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S1 Eddy covariance study sites used for FLUXCOM experiment 
 
Table S1: List of the La Thuile and CarboAfrica study sites used for this study. Elevation marked 
with * are filled by Google earth. Abbreviation of IGBP vegetation type are: CRO cropland, CSH 
closed shrubland, DBF deciduous broadleaf forest, EBF evergreen broadleaf forest, ENF evergreen 
needleleaf forest, GRA grassland, MF mixed forest, OSH open shrubland, SAV savannah, WET 
wetland, WSA woody savannah. Abbreviation for climate type are Arc arctic, Bor boreal, Dry dry 
climate arid and semiarid, Subtrop subtropical and mediterranean climate, Temp temperate 
climate, Temp/cont temperate continental climate, Temp/cont hot temperate continental climate 
with hot or warm summer, Trop is the tropical climate. 
ID Site Code Lat (°N) Long (°E)  Elevation (m) VegType IGBP Koeppen Climate class Climate type 

1 AT-Neu 47.12 11.32 970 GRA Cfb Temp 
2 AU-Fog -12.54 131.31 6* WET Aw Trop 
3 AU-How -12.49 131.15 38* WSA Aw Trop 
4 AU-Tum -35.66 148.15 1200 EBF Cfb Temp 
5 AU-Wac -37.43 145.19 545 EBF Cfb Temp 
6 BE-Bra 51.31 4.52 16 MF Cfb Temp 
7 BE-Jal 50.56 6.07 500 MF Cfb Temp 
8 BE-Lon 50.55 4.74 167 CRO Cfb Temp 
9 BE-Vie 50.31 6.00 450 MF Cfb Temp 

10 BR-Ban -9.82 -50.16 173* EBF Aw Trop 
11 BR-Ma2 -2.61 -60.21 120 EBF Af Trop 
12 BR-Sa1 -2.86 -54.96 196* EBF Am Trop 
13 BR-Sa3 -3.02 -54.97 184* EBF Am Trop 
14 BR-Sp1 -21.62 -47.65 690 WSA Aw Trop 
15 BW-Ghg -21.51 21.74 1161* SAV BSh Dry 
16 BW-Ghm -21.2 21.75 1149* WSA BSh Dry 
17 BW-Ma1 -19.92 23.56 950 WSA BSh Dry 
18 CA-Ca1 49.87 -125.33 300 ENF Cfb Temp 
19 CA-Ca2 49.87 -125.29 300 ENF Cfb Temp 
20 CA-Ca3 49.53 -124.90 159* ENF Cfb Temp 
21 CA-Gro 48.22 -82.16 346* MF Dfb Temp/cont hot 
22 CA-Let 49.71 -112.94 960 GRA Dfb Temp/cont hot 
23 CA-Man 55.88 -98.48 259 ENF Dfc Bor 
24 CA-Mer 45.41 -75.52 70 WET Dfb Temp/cont hot 
25 CA-NS1 55.88 -98.48 260 ENF Dfc Bor 
26 CA-NS2 55.91 -98.52 260 ENF Dfc Bor 
27 CA-NS3 55.91 -98.38 260 ENF Dfc Bor 
28 CA-NS4 55.91 -98.38 260 ENF Dfc Bor 



