.

1 if Bnew and Bcurr are the same then
2 return Success;
3 else if Bnew ⊆ Bcurr then
4 child(Blast)← child(Blast) \ {Bcurr};
5 child(Bnew)← child(Bnew) ∪ {Bcurr};
6 child(Blast)← child(Blast) ∪ {Bnew};
7 return Success;
8 else if Bcurr ⊆ Bnew then
9 if child(Bcurr) = ∅ then

10 child(Bcurr)← child(Bcurr) ∪ {Bnew};
11 return Success;
12 else
13 failBlock ← InsertDescendant(Bnew, Bcurr);
14 checkDescendant(failBlock, Bnew);
15 return Success;
16 return Fail;
17 Procedure InsertDescendant(Bnew, Bcurr):
18 failBlock ← ∅, accu ← Fail;
19 foreach Bk ∈ child(Bcurr) do
20 r ← findPosition(Bk, Bcurr , Bnew);
21 if r = Success then
22 accu ← Success;
23 else
24 failBlock ← failBlock ∪ {Bk};
25 end
26 if accu = Fail then
27 child(Bcurr)← child(Bcurr) ∪ {Bnew};
28 return failBlock;

categorical pattern Xi is not compatible with tuple block Bk if attr(Bk)∩Xi 6= ∅, and ∃Ai ∈ attr(Bk)∩Xi such
that Bk(Ai) 6= Xi(Ai). If a new tuple block Bnew is created, it is obvious that for all Xl ∈ X , IXl

(Bk | xl,j) = 1,
we have IXl

(Bnew | xl,j) = 1 and also IXi
(Bnew | xi,j) = 1. Finally, the new tuple block Bnew will be added into

the current block graph G based on the partial order described in Definition 2 (line 6).
To be more specific, Algorithm 2 illustrates how the procedure findPosition inserts a new tuple block into

the block graph G in a recursive manner. Depending on the relationship between the current block Bcurr we are
visiting and the new block Bnew, the insertion operation could be classified into four scenarios.
Case 1: Bnew and Bcurr are the same tuple block. Two tuple block Bk and Bl are considered to be the same
if they cover the same set of categorical patterns, e.g. ∀Xi ∈ X ,xi,j ∈ SXi

s.t. p̃(T = xi,j) ∈ P̃ , we have
IXi

(Bk | xi,j) = IXi
(Bl | xi,j). Since block Bnew and Bcurr are the same and Bcurr is already part of the

block graph, inserting Bnew into block graph is not necessary any more. Thus, we simply return Success in this
scenario (line 1 – 2).
Case 2: Bnew ⊆ Bcurr . In this case, the new tuple block Bnew should be inserted between block Blast and Bcurr .
To achieve this, block Bcurr is first removed from the child block set of Blast , and added as the child block of
Bnew. Finally, the new block Bnew is inserted as the child block of Blast , and Success is returned (line 3 – 7).
Case 3: Bcurr ⊆ Bnew. In this scenario, the new tuple block Bnew should be inserted as a descendant of the
current block Bcurr . Depending on whether the block Bcurr has any child blocks, the insertion operation can be

6

𝑎1𝑏0XXXX|𝑋1

Attributes: {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹}
Number of values: 2, 3, 2, 2, 3, 4

Pattern sets & their values:
 𝑋1 = 𝐴, 𝐵 = { 𝑎1, 𝑏0 , (𝑎0, 𝑏1)}
 𝑋2 = 𝐵, 𝐶 = 𝑏0, 𝑐0 , 𝑏1, 𝑐1
 𝑋3 = 𝐶,𝐷 = {(𝑐1, 𝑑0)}

XXXXXX|∅ Empty model:

Adding 𝑿𝟏: XXXXXX|∅ 𝑎0𝑏1XXXX|𝑋1 merge with

𝑎1𝑏0XXXX|𝑋1 𝑎0𝑏1XXXX|𝑋1

XXXXXX|∅

𝑎1𝑏0XXXX|𝑋1 𝑎0𝑏1XXXX|𝑋1

Adding 𝑿𝟐:

X𝑏1𝑐1XXX|𝑋2

X𝑏0𝑐0XXX|𝑋2 merge with

X𝑏1𝑐1XXX|𝑋2 X𝑏0𝑐0XXX|𝑋2

𝑎0𝑏1𝑐1XXX|𝑋1𝑋2 𝑎1𝑏0𝑐0XXX|𝑋1𝑋2

Adding 𝑿𝟑: XXXXXX|∅

𝑎1𝑏0XXXX|𝑋1 𝑎0𝑏1XXXX|𝑋1 X𝑏1𝑐1XXX|𝑋2 X𝑏0𝑐0XXX|𝑋2

𝑎0𝑏1𝑐1XXX|𝑋1𝑋2 𝑎1𝑏0𝑐0XXX|𝑋1𝑋2

XX𝑐1𝑑0XX|𝑋3
merge with

XX𝑐1𝑑0XX|𝑋3

𝑎0𝑏1𝑐1𝑑0XX|X1𝑋3

𝑎0𝑏1𝑐1𝑑0XX|𝑋1𝑋2𝑋3

𝑎1𝑏0𝑐1𝑑0XX|X1𝑋3 X𝑏1𝑐1𝑑0XX|X2𝑋3

Figure 2: Example of constructing tuple block graph on toy dataset with 6 attributes and 3
categorical patterns. The blocks marked with red denote the new tuple blocks created in each
iteration by adding new categorical patterns.

further divided into two sub-cases:
• Case 3.1: block Bcurr has no child block. In this scenario, the new block Bnew is directly inserted as the

new child of Bcurr (line 9 – 11);
• Case 3.2: block Bcurr has child blocks. Then, for each child block of Bcurr , the findPosition procedure

is recursively performed to find the correct position to insert block Bnew (line 19 – 24). If none of these
operations succeeds, block Bnew will be inserted as a new child block of Bcurr (line 26 – 27). At last, the
descendants of the child blocks of Bcurr on which the findPosition procedure failed to insert the block Bnew
are further examined to see whether any of them would satisfy the partial order with block Bnew and be
added as the child block of Bnew (line 14).

Case 4: Bnew does not have any particular relationship with Bcurr . In this case, nothing needs to done with
the tuple blocks Bcurr and Bnew, and Fail is simply returned to indicate that the attempt to insert block Bnew
is failed.

Figure 2 shows an example of constructing such hierarchical block graph on a small toy dataset with 6
attributes and 3 categorical patterns. With the block graph G, the size of the tuple block could be easily
calculated using the set inclusion-exclusion principle. We first define the cumulative size of a tuple block B,
which is given by

cum(B) =
∏

Ai∈A\attr(B)

|R(Ai)| .

Then the actual block size for block B could be computed as

|B| = cum(B)−
∑

Bk∈BX ,B⊆Bk

|Bk| .

In the block graph G, the tuple blocks that satisfy Bk ∈ BX , B ⊆ Bk are simply those descendant blocks of B.
Algorithm 3 describes the procedure of computing block size for each tuple block in BX with the block graph G,
where desc(B) represents the set of descendant blocks of B in the graph G.

When individual attribute constraints are taken into account, the problem become a little more complicated.
However, it is obviously not feasible to combine the individual attribute constraints with the categorical pattern
constraints together and construct the tuple block graph. This will make the tuple block space blow up. Instead,
as we mentioned previously in Section 3.2, the individual attribute constraints are modeled with a separate
Maximum Entropy distribution pA, defined in Equation (4), which only considers these constraints. The block
graph G is still constructed based on the categorical patterns in X , which will exactly have the same structure

7

Algorithm 3: computeBlockSize procedure
input : tuple block graph G, current visited block Bcurr .
output: Block size for each B ∈ BX .

1 cum(Bcurr)←
∏

Ai∈A\attr(Bcurr)
|R(Ai)|;

2 if child(Bcurr) = ∅ then
3 |Bcurr | ← cum(Bcurr);
4 return;
5 end
6 foreach Bk ∈ child(Bcurr) do
7 computeBlockSize(G, Bk);
8 end
9 |Bcurr | ← cum(Bcurr)−

∑
Bk∈desc(Bcurr)

|Bk|;