29 CA-NS5 55.86 -98.49 260 ENF Dfc Bor 
30 CA-NS6 55.92 -98.96 259* OSH  Dfc Bor 
31 CA-NS7 56.64 -99.95 271* OSH  Dfc Bor 
32 CA-Oas 53.63 -106.20 530 DBF Dfc Bor 
33 CA-Obs 53.99 -105.12 629  ENF Dfc Bor 
34 CA-Ojp 53.92 -104.69 579 ENF Dfc Bor 
35 CA-Qcu 49.27 -74.04 392 ENF Dfc Bor 
36 CA-Qfo 49.69 -74.34 382 ENF Dfc Bor 
37 CA-SF1 54.49 -105.82 536 ENF Dfc Bor 
38 CA-SF2 54.25 -105.88 520 ENF Dfc Bor 
39 CA-SF3 54.09 -106.00 540 ENF Dfc Bor 
40 CA-SJ1 53.91 -104.66 580 ENF Dfc Bor 
41 CA-SJ2 53.94 -104.65 580 ENF Dfc Bor 
42 CA-SJ3 53.88 -104.64 495* ENF Dfc Bor 
43 CA-TP1 42.66 -80.56 265 ENF Dfb Temp/cont hot 
44 CA-TP2 42.77 -80.46 212 ENF Dfb Temp/cont hot 
45 CA-TP3 42.71 -80.35 184 ENF Dfb Temp/cont hot 
46 CA-TP4 42.71 -80.36 184 ENF Dfb Temp/cont hot 
47 CA-WP1 54.95 -112.47 540 MF Dfc Bor 
48 CA-WP2 55.54 -112.33 789* WET Dfc Bor 
49 CA-WP3 54.47 -113.32 676* WET Dfc Bor 
50 CG-Hin -4.68 12.00 118* EBF Aw Trop 
51 CG-Kis -4.79 11.98 124* EBF Aw Trop 
52 CG-Tch -4.29 11.66 83* OSH  Aw Trop 
53 CH-Oe1 47.29 7.73 450 GRA Cfb Temp 
54 CH-Oe2 47.29 7.73 452 CRO Cfb Temp 
55 CN-Bed 39.53 116.25 30 EBF Dwa Temp/cont hot 
56 CN-Cha 42.40 128.10 761 MF Dwb Temp/cont hot 
57 CN-Do1 31.52 121.96 4 WET Cfa SubTrop 
58 CN-Do2 31.58 121.90 4 WET Cfa SubTrop 
59 CN-Do3 31.52 121.97 4 WET Cfa SubTrop 
60 CN-Du1 42.05 116.67 1350 CRO Dwb Temp/cont hot 
61 CN-Du2 42.05 116.28 1350 GRA Dwb Temp/cont hot 
62 CN-HaM 37.37 101.18 3250 GRA ET Arc  
63 CN-Ku1 40.54 108.69 1020 EBF BSk Dry 
64 CN-Ku2 40.38 108.55 1160 OSH  BSk Dry 
65 CN-Xfs 44.13 116.33 1110* GRA BSk Dry 
66 CN-Xi1 43.55 116.68 1250 GRA Dwb Temp/cont hot 
67 CN-Xi2 43.55 116.67 1250 GRA Dwb Temp/cont hot 
68 CZ-BK1 49.50 18.54 908 ENF Dfb Temp/cont hot 
69 CZ-wet 49.03 14.77 420 WET Cfb Temp 
70 DE-Geb 51.10 10.91 162 CRO Cfb Temp 
71 DE-Gri 50.95 13.51 385 GRA Cfb Temp 
72 DE-Hai 51.08 10.45 430 DBF Cfb Temp 
73 DE-Har 47.93 7.60 201 ENF Cfb Temp 
74 DE-Kli 50.89 13.52 480 CRO Cfb Temp 
75 DE-Meh 51.28 10.66 286 GRA Cfb Temp 
76 DE-Tha 50.96 13.57 380 ENF Cfb Temp 
77 DE-Wet 50.45 11.46 785 ENF Cfb Temp 
78 DK-Fou 56.48 9.59 51 CRO Cfb Temp 



79 DK-Lva 55.68 12.08 15 GRA Cfb Temp 
80 DK-Ris 55.53 12.10 10 CRO Cfb Temp 
81 DK-Sor 55.49 11.65 40 DBF Cfb Temp 
82 ES-ES1 39.35 -0.32 10 ENF Csa SubTrop 
83 ES-ES2 39.28 -0.32 10 CRO Csa SubTrop 
84 ES-LJu 36.93 -2.75 1600 OSH  Csa SubTrop 
85 ES-LMa 39.94 -5.77 260 SAV Csa SubTrop 
86 ES-VDA 42.15 1.45 1770 GRA Cfb Temp 
87 FI-Hyy 61.85 24.29 181 ENF Dfc Bor 
88 FI-Kaa 69.14 27.30 155 WET Dfc Bor 
89 FI-Sii 61.83 24.19 169* GRA Dfc Bor 
90 FI-Sod 67.36 26.64 180 ENF Dfc Bor 
91 FR-Aur 43.55 1.11 240* CRO Cfb Temp 
92 FR-Fon 48.48 2.78 90 DBF Cfb Temp 
93 FR-Gri 48.84 1.95 125 CRO Cfb Temp 
94 FR-Hes 48.67 7.06 300 DBF Cfb Temp 
95 FR-Lam 43.49 1.24 182* CRO Cfb Temp 
96 FR-LBr 44.72 -0.77 61 ENF Cfb Temp 
97 FR-Pue 43.74 3.60 270 EBF Csa SubTrop 
98 GF-Guy 5.28 -52.93 35 EBF Af Trop 
99 GH-Ank 5.27 -2.69 77* EBF Am Trop 

100 HU-Bug 46.69 19.60 140 GRA Cfb Temp 
101 HU-Mat 47.85 19.73 350 GRA Cfb Temp 
102 ID-Pag -2.35 114.04 30 EBF Af Trop 
103 IE-Ca1 52.86 -6.92 50 CRO Cfb Temp 
104 IE-Dri 51.99 -8.75 187 GRA Cfb Temp 
105 IL-Yat 31.34 35.05 650 ENF BSh Dry 
106 IT-Amp 41.9 13.61 884 GRA Cfa SubTrop 
107 IT-BCi 40.52 14.96 20 CRO Csa SubTrop 
108 IT-Be2 46.00 13.03 62* GRA Cfb Temp 
109 IT-Cas 45.06 8.67 90* CRO Cfa SubTrop 
110 IT-Col 41.85 13.59 1550 DBF Cfa SubTrop 
111 IT-Cpz 41.71 12.38 68 EBF Csa SubTrop 
112 IT-Lav 45.96 11.28 1353 ENF Cfb Temp 
113 IT-Lec 43.30 11.27 314 EBF Cfa SubTrop 
114 IT-LMa 45.58 7.15 350 GRA Cfb Temp 
115 IT-Mal 46.12 11.70 1730 GRA Cfb Temp 
116 IT-MBo 46.02 11.05 1550 GRA Cfb Temp 
117 IT-Noe 40.61 8.15 28 CSH Csa SubTrop 
118 IT-Non 44.69 11.09 25 DBF Cfa SubTrop 
119 IT-PT1 45.20 9.06 60 DBF Cfa SubTrop 
120 IT-Ren 46.59 11.43 1730 ENF Dfb Temp 
121 IT-Ro1 42.41 11.93 235 DBF Csa SubTrop 
122 IT-Ro2 42.39 11.92 224 DBF Csa SubTrop 
123 IT-SRo 43.73 10.28 4 ENF Csa SubTrop 
124 IT-Vig 45.32 8.85 107* DBF Cfa SubTrop 
125 JP-Mas 36.05 140.03 12 CRO Cfa SubTrop 
126 JP-Tom 42.74 141.51 140 MF Dfb Temp/cont hot 
127 KR-Hnm 34.55 126.57 7* CRO Cfa SubTrop 
128 KR-Kw1 37.75 127.16 330 MF Dwa Temp/cont hot 