10 return;

as before. In this case, following the same logic, the probability for tuple block B becomes

p(B) = pA(B) · u0

v0
·
∏

Xi∈X

∏
xi,j∈SXi

(ui,j)IXi
(B|xi,j) ,

where pA(B) =
∑

T∈B pA(T) denotes the probability of tuple block B under the separate Maximum Entropy
distribution pA. Thus, the problem of computing the probability p(T = xi,j) in becomes calculating probabilities
of tuple blocks pA(B) for each B ∈ BX . Since pA only takes the individual attribute constraints into account,
every attribute is independent of each other under the Maximum Entropy distribution pA. Similar to the
cumulative size of a tuple block, we define the cumulative probability of a tuple block under pA as

p
(c)
A (B) =

∏
Ai∈attr(B)

pA

(
T = a

(i)
j

)
,

where a(i)
j is the value of attribute Ai associated with tuple block B. With the exponential form described in

Equation (4), it is not difficult to verify that the probability of T = a
(i)
j under Maximum Entropy distribution

pA is:
pA

(
T = a

(i)
j

)
= vi,j∑ki

l=1 vi,l

.

Again, to compute pA(B) for all B ∈ BX with the set inclusion-exclusion principle, we could directly apply the
computeBlockSize procedure with |B| and cum(B) replaced by pA(B) and p

(c)
A (B) respectively.

Notice that the model parameters vi,j also need to be updated in the Iterative Scaling framework. However,
the block graph G is constructed without considering individual attribute patterns, which makes it difficult to
compute the probabilities of these individual attribute patterns under the Maximum Entropy model directly
from the block graph G. In order to get these probabilities, we treat these individual attribute patterns as
arbitrary categorical patterns and query their probabilities from the Maximum Entropy model. The detail of
querying the Maximum Entropy model will be described in the following section.

Finally, the model inference algorithm could be further optimized in the following way. Suppose the cate-
gorical patterns in X could be divided into two disjoint groups, e.g. X1,X2 ⊂ X and X1 ∪ X2 = X such that
∀X1 ∈ X1,∀X2 ∈ X2 we have X1 ∩ X2 = ∅. In this case, the Maximum Entropy model p∗X over X could be
factorized into two independent components p∗X1

and p∗X2
such that p∗X = p∗X1

· p∗X2
. Furthermore, p∗X1

and p∗X2
only rely on pattern set X1 and X2, respectively. Such decomposition greatly reduces the sizes of tuple block
spaces BX1 and BX2 compared to the original BX , and could also be extended to the scenario when there are
multiple such disjoint pattern groups. Due to the independence between these Maximum Entropy components,
they can also be inferred parallelly to further speed up the model inference process.

8

Algorithm 4: Heuristic search procedure for most informative prior patterns
input : A set of categorical patterns X , and associated empirical probabilities P̃ .
output: A set of most informative patterns X ′.

1 X ′ ← ∅;
2 p∗ ← Iterative Scaling(X ′);
3 while BICX ′ decreases do
4 X ′ ← argmax

X∈X
h
(
p∗(T = x), p̃(T = x | D)

)
;

5 X ′ ← X ′ ∪ {X ′};
6 p∗ ← Iterative Scaling(X ′);
7 end
8 return X ′;

4.2 Querying the Model
Given an arbitrary categorical pattern X ′ /∈ X with associated value x′, to query the probability under the
Maximum Entropy distribution p∗, we perform the following operations. Let X ′ = X ∪ {X ′}, and a temporary
tuple block graph G′ is constructed by applying the procedure described in Algorithm 1 over categorical pattern
set X ′. Then the size of each tuple block in graph G′ is computed by calling computeBlockSize procedure, and
the probability of categorical pattern X ′ is given by

p∗(T = x′) =
∑

B∈BX ′
IX′ (B|x′)=1

p∗(B) .

5 Model Selection
In order to discover the most informative prior information from pattern set X , we adopt the Bayesian Information
Criterion (BIC), defined as:

BICX = −2 logLX +N · log |D| ,
where LX denotes the log-likelihood of the Maximum Entropy model inferred over pattern set X , N represents
the number of model parameters, and |D| is the number categorical tuples in the dataset D. With the exponential
form of the Maximum Entropy distribution specified in Equation (2), its log-likelihood given dataset D is equal
to

LX =
∑
T∈D

log p∗(T) = |D|
(

log u0 +
∑

Xi∈X

∑
xi,j∈SXi

p̃(T = xi,j | D) · log ui,j

)
.

The ideal approach to select the most informative categorical patterns from pattern set X would be finding
a subset of X that minimizes the BIC score of the model. However, notice that this approach involves a number
of model inference operations which is proportional to the number of subsets of X . Considering the computation
required for the model inference, this method may be infeasible in practice. Hence, we resort to heuristics.
Basically, what we desire are the patterns whose empirical frequencies diverge most from their probabilities
under current Maximum Entropy model. In this case, they will contain the most new information compared to
what the model already knows. Thus, we borrow idea from Kullback-Leibler (KL) divergence, where we make
the probability of the categorical pattern X under consideration as one term and the rest of the probability mass
as the other term. To be more specific, the heuristic we use is defined as

h(α, β) = α log α
β

+ (1− α) log 1− α
1− β .

Instead of directly searching in the space of power set of X , we adopt an iterative search strategy. Starting from
the empty model without any prior information, in each iteration, we choose the pattern X ∈ X that maximizes

9

Figure 3: The gain of the log-likelihood of the full model and heuristic model compared to the
based line model. The blue line and orange line are so close that they overlap with each other
in some iterations. Also notice that orange line for heuristic model stop early due to the model
selection with BIC.

the heuristic h(p∗(T = x), p̃(T = x | D)) to update the current Maximum Entropy model. Here, p∗(T = x) and
p̃(T = x | D) denote the probability of pattern X under current Maximum Entropy model and its empirical
frequency in the given dataset D, respectively. As the model incorporates more and more patterns in X , it
becomes more certain about the data, and the negative log-likelihood decreases. However, the model becomes
more complicated at the same time, and the penalty term in BIC becomes large. This procedure continues until
the BIC score of the model does not decrease any more. Algorithm 4 describes the details of this heuristic search
approach.

6 Experimental Results
6.1 Synthetic Data Generation
To evaluate the proposed Maximum Entropy model against the true generating distribution of categorical data,
we generate synthetic datasets. Usually when the entire categorical data space is large, it is infeasible to specify
an exact generating distribution for categorical data. Thus, we generate the synthetic data D with the following
approach.

A set of categorical attributes A is first generated, and the number of possible values for each attribute
Ai ∈ A is randomly sampled from a given range. Each categorical attribute Ai is associated with a random
generated probability distribution (marginal distribution) that specifies the probability of each possible value of
Ai. In order the enforce the dependency between attributes, a set of categorical patterns X is generated and
each of these pattern is associated with a probability. To generate a categorical tuple in the synthetic dataset,
we sample from a Bernoulli distribution parameterized by the pattern frequency of each X ∈ X to determine
whether this tuple should contain this pattern or not. For the rest of the attributes that are not covered by
any of these patterns in X , their values in the generated categorical tuple are sampled independently from their
corresponding marginal distributions respectively. Such process is repeated to obtain the desired number of
categorical tuples in the synthetic dataset. In our experiments, we set |A| = 100, number of patterns |X | = 50,
and the number categorical tuples in synthetic dataset |D| = 10, 000. All the experiments were conducted on a
80-core Xeon 2.4 GHz machine with 1 TB memory, and the results were averaged across 10 independent runs.

6.2 Results on Synthetic Data
We first verify that the heuristic function h(α, β) proposed in Section 5 could discover the most informative
patterns from X based on the current knowledge the model already knows. We refer the Maximum Entropy
model inferred with entire pattern set X and all the individual attribute frequencies as full model, and the
Maximum Entropy model selected by heuristic and BIC as heuristic model. Notice that in the heuristic model,

10

Figure 4: Model preparation time of each iter-
ation as we iteratively choose the most infor-
mative patterns. Y-axis is in log scale.

Figure 5: Model inference time of each itera-
tion as we iteratively choose the most informa-
tive patterns.

Table 1: Comparison of approximate KL-divergence measures between full model, heuristic model
and baseline model.

full model heuristic baseline

K̂L(p∗, p′) 9.410× 10−5 8.566× 10−4 1.8881
K̂L(p̃ , p′) 0.1695 0.1836 2.0664

Table 2: Comparison of model preparation time (tpre), model inference time (tinfer) and data
sampling time (tsample) between full model and heuristic model (in seconds).

tpre tinfer tsample

full model 4438.785 27.266 1.678
heuristic model 17.981 8.950 0.461

individual attribute frequencies are also taken into account. In this experiment, we iteratively updated the
model with the patterns in X , and measured the log-likelihood in each iteration. However, using BIC to select
the model may result different number of patterns incorporated over different synthetic datasets. Thus, we
report the results over a single synthetic dataset here. For the full model, the pattern in X that maximized the
log-likelihood in each iteration were selected and added to the model.