129 ML-AgG 15.34 -1.48 286* GRA BWh Dry 
130 NL-Ca1 51.97 4.93 1 GRA Cfb Temp 
131 NL-Haa 52.00 4.81 -2* GRA Cfb Temp 
132 NL-Hor 52.03 5.07 -2 GRA Cfb Temp 
133 NL-Lan 51.95 4.90 -2* CRO Cfb Temp 
134 NL-Loo 52.17 5.74 25 ENF Cfb Temp 
135 NL-Lut 53.40 6.36 0* CRO Cfb Temp 
136 PL-wet 52.76 16.31 54 WET Cfb Temp 
137 PT-Esp 38.64 -8.60 95 EBF Csa SubTrop 
138 PT-Mi1 38.54 -8.00 250 EBF Csa SubTrop 
139 PT-Mi2 38.48 -8.02 190 GRA Csa SubTrop 
140 RU-Che 68.61 161.34 3* MF Dfc Bor 
141 RU-Cok 70.62 147.88 23* WET Dfc Bor 
142 RU-Fyo 56.46 32.92 265 ENF Dfb Temp/cont hot 
143 RU-Zot 60.80 89.35 90 ENF Dfc Bor 
144 SD-Dem 13.28 30.48 542* SAV BWh Dry 
145 SE-Abi 68.36 18.79 361* DBF ET Arc  
146 SE-Deg 64.18 19.55 270 WET Dfc Bor 
147 SE-Nor 60.09 17.48 43 ENF Dfb Temp/cont hot 
148 SE-Sk1 60.13 17.92 42 ENF Dfb Temp/cont hot 
149 SE-Sk2 60.13 17.84 55 ENF Dfb Temp/cont hot 
150 SK-Tat 49.12 20.16 1050 ENF Dfb Temp/cont hot 
151 UK-AMo 55.79 -3.24 270 WET Cfb Temp 
152 UK-EBu 55.87 -3.21 190 GRA Cfb Temp 
153 UK-ESa 55.91 -2.86 97 CRO Cfb Temp 
154 UK-Ham 51.12 -0.86 80 DBF Cfb Temp 
155 UK-Her 51.78 -0.48 140 CRO Cfb Temp 
156 UK-PL3 51.45 -1.27 115 DBF Cfb Temp 
157 UK-Tad 51.21 -2.83 3 GRA Cfb Temp 
158 US-ARM 36.61 -97.49 314 CRO Cfa SubTrop 
159 US-Atq 70.47 -157.41 15 WET ET Arc  
160 US-Aud 31.59 -110.51 1469 GRA BSk Dry 
161 US-Bar 44.06 -71.29 272 DBF Dfb Temp/cont hot 
162 US-Bkg 44.35 -96.84 510 GRA Dfa Temp/cont hot 
163 US-Blo 38.90 -120.63 1315 ENF Csa SubTrop 
164 US-Bn1 63.92 -145.38 518 ENF Dsc Bor 
165 US-Bn2 63.92 -145.38 410 DBF Dsc Bor 
166 US-Bn3 63.92 -145.74 469 OSH  Dsc Bor 
167 US-Bo1 40.01 -88.29 219 CRO Dfa Temp/cont hot 
168 US-Bo2 40.01 -88.29 219 CRO Dfa Temp/cont hot 
169 US-Brw 71.32 -156.63 1 WET ET Arc  
170 US-CaV 39.06 -79.42 994 GRA Cfb Temp 
171 US-Dk1 35.97 -79.09 168 GRA Cfa SubTrop 
172 US-Dk2 35.97 -79.10 168 DBF Cfa SubTrop 
173 US-Dk3 35.98 -79.09 163 ENF Cfa SubTrop 
174 US-Fmf 35.14 -111.73 2160 ENF Csb SubTrop 
175 US-FPe 48.31 -105.10 634 GRA BSk Dry 
176 US-FR2 29.95 -98.00 272 WSA Cfa SubTrop 
177 US-Fuf 35.09 -111.76 2180 ENF Csb Temp/cont 
178 US-Fwf 35.45 -111.77 2270 GRA Csb Temp/cont 