Figure 3 illustrates the gain of the log-likelihood as the model incorporates more and more patterns in X .
As expected, the gain of the log-likelihood of the full model is larger in some iterations since it identifies the
optimal pattern in each iteration with respect to the likelihood. We also observe that although not optimal, the
log-likelihood of the heuristic model approximates that of the full model quite well, which demonstrates that
the proposed heuristic successfully identifies the relatively informative patterns in each iteration. In the last few
iterations, the gain of log-likelihood of the full model barely changes. This indicates that the patterns selected
in these iterations are less informative or even redundant.

To assess the quality of the reconstruction, we aim to apply KL divergence measures. However, in practice,
it is very difficult to compute the KL divergence between the entire Maximum Entropy distribution and data
generating distribution for the categorical data due to the large categorical tuple space. As a trade off, we use
the probabilities of patterns in pattern set Y to characterize the probability distributions for categorical data in
both scenarios, and define the following approximate KL-divergence measure:

K̂L(p∗, p′) =
∑

X∈Y

[
p∗(X) log p

∗(X)
p′(X) + (1− p∗(X)) log 1− p∗(X)

1− p′(X)

]
.

Here, p∗ and p′ denote the Maximum Entropy distribution and data generating distribution respectively, and
pattern set Y could be only categorical pattern set X or X ∪A if individual attribute frequencies are considered.

11

0 to 24 years

25 to 49 years

50 to 66 years

67 years and over male

female

0.00
0.02
0.04
0.06

0.08

0.10

0.12

0.14

0.16

0.18

Sample

True

$0 to 12,499

$12,500 to 24,999

$25,000 to 49,999

$50,000 or more male

female

0.00

0.05

0.10

0.15

0.20

0.25

Sample

True

Never married

Married

Widowed

Divorced
male

female

0.00

0.05

0.10

0.15

0.20

0.25

Sample

True

Figure 6: Comparison of two-attribute marginal distributions between true statistics in Virginia
ACS summary data and samples generated by categorical Maximum Entropy model for categorical
patterns {sex, age} (left), {sex, income} (middle), and {sex, marital status} (right). For pattern
{sex, marital status}, the pattern values whose marital status is Others under 15 years old is not
displayed here since for those individuals, their marital statuses are unavailable.

We also compute the K̂L(p̃, p′) to compare the empirical probability distribution, say p̃, in the samples generated
by the categorical Maximum Entropy model with the true data generating distribution. In this experiment, we
computed K̂L(p∗, p′) and K̂L(p̃, p′) for both full model and heuristic model. For comparison purpose, we used
independent attribute model pA where each categorical attribute is independent of each other as the baseline
model. For each of these models under consideration, 1000 categorical data samples were generated to compute
empirical probability distribution p̃.

Table 1 compares these approximate KL-divergence measures. In Table 1, the small approximate KL-
divergence values for full model and heuristic model indicate that the categorical Maximum Entropy distributions
converge to the underlying data generation distribution. Moreover, the samples generated by these two models
also successfully maintain the properties of the data generation distribution. This demonstrates that our model
is capable of recovering the true categorical data distribution. When compared to the baseline model, our model
outperforms several magnitudes in term of estimation accuracy.

We also measure the time required to prepare the pattern set that serves as prior information of the model
tpre, the time to infer the Maximum Entropy model tinfer , and the time to sample a single categorical tuple
from the model tsample. Here, for the full model, tpre refers to the time required to arrange the pattern set X
into the same order used in the iterative model update procedure in the first experiment where the categorical
pattern that maximizes the log-likelihood is chosen in each iteration. Table 2 compares the runtime performance
between the full model and the heuristic model, and Figure 4 and 5 show the tpre and tinfer of every iteration in
the iterative procedure used to verify the heuristic function h(α, β) in our first experiment. With the informative
as well as simple model selected by the heuristic function h(α, β) and BIC, the heuristic model requires much
less time to infer the Maximum Entropy distribution and sample categorical tuples from the model.

6.3 Results on Real Data
To evaluate the performance of the proposed categorical Maximum Entropy model on the real data, we studied
the problem of generating synthetic populations with US census data. Specifically, we use the 2012 American
Community Survey (ACS) 1-year summary data [20], which contains aggregated statistics about age, sex, race,
income, and many other features. Some of these features, e.g. sex and race, are perfect categorical attributes for
the proposed Maximum Entropy model. While although some other features, e.g. age and income, are numerical,
they are binned into several ranges based on their values, and treated here as categorical attributes.

In our experiments, we chose the state of Virginia as our study case. Among all the features in the ACS
summary data, we selected sex, age, race, income, occupation, marital status, means of transportation to work,
education level, and health insurance coverage as the set of categorical attributes. We converted the corresponding
aggregated statistics in ACS summary data into categorical patterns, and inferred the heuristic model over these
patterns. Figure 7 describes the gain of the log-likelihood of the heuristic model, and the approximate KL-
divergence measure between the inferred Maximum Entropy distribution and the empirical data distribution in

12

Figure 7: The gain of the negative log-likelihood of the model compared to the baseline model
(model at iteration 0) over the Virginia ACS summary data. The data point marked with cross
denotes the negative log-likelihood of the full model where all the categorical patterns in Virginia
ACS summary data are considered.

Table 3: Top categorical patterns selected by heuristic model in Virginia ACS summary data.

patterns number of possible values number of selected values
{means of transportation
to work, occupation} 49 34

{sex, income} 8 2
{sex, marital status} 10 2

{sex, age} 8 1

Virginia ACS summary data is 0.0001975. Table 3 also shows some most informative patterns selected by the
proposed heuristic. Notice that in Figure 7, the last data point marked with cross indicates the gain of the
log-likelihood of the full model where all the categorical patterns in the Virginia ACS summary data are taken
into account.

We also generated a sample of 3, 000 synthetic individuals with the inferred heuristic model for Virginia, and
calculated the marginal distributions for all individual attributes and some selected two-attribute categorical
patterns. Notice that for attributes Marital status, Means of transportation to work, Occupation and Education
level, the population considered in the ACS summary data is not the entire population of Virginia state. Thus,
we add an additional value for these attributes, e.g. the value Others under 15 years old for the attribute Marital
status, to denote the proportion of the entire population that are not taken into account in the ACS summary
data. Fig. 6 show some of these marginal distributions and compares them with Virginia ACS summary data.
We can see that the empirical distributions calculated from the synthetic individuals are very close to those in
the Virginia ACS summary data. Such results demonstrate that our categorical Maximum Entropy model well
maintains the statistical characteristics of the real world datasets, and is capable of generating synthetic data
for real applications.

6.4 Application: Epidemic Simulation
In this section, we apply our proposed categorical Maximum Entropy model to generate synthetic population
for the city of Portland OR in the United States, and use this model for an epidemiological simulation. We
first take a publicly available synthetic contact network dataset of Portland [16], which contains both individual
demographic and contact information of the residents in the city of Portland. The demographic information in
this dataset contains gender, age and household income. We first group the values of age and household income
into several ranges and change them into categorical features, similar to our ACS dataset analysis in Section 6.3.
Then we compute the statistics, e.g. frequencies, of the single and pairwise demographic features, convert them
into categorical patterns, and infer the categorical Maximum Entropy model over these patterns. The Portland
dataset contains 1, 575, 861 connected individuals, where each individual performs at least one activity with

13

Figure 8: The simulated weekly flu new infection counts compared to the estimated weekly
new infection counts from Google Flu Trends. The simulation results are averaged across 10
independent runs.
others. To generate our synthetic population for the Portland dataset, we draw 1, 575, 861 samples from the
inferred categorical Maximum Entropy model.

To construct the contact network for the synthetic population, we first match the generated synthetic in-
dividuals to the real ones involved in the contact activities described in the Portland dataset based on their
demographical feature values. Then the contact network can be naturally created by connecting the synthetic
individuals according to the contact activities they involves in. In this application, we choose to study the flu
season in the city of Portland during the period from June 2013 to June 2014. We retrieve the estimated weekly
counts of flu new infections for the city of Portland from Google Flu Trends [7], and apply the Susceptible-
Infectious (SI) epidemic model over the contact network to fit the curve of weekly flu new infection counts.
Figure 8 illustrates the fitted curve using the SI epidemic model. As the figure shows, the simulation results
of the SI model over the synthetic population capture the trend and the peak of the weekly flu new infections
in the city of Portland. These results demonstrate that the synthetic population generated by the categorical
Maximum Entropy model is a useful model of population-level activity in cities.