179 US-Goo 34.25 -89.87 87 GRA Cfa SubTrop 
180 US-Ha1 42.54 -72.17 340 DBF Dfb Temp/cont hot 
181 US-Ho1 45.20 -68.74 60 ENF Dfb Temp/cont hot 
182 US-IB1 41.86 -88.22 227 CRO Dfa Temp/cont hot 
183 US-IB2 41.84 -88.24 227 GRA Dfa Temp/cont hot 
184 US-Ivo 68.49 -155.75 674* WET ET Arc  
185 US-KS1 28.46 -80.67 2* ENF Cfa SubTrop 
186 US-KS2 28.61 -80.67 3 CSH Cfa SubTrop 
187 US-Los 46.08 -89.98 480 WET Dfb Temp/cont hot 
188 US-LPH 42.54 -72.18 378 DBF Dfb Temp/cont hot 
189 US-Me1 44.58 -121.50 896 ENF Dfb Temp/cont hot 
190 US-Me2 44.45 -121.56 1253 ENF Dfb Temp/cont hot 
191 US-Me3 44.32 -121.61 1005 ENF Dfb Temp/cont hot 
192 US-Me4 44.50 -121.62 922 ENF Dfb Temp/cont hot 
193 US-MOz 38.74 -92.20 219 DBF Cfa SubTrop 
194 US-NC1 35.81 -76.71 6 ENF Cfa SubTrop 
195 US-NC2 35.80 -76.67 5 ENF Cfa SubTrop 
196 US-Ne1 41.17 -96.48 361 CRO Dfa Temp/cont hot 
197 US-Ne2 41.16 -96.47 362 CRO Dfa Temp/cont hot 
198 US-Ne3 41.18 -96.44 363 CRO Dfa Temp/cont hot 
199 US-NR1 40.03 -105.55 3050 ENF Dfc Bor 
200 US-PFa 45.95 -90.27 470 MF Dfb Temp/cont hot 
201 US-SO2 33.37 -116.62 1394 CSH Csa SubTrop 
202 US-SO3 33.38 -116.62 1429 CSH Csa SubTrop 
203 US-SO4 33.38 -116.64 1429 CSH Csa SubTrop 
204 US-SP1 29.74 -82.22 50 ENF Cfa SubTrop 
205 US-SP2 29.76 -82.24 50 ENF Cfa SubTrop 
206 US-SP3 29.75 -82.16 50 ENF Cfa SubTrop 
207 US-SRM 31.82 -110.87 1120 WSA BSk Dry 
208 US-Syv 46.24 -89.35 540 MF Dfb Temp/cont hot 
209 US-Ton 38.43 -120.97 177 WSA Csa SubTrop 
210 US-UMB 45.56 -84.71 234 DBF Dfb Temp/cont hot 
211 US-Var 38.41 -120.95 129 GRA Csa SubTrop 
212 US-WCr 45.81 -90.08 520 DBF Dfb Temp/cont hot 
213 US-Wi0 46.62 -91.08 340 ENF Dfb Temp/cont hot 
214 US-Wi1 46.73 -91.23 342 DBF Dfb Temp/cont hot 
215 US-Wi2 46.69 -91.15 381 ENF Dfb Temp/cont hot 
216 US-Wi4 46.74 -91.17 377 ENF Dfb Temp/cont hot 
217 US-Wi5 46.65 -91.09 369 ENF Dfb Temp/cont hot 
218 US-Wi6 46.62 -91.3 357 OSH  Dfb Temp/cont hot 
219 US-Wi7 46.65 -91.07 345 ENF Dfb Temp/cont hot 
220 US-Wi8 46.72 -91.25 389 DBF Dfb Temp/cont hot 
221 US-Wi9 46.62 -91.08 341 ENF Dfb Temp/cont hot 
222 US-Wkg 31.74 -109.94 1531 GRA BSk Dry 
223 US-Wrc 45.82 -121.95 371 ENF Csb Temp 
224 VU-Coc -15.44 167.19 80 EBF Af Trop  



S2 Description of additionally developed model 
 
 
S2.1 MTEM 
 
The MTEM algorithm grows several model trees with full extent until a small number of samples 
(2*number of regression variables) are in each leaf node. The splits are determined as described in 
Jung et al. (2009), but a certain fraction of data (default is one third) is randomly removed before 
the split is determined. After the split is found, the data previously hold-out are walked into the 
respective two children nodes as well. Within each children node a suitable multiple regression 
with variable selection, as described in Jung et al. (2009), is performed using a certain fraction of 
data (default is two third) and the remaining fraction of data to estimate the mean squared error 
of the multiple linear regression. The random local hold-out for both, split determination and 
regression, introduces instability in the tree induction algorithm and allows for generating an 
ensemble of model trees. The prediction of MTEM is then the weighted average over all nodes (not 
only leaf nodes) of all trees where the conditions (split criteria) are applied. The weights are taken 
as the inverse of the mean squared error of each node. If the predicted value by a regression in 
one node is beyond the range of observed values for that node then the predicted value is 
truncated to the minimum or maximum of the respective observed values, and its weight is 
decreased by a factor of 1000. 
The MTEM algorithm is capable of making use of samples where some predictor variables are 
missing. In the initial model tree building phase all samples with missing values are removed. 
Afterwards, all samples with missing values are walked into those nodes where the missing 
predictors were not required either as split variable in the hierarchy above this node or as 



regression variable. Then the multiple linear regressions and its mean squared error are 
recomputed for the respective ‘updated’ nodes. 
 