7 Related Work
The problem of generating synthetic data that maintain the structures and dependencies in actual data has
been studied by the researchers from various realms, ranging from network analysis to privacy preservation.
The work in [2] studied and analyzed large synthetic social contact networks where the synthetic population
was generated by applying iterative proportion fitting (IPF) techniques over census data. Variants of IPF,
e.g. hierarchical IPF [13] and two-stage IPF [21], were also developed for generating synthetic population data
for various research purposes such as land use and transportation microsimulation. Compared to the IPF-
based approach, Ma and Srinivasan [11] proposed a fitness-based synthesis method to directly generate synthetic
population, and Barthelemy and Toint [3] introduced a sample-free synthetic population generator by using the
data at the most disaggregated level to define the joint distribution. Besides generating synthetic population
with the combinational optimization based technique, Namazi-Rad et al. [14] also projected dynamics over the
synthetic population using a dynamic micro-simulation model. The Network Dynamics and Simulation Science
Laboratory at Virginia Tech released synthetic datasets of population in the city of Portland [16] and ad-hoc
vehicular radio network in Washington D.C. [15], which are generated by the high-performance, agent-based
simulation system Simfrastructure. Recently, Park et al. [17] proposed a non-parametric data synthesizing
algorithm, particularly a perturbed Gibbs sampler, to generate large-scale privacy-safe synthetic health data.
Instead of using patterns to characterize the data, a set of perturbed conditional probability distributions were
estimated to represent the data distribution.

In the database community, there exists several research work that generates synthetic relational databases.
For a survey, Gray et al. [8] discuss several database generation techniques that generate large scale synthetic
datasets, and Bruno and Chaudhuri [4] proposed a Data Generation Language (DGL) that allows individual

14

attribute distribution to be specified. In [9], the authors described a graph model directed database generation
tool which could handle complex inter- and intra-table relationships in large database schemas. Arasu et al. [1]
proposed an efficient, linear programming based algorithm to generate synthetic relational databases that satisfy
a given set of declarative constraints.

There is also extensive work related to the topic of query optimization that applies the Maximum Entropy
principle in the database community. [10] and [12] estimated the sizes of database queries by modeling compli-
cated database statistics using Maximum Entropy probability distribution. Ré and Suciu [18] studied the problem
of cardinality estimation using the Entropy Maximization technique, and proposed to use peak approximation
to compute the approximate Maximum Entropy distribution. In [19], the authors described an algorithm called
ISOMER which approximated the true data distribution by applying the Maximum Entropy principle over the
information gained from database query feedback.

8 conclusion
In this paper, we propose a generative probabilistic model for the categorical data by employing Maximum
Entropy principle. By introducing categorical tuple blocks and the corresponding partial order over them, we
present an efficient model inference algorithm based on the well-known Iterative Scaling framework. Experi-
ment results on both synthetic data and real US census data show that the proposed model well estimates the
underlying categorical data distributions. The application to the problem of synthetic population generation
demonstrates the potential of the proposed model to help the researchers in various areas.

Acknowledgments
Supported by the Intelligence Advanced Research Projects Activity (IARPA) via DoI/NBC contract number
D12PC000337, the US Government is authorized to reproduce and distribute reprints of this work for Gov-
ernmental purposes notwithstanding any copyright annotation thereon. Disclaimer: The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of IARPA, DoI/NBC, or the US Government.

References
[1] Arvind Arasu, Raghav Kaushik, and Jian Li. Data generation using declarative constraints. In SIGMOD

’11, pages 685–696. ACM, 2011.

[2] C.L. Barrett, R.J. Beckman, M. Khan, V. Kumar, M.V. Marathe, P.E. Stretz, T. Dutta, and B. Lewis.
Generation and analysis of large synthetic social contact networks. In Simulation Conference (WSC),
Proceedings of the 2009 Winter, pages 1003–1014, Dec 2009.

[3] Johan Barthelemy and Philippe L Toint. Synthetic population generation without a sample. Transportation
Science, 47(2):266–279, 2013.