 
S2.2 MTEV 
 
The MTEV is an ensemble of m model trees (30 in FLUXCOM experiment). The model trees were 
created by the recursive partitioning of the training dataset (starting from the first node, named 
“root”). 
The splitting was carried out comparing the performance of a “reference regression” with a 
“splitted regression”. More specifically the “reference regression” is the best multiple regression 
for the sample, emerging from a comparison of a user defined maximum number of regressions 
(10 in FLUXCOM experiment). The candidate regressions differing for the drivers that were 
randomly extracted (three drivers and their interactions were used in the FLUXCOM experiment). 
The metric of the regression’s performance were the MEF and the RMSE, calculated from an X-fold 
cross comparison (five-fold in FLUXCOM experiment), by which the best reference multiple 
regression was selected. 
The “splitted regressions” were established on the basis of splitting rules dividing the sample into 
two subsamples. Several splitting rules were extracted from an additional splitting dataset carrying 
both quantitative and categorical variables and then evaluated. The best multiple regression were 
established for each subsample (from the splitting rule) following the scheme adopted to estimate 
the “reference regressions”. The splitting rule and associated regressions maximizing the accuracy 
of predictions was chosen as “splitted regression”. 



For the comparison between “splitted regressions” and “reference regression”, the performance 
were adjusted for the higher number of parameters into the “splitted regressions” (equations 
S2.2.1 and S2.2.2). 
 

n
pnMEFMEFadj

 *          (S2.2.1) 

pn
nRMSERMSEadj  *          (S2.2.2) 

 
In eq. S2.2.1 and S2.2.2, n is the sample dimensions, and p the number of parameters. If the 
MEFadj (and RMSEadj) of the “splitted regressions” were greater (lower) than the “reference 
regression”, “splitted regressions” were accepted. 
The subsample resulting from the splitting rules were used for another partitioning, and the 
regressions on the left and right “branches “used as “reference regression” for the next step. The 
development of a branch was stopped when the “reference regression” resulted better than any 
additional “splitted regressions”. 
The variability among the model trees was determined by the random extraction of the candidate 
regressions and splitting rules. 
The final output was the median estimates of the predictions across the m trees. 
 
 
S2.3: Random Decision Forests and Gaussian Processes (RDF-GP) 
 
The RDF-GP is a combination of Random Decision Forests (RDF) (Breiman et al., 2001) and 
Gaussian Process (GP) (Rasmussen et al., 2006). 



A RDF is an ensemble method consisting of several decision trees. Decision trees are based on the 
hierarchical binary decision scheme: beginning from a root node, simple comparisons of attribute 
values with a threshold decide whether a data example is handed over to the left or the right child 
node of a currently processed node. In the last nodes of the trees there are regression models 
based on Gaussian Processes (GP). 
In GP, the target (observed) variable (yn) is modeled as the sum of some unknown latent function 
of the input f(x) plus constant power (homoscedastic) Gaussian noise en, i.e. yn=f(x)+en. 
Instead of proposing a parametric form for f(x) and learning its parameters in order to fit observed 
data well, GP regression proceeds in a Bayesian, non-parametric way. A zero mean GP prior is 
placed on the latent function f(x) and a Gaussian prior is used for each latent noise term e. Given 
the priors GP, samples drawn from f(x) at the set of training data points follow a joint multivariate 
Gaussian with zero mean and covariance matrix K, also known as kernel function. Computing the 
posterior distribution can be done analytically. Then, predictions for unseen points depend on the 
chosen kernel function measuring the similarity between training samples and unseen points. 

The appropriate definition of the kernel is the bottleneck in any kernel method in general, and for 
GP in particular. Since we here deal with both real continuous and discrete features we introduce 
a composite kernel function as the sum of a kernel for continuous (Kc) and discrete data (Kd). For Kc 
we used the squared exponential (KSE) kernel function (radial basis function), while for Kd we used 
the algorithms Overlap or Goodall4 described in Boriah et al. (2008). 
For continuous data the KSE kernel function computes the similarity between training (x) and 
unseen (x’) points as: 
 




  l
xxK SE 2

)(exp 22          (S2.3.1) 



 
Were σ2 and l are parameters which have to be optimized. 
The Overlap measure returns 1 if the value for attribute d is equal and 0 otherwise. Goodall4 
computes the similarity (Sd(xd,xd’)) as: 
 

      (S2.3.2) 
 
where  is the frequency of how often the attribute  takes value . GP are very powerful 
tools for the task of regression but they are often not applicable to large data sets directly because 
for the learning of the kernel the computational time is cubic in the number of training examples. 
In our experiments, we learn a GP with a rather small kernel using only the training examples 
which reached certain leafs of the RDF. Furthermore, the random extraction of variables and 
samples for the RDF training (Breimann et al., 2001) avoided the over-fitting for the training data. 



S3 Description of indexes of soil water availability. 
 