[4] Nicolas Bruno and Surajit Chaudhuri. Flexible database generators. In VLDB ’05, pages 1097–1107. VLDB
Endowment, 2005.

[5] Imre Csiszár. I-divergence geometry of probability distributions and minimization problems. Annals of
Probability, 3(1):146–158, 1975.

[6] J. N. Darroch and D. Ratcliff. Generalized iterative scaling for log-linear models. The Annals of Mathematical
Statistics, 43(5):pp. 1470–1480, 1972. ISSN 00034851.

[7] Google Inc. Data Source: Google Flu Trends. http://www.google.org/flutrends.

[8] Jim Gray, Prakash Sundaresan, Susanne Englert, Ken Baclawski, and Peter J. Weinberger. Quickly gener-
ating billion-record synthetic databases. In SIGMOD ’94, pages 243–252. ACM, 1994.

15

http://www.google.org/flutrends

[9] Kenneth Houkjær, Kristian Torp, and Rico Wind. Simple and realistic data generation. In VLDB ’06,
pages 1243–1246. VLDB Endowment, 2006.

[10] Raghav Kaushik, Christopher Ré, and Dan Suciu. General database statistics using entropy maximization.
In DBPL ’09, pages 84–99. Springer-Verlag, 2009.

[11] Lu Ma and Sivaramakrishnan Srinivasan. Synthetic population generation with multilevel controls: A
fitness-based synthesis approach and validations. Computer-Aided Civil and Infrastructure Engineering, 30
(2):135–150, 2015.

[12] V. Markl, N. Megiddo, M. Kutsch, T. M. Tran, P. Haas, and U. Srivastava. Consistently estimating the
selectivity of conjuncts of predicates. In VLDB ’05, pages 373–384. VLDB Endowment, 2005.

[13] Kirill Mueller and Kay W Axhausen. Hierarchical ipf: Generating a synthetic population for switzerland.
In ERSA conference papers. European Regional Science Association, 2011.

[14] Mohammad-Reza Namazi-Rad, Payam Mokhtarian, and Pascal Perez. Generating a dynamic synthetic
population–using an age-structured two-sex model for household dynamics. PloS one, 9(4), 2014.

[15] Network Dynamics and Simulation Science Laboratory. Synthetic data products for societal infrastructures
and proto-populations: Data set 3.0. Technical report, Virginia Polytechnic Institute and State University.
NDSSL-TR-07-010.

[16] Network Dynamics and Simulation Science Laboratory. Synthetic data products for societal infrastructures
and proto-populations: Data set 2.0. Technical report, Virginia Polytechnic Institute and State University.
NDSSL-TR-07-003.

[17] Y. Park, J. Ghosh, and M. Shankar. Perturbed gibbs samplers for generating large-scale privacy-safe
synthetic health data. In Healthcare Informatics (ICHI), 2013 IEEE International Conference on, pages
493–498, Sept 2013.

[18] Christopher Ré and Dan Suciu. Understanding cardinality estimation using entropy maximization. In PODS
’10, pages 53–64. ACM, 2010.

[19] U. Srivastava, P. J. Haas, V. Markl, M. Kutsch, and T. M. Tran. ISOMER: Consistent histogram construc-
tion using query feedback. In ICDE ’06. IEEE Computer Society, 2006.

[20] United States Census Bureau. American community survey, 2012. URL http://www.census.gov/acs/
www/.

[21] Yi Zhu and Joseph Ferreira. Synthetic population generation at disaggregated spatial scales for land use and
transportation microsimulation. Transportation Research Record: Journal of the Transportation Research
Board, 2429(1):168–177, 2014.

16

http://www.census.gov/acs/www/
http://www.census.gov/acs/www/

	1 introduction
	2 Preliminaries
	3 Categorical Maximum Entropy model
	3.1 Categorical MaxEnt Model Specification
	3.2 Incorporating Individual Attribute Frequ-encies

	4 Model Inference
	4.1 Efficient Model Inference
	4.2 Querying the Model

	5 Model Selection
	6 Experimental Results
	6.1 Synthetic Data Generation
	6.2 Results on Synthetic Data
	6.3 Results on Real Data
	6.4 Application: Epidemic Simulation

	7 Related Work
	8 conclusion