A simple soil water balance model is used to derive predictor variables aiming at capturing water 
stress effects in a better way than solely based on vapor pressure deficit, precipitation, or 
remotely sensed indices. Soil water storage (SWS) is treated as a bucket model with a defined 
plant available water storage capacity (AWC). In each daily time step (t), the soil water storage of 
the previous time step (t-1) is updated by water recharge (R(t)), and water loss by 
evapotranspiration (E(t)): 
 

SWS(t) = SWS(t-1) + R(t) – E(t)        (S3.1) 
 
Recharge is taken as the minimum of precipitation (P(t)) and the water deficit of the previous time 
step: 
 

R(t) = min[P(t),AWC-SWS(t-1)]        (S3.2) 
 
Evapotranspiration is taken as the minimum of demand (Epot) and water supply (Esup) driven E: 
 

E(t) = min[Epot(t),Esup(t)]         (S3.3) 
 
Epot is calculated based on Priestley-Taylor (EPT, Priestley and Taylor, 1972) and scaled with the 
fraction of photosynthetic active radiation (fPAR), which is based on a smoothed mean seasonal 
cycle based on MODIS: 
 



Epot (t) = fPAR(t)*EPT(t)         (S3.4) 
 
Water supply limited evaporation follows Teuling et al. (2006) is modeled as a fraction (k) of SWS: 
 

Esup(t) = k*[SWS(t-1) + R(t)]         (S3.5) 
 
An upper and a lower soil layer are realized by making the assumption that both recharge by 
precipitation and water loss by evaporation occur from top to bottom: 
 

Rupper (t) = min[R(t), AWCupper-SWSupper(t-1)]; Rlower (t) = R(t) – Rupper(t)   (S3.6) 
Eupper (t) = min[E(t), SWSupper(t-1)+ Rupper (t)]; Elower (t) = E(t) – Eupper(t)   (S3.7) 

 
The water availability index (WAI) is expressed as fractional available water: 
 

WAIupper(t) = SWSupper(t) / AWCupper        (S3.8) 
WAIlower(t) = SWSlower(t) / AWClower         (S3.9) 

 
An alternative index of water availability (IWA) is calculated analogously to evaporative fraction: 
 

IWA(t) = E(t) / Epot(t)          (S3.10) 
 
The simple model requires the definition of the parameter k, and the storage capacities of the 
upper and lower soil layers. K was chosen to be 0.05, which corresponds to the median value of 19 
analyzed site-years by Teuling et al. (2006). AWCupper and AWClower were chosen heuristically as 15 



mm and 100 mm, respectively. The model was run with the same parameters for all sites, a 
necessary requirement to use the derived predictor variables at global scale. AWC were initialized 
with full storage in 1989, and the necessary meteorological data are based on downscaled ERA-
Interim reanalysis; those were replaced by measurements from the towers whenever available. 



S4 List of the candidate predictors 
 
The Table S4.1 presents a complete list of the candidate predictors. The predictors include time 
varying variables,  mean seasonal cycle and its metrics (e.g. minimum, maximum, amplitude.) For 
further details see also paper Sect. 2.3.2. 
 
Table S4.1: List of the candidate predictors 
Name Symbol Units Values MSC ANO 

Original Variables 
MODIS spectral reflectances BRDF adjusted bands 1 to 7 Reflectancebands1to7 None RS BOTH RS 
Daily land surface temperature LSTday °K RS BOTH RS 
Nightly land surface temperature LSTnight °K RS BOTH RS 
Enhanced vegetation index EVI None RS BOTH RS 
Normalized difference vegetation index NDVI None RS BOTH RS 
Land surface water index LSWI None RS BOTH RS 
Normalized difference water index NDWI None RS BOTH RS 
Fraction of absorbed Par fpar None RS BOTH RS 
Leaf Area index LAI None RS BOTH RS 
Aggregated Koeppen Climate AggregatedKoeppenIds None RS+METEO     
Koeppen Climate KoeppenIds None RS+METEO     
Relative humidity Rh None RS+METEO RS+METEO RS+METEO 
Daily mean air temperature Tair °C RS+METEO RS+METEO RS+METEO 
Daily maximum air temperature Tmax °C RS+METEO RS+METEO RS+METEO 
Daily minimum air temperature Tmin °C RS+METEO RS+METEO RS+METEO 
Vapor pressure deficit VPD KPa RS+METEO RS+METEO RS+METEO 
Precipitation Precip mm RS+METEO RS+METEO RS+METEO 
Index of water availability IWA None RS+METEO RS+METEO RS+METEO 
Water availability index upper WAIu None RS+METEO RS+METEO RS+METEO 
Water availability index lower WAIl None RS+METEO RS+METEO RS+METEO 
Global Radiation  Rg MJ m-2d-1 BOTH BOTH BOTH 
Plant Functional Type PFT None BOTH     
Canopy height Canopyheight m BOTH     
Potential Radiation Rpot MJ m-2d-1   BOTH   
Potential evapotranspiration PET mm   RS+METEO RS+METEO 

Interactions 
Product between EVI and LST EVI*LST °K RS BOTH RS 
Product between EVI and Rg EVI*Rg MJ m-2d-1 RS BOTH RS 
Product between EVI and Rpot EVI*Rpot MJ m-2d-11 RS BOTH RS 
Product between fPAR and LST FPAR*LST °K RS BOTH RS 
Product between fPAR and Rg FPAR*Rg MJ m-2d-1 RS BOTH RS 



Product between fPAR and Rpot FPAR*Rpot MJ m-2d-1 RS BOTH RS 
Product between NDVI and LST NDVI*LST °K RS BOTH RS 
Product between NDVI and Rg NDVI*Rg MJ m-2d-1 RS BOTH RS 
Product between NDVI and Rpot NDVI*Rpot MJ m-2d-1 RS BOTH RS 
Difference between daily and nightly LST LSTday-LSTnight °K RS BOTH RS 
Product between mean seasonal cycle of EVI and LST MSC(EVI)*LST °K RS BOTH BOTH 
Product between mean seasonal cycle of NDVI and LST MSC(NDVI)*LST °K RS BOTH BOTH 
Product between mean seasonal cycle of  fPAR and LST MSC(FPAR)*LST °K RS BOTH BOTH 
Water balance (lag n days) WB (lag 3 days) mm RS+METEO     
  WB (lag 5 days) mm RS+METEO     
  WB (lag 7 days) mm RS+METEO     
  WB (lag 9 days) mm RS+METEO     
  WB (lag 11 days) mm RS+METEO     
  WB (lag 13 days) mm RS+METEO     
  WB (lag 15 days) mm RS+METEO     
  WB (lag 17 days) mm RS+METEO     
  WB (lag 19 days) mm RS+METEO     
  WB (lag 21 days) mm RS+METEO     
  WB (lag 23 days) mm RS+METEO     
  WB (lag 25 days) mm RS+METEO     
  WB (lag 27 days) mm RS+METEO     
  WB (lag 29 days) mm RS+METEO     
Product among mean seasonal cycle of EVI, RG and IWA MSC(EVI)*Rg*IWA MJ m-2d-1 RS+METEO     
Product among mean seasonal cycle of fPAR, RG and IWA MSC(FPAR)*Rg*IWA MJ m-2d-1 RS+METEO     
Product among mean seasonal cycle of NDVI, RG and IWA MSC(NDVI)*Rg*IWA MJ m-2d-1 RS+METEO     
Product between mean seasonal cycle of EVI and Rg MSC(EVI)*Rg MJ m-2d-1 BOTH BOTH BOTH 
Product between mean seasonal cycle of NDVI and Rg MSC(NDVI)*Rg MJ m-2d-1 BOTH BOTH BOTH 
Product between mean seasonal cycle of  fPAR and Rg MSC(FPAR)*Rg MJ m-2d-1 BOTH BOTH BOTH 
Ratio between global and potential radiation Rg/Rpot none BOTH     
 



S5 Description of the Guided hybrid genetic algorithm 
 
GHGA is an optimization algorithm that combines a global search genetic algorithm tailored to 
variable selection problems, and a ‘guided’ procedure for local elimination of variables to speed-
up the stochastic nature of the backward search of the GA (see Jung and Zscheischler (2013) for 
details). GHGA makes suggestions of variable sets, which are tested by a regression algorithm (e.g. 
RFs) and the resulting performance is quantified in a cost function. The cost function (c(v)) of the 
variable set v aims at identifying a compromise between performance (m) and number of variables 
(n(v)) and follows Jung and Zscheischler (2013): 
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Where m(v) is Nash-Sutcliff’s modeling efficiency (MEF) for variable set v, M is the MEF identified 
so far during the search, and epsilon is a parameter that describes the accepted performance loss 
for retaining one variable less (set to 0.005). 
The settings of GHGA were the recommended default values given in Jung and Zscheischler (2013). 
The training of RF was based on a randomly chosen half of FLUXNET sites, while the remaining half 
was used for validation (for which MEF was calculated). To minimize differences of MEF between 
different variable sets by chance, the stratification in training and validation sites and the 
bootstrap samples for growing the regression trees were always the same. The number of 
regression trees of each RF was set to 60 to limit the computational burden. The variable search 
stopped when no new global or local optimum were found within the last 1000 cost function 
evaluations, or when 10000 cost function evaluations were reached. The final selected variable set 
was the ones with smallest cost function values. The entire variable selection exercise required 



nearly 100000 pairs of training and prediction of RF, (here used to make suggestion of variables 
with in total more than 5 million regression trees. 



S6 Methods settings. 
 
Machine learning methods need of free hyperparametres often related to the cost function used 
that one aims to minimize, the regularization terms that are in charge of controlling overfitting the 
training data, the shape and smoothness of the nonlinear functions. In Table S6.1 we presented 
the hyperparametres setting the applied machine learning applied for the training at eight daily 
time step by RS setup (see section 2.3.1). The variants for the training of the machine learning 
applied for the RS+METEO setup (daily time step) were shown in Table S6.2. 
 
 
Table S6.1: Method settings adopted for the training of the eight daily time step for the RS setup. 
Acronym of methods are: RF Random Forest, MTE Model Tree Ensemble, SVM Support Vector 
Machine, KRR Kernel Ridge Regression, GPR Gaussian Processes, ANN feed forward Artificial 
Neural Networks, GMDH Group Method of Data Handling or polynomial neural networks, RDFGP 
Random Forest with Gaussian Processes in leafs node, MARS Multivariate Adaptive Regression 
Splines. NA Not Available 
Name Hyperparameters and settings Scaling Ensemble Reference 

Tree methods 

RF 
Minimum number of samples in leafs = 5. Fraction of variables to find split per node = 0.33. Surrogate splits activated to use samples with incomplete predictors. 

none 200 Regression trees Breimann (2001) 

MTE 
All continuous variables are used for split and regression. One two-fold cross-validation in leaf nodes to avoid overfitting. 

none 25 Model Trees selected out of 2500 
Jung et al. (2009) 

MTEM All continuous variables are used for split and regression. Local hold-out fraction = 0.33. none 
50 Model Trees by randomly removing the hold-out 

Supplementary material S2 



fraction locally 

MTEV 

Drivers for regressions in the leaf node = 3. Splitting rules and regressions randomly extracted choosing the best among 10 extractions. Five fold cross comparison to evaluate multiple regressions. 

constrained between the minimum/maximum values of the domain of the regressions into the leaf node 

Median ensemble of 30 trees. 
Supplementary material S2 

Kernel methods 

KRR 
Grid search of the squared exponential kernel lengthscale and the regularization parameter. Testing against a hold out of 50% of sites. 

-1 to 1 NA 
Shawe-Taylor and Cristianini (2004) 

SVM 

Grid search of the squared exponential kernel lengthscale. the epsilon-insensitivity zone for the cost function, and the regularization parameter to control errors penalization. Testing against a hold out of 50% of sites. 

-1 to 1 NA Vapnik et al. (1998) 

GPR Hyperparameters found by maximum likelihood of the marginal evidence. 
Remove the mean, scaling all features between 0 to 1 

NA Rasmussen (2006) 

RDF-GP 

Hyperparameters found by maximum likelihood of the marginal evidence. Same initialization parameters as in GPR (for the prediction GPR model in the leaves of the RF). A minimum of 1000 sample in each leaf. Ensemble of 10 trees.  

Remove the mean, scaling all features between 0 to 1 
10 

Fröhlich et al. (2012) Supplementary material S2 
Neural Network methods 

ANN 

Feed forward network trained with the Levenberg-Marquardt learning algorithm. 5 initializations for each net; percentage of sites distributed among training, test and validation set 60, 20, 20 respectively. Net architecture with one or two layers, each one having from 5 to 12 

0 to 1 
10, randomly sampling sites for training, test and validation sets 

Haykin (1999) Papale et al. (2003)  



neurons. The net with the best performance (on the validation set) and the simplest architecture was chosen. 

GMDH 

Maximum number of inputs for individual neurons = 3. Maximum number of neurons per layer equal to the number of predictor; Degree of polynomials in neurons = 3.  

-1 to 1 
20 (by randomly sampling sites for training and validation) 

Ungaro et al. (2005) 

Multivariate Splines 

MARS 
The maximal number of basis functions included in the forward model building phase = 21 (default). Generalized Cross-Validation (GCV) penalty per knot = 3 (default value). Maximum degree of interactions =2. 

-1 to 1 for X Zscore for Y 20 (by bootstrapping) Friedman et al. (1991) 

Footnotes: MTEM can handle samples with missing predictors; GMDH Neurons take input from 
preceding layer and from original input variables; MARS piecewise-cubic models no self 
interactions. In all methods, excepting the tree methods, the vegetation category was converted in 
Woody/non-woody dummy vector (1 for woody PFT and 0 for non-woody PFT). 
 
Table S6.2: Method settings adopted for the training in the RS+METEO setup (daily time step). 
Acronym of the same for Table S6.1. 
Name Hyperparameters and settings Scaling Ensemble Reference 

Tree methods 

RF 
Minimum number of samples in leafs = 25. Fraction of variables to find split per node = 0.33. Surrogate splits not activated (not handle missing values ) 

none 200 Regression trees Breimann (2001) 

Kernel methods 

KRR 
Grid search of the squared exponential kernel lengthscale and the regularization parameter. Testing against a hold out of 50% of sites. 

-1 to 1 
20 models each one using a training set (10000 points) extracted by a stratified 

Shawe-Taylor and Cristianini (2004) 



random sampling strategy. 
Neural Network methods 

ANN 

Feed forward network trained with the Levenberg-Marquardt learning algorithm. 5 initializations for each net; percentage of sites distributed among training, test and validation set 60,20,20 respectively. Net architecture with one or two layers, each one having from 5 to 12 neurons. The net with the best performance (on the validation set) and the simplest architecture was choosen. 

0 to 1 
10, randomly sampling sites for training, test and validation sets 

Haykin, (1999) Papale et al. (2003)  

Multivariate Splines 

MARS* 
The maximal number of basis functions included in the forward model building phase = 21 (default). Generalized Cross-Validation (GCV) penalty per knot = 3 (default value). Maximum degree of interactions =2. 

-1 to 1 for X Zscore for Y 

20 models; training set (10000 points) extracted by a stratified random sampling strategy. 

Friedman et al. (1991) 
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