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Abstract—We propose the CLEX supercomputer topology and
routing scheme. We prove that CLEX can utilize a constant
fraction of the total bandwidth for point-to-point communication,
at delays proportional to the sum of the number of intermediate
hops and the maximum physical distance between any two nodes.
Moreover, all-to-all communication can be realized (1 + o(1))-
optimally both with regard to bandwidth and delays. This is
achieved at node degrees of nε, for an arbitrary small constant
ε ∈ (0, 1]. In contrast, these results are impossible in any network
featuring constant or polylogarithmic node degrees. Through
simulation, we assess the benefits of an implementation of the
proposed communication strategy. Our results indicate that, for
a million processors, CLEX can increase bandwidth utilization
and reduce average routing path length by at least factors 10
respectively 5 in comparison to a torus network. Furthermore, the
CLEX communication scheme features several other properties,
such as deadlock-freedom, inherent fault-tolerance, and canonical
partition into smaller subsystems.

I. INTRODUCTION & RELATED WORK

Ever since the advent of massively parallel computing
architectures, there has been lively interest in the question how
the nodes1 of a supercomputer should be interconnected, e.g.
as a fat tree, butterfly, or hypercube [1], [2], [3], [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13]. Naturally, these topologies
try to balance between the desires for small node degrees and
short routing paths. Moreover, it is crucial to serve routing re-
quests in parallel, using little, distributed computation, and to
deal with faults. Eventually, the theoretical understanding of
these issues became systematic and mature [14], [15], [16],
[17].

Today, communication in supercomputers is by and large
implemented by means of low-degree interconnection topolo-
gies. Thus, one would expect to find the well-analysed topolo-
gies that have been proposed decades ago to dominate the
market. But far from it! State-of-the-art architectures like
Cray XMT or IBM Blue Gene provide point-to-point com-
munication on top of a three-dimensional torus network [18],
[19]. This appealing simplicity in design comes at a cost,
as such a system is fundamentally limited in communication.
Konecny [19] writes “Because the most interesting mode of
operation assumes uniformly distributed traffic, the network
performance is expected to be dominated by the bisection

1By “node” we mean the smallest computing unit that can be seen as (more
or less) a sequentially working device. In today’s multiprocessor systems this
means a single core.

bandwidth.” In a three-dimensional torus of n = k3 processors,
one can partition the processors such that two subsets of n/2
processors are connected by 2k2 edges only. In other words,
because of communication limitations “the third dimension” of
processing is lost, since the average point-to-point bandwidth
between these subsets scales with 2/k times the individual
link capacity. Bluntly, in today’s supercomputers, for n ≈ 106

processors the torus architecture restricts communication to
less than 1% of the total available bandwidth in the worst
case.

So why is it that such an apparently suboptimal design
is chosen by practitioners? We believe the answer to this
question to be twofold. On the one hand, a (locally) grid-
like communication network is of course well-suited to deal
with communication patterns that are local as well.2 We argue,
however, that this approach has several shortcomings. Firstly,
it restricts the range of problems for which the computer archi-
tecture is fitting to problems that are parallelizable in a way
that matches the network topology. Secondly, programmers
need to be aware of this issue and program accordingly, which
might be a non-trivial and error-prone task. Thirdly, on large
scales, load balancing issues may result in more complex,
less local communication patterns if an efficient progress of
computation is to be ensured. And finally, even if all these
issues can be overcome at the time when the system goes
online, it will typically be in use for several years, implying
that it is difficult to predict whether demands will change
during the life-time of the supercomputer.

On the other hand, the theory on interconnection networks
fails to address some questions of practical significance. For
one, how should one actually realize one of the suggested
topologies? This turns out to be critical for performance, as
the efficiency of the whole communication infrastructure might
break down because some of the physical links are exceed-
ingly long: these connections will suffer larger communication
delays, consume more space and energy, and complicate the
physical layout of the system. To the best of our knowledge,
this issue has been neglected in all theoretical studies of the
matter; in stark contrast, even for the three-dimensional torus,
which is fairly amenable to low-distortion “embedding”, opti-
mizing the stretch has been considered a worthwhile task [20].

2This is for instance true for computational problems arising from physical
systems, e.g., from fluid or solid body dynamics, which have been a (if not
the) main focus of parallel computing in the past.
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What is more, we believe it to be important to devise routing
algorithms that deal with faults in a seamless, fully distributed,
and automatic manner. Therefore, it is not enough to show
that a topology exhibits a large number of disjoint short path
between to destinations, but one also needs to give a routing
scheme that exploits the high connectivity of the system to
establish robustness with respect to failing nodes or links.

In consequence, we would like to revive the interconnection
discussion from a theoretical point of view3 by presenting a
new topology we call CLEX (CLique-EXpander). Essentially,
the CLEX design is the result of seeking efficient communica-
tion in a world of physical constraints. To this end, we deviate
from standard analysis by measuring delays not solely in terms
of hops, but also considering the physical distance a signal
needs to travel.4 We prove that a point-to-point communication
bandwidth per node (to and from arbitrary destinations) match-
ing the total bandwidth per node up to a constant factor can
be achieved, at delays that are (asymptotically) proportional
to the maximum physical distance between any two nodes.
Moreover, applying an asymmetric bandwidth assignment to
the links, all-to-all communication5 can be realized (1+o(1))-
optimally both with regard to bandwidth and delays.

As constant or polylogarithmic node degrees necessarily
incur an average hop distance of Ω(log n/ log log n), the price
we pay for these properties are node degrees of nε, for an
arbitrarily small constant ε. However, these fairly high degrees
are “localized” in the sense that all but a constant number of
them connect the nodes of the basic building blocks of our
topology, i.e., cliques of size nε. Thus, one way to interpret
our results is to view the CLEX approach as a method to
localize the issue of an efficient (low-degree) communication
network to much smaller systems of nε nodes, which may
e.g. reside on a single multi-core board. A multi-core board
will offer means of on-board communication by itself, and
due to small distances and integrated circuits one can expect
it to be of greater efficiency than that of a comparable large-
scale network. Thus, the high connectivity of a CLEX system
could be considered an abstraction that can be replaced by
any efficient local communication scheme within the cliques
(cf. e.g. [7]).

Nonetheless, we do also propose a routing scheme that
indeed is designed for the high-degree CLEX network as is.
Within cliques, it employs recent results on parallel random-
ized load balancing [23], ensuring a high degree of efficiency
and resilience of the overall approach. From our point of view,
the properties of the resulting system justify to re-raise the
question whether high degrees can be worth the effort. In

3Numerous works are published all the time, but typically a topology is
chosen and tested using standard routing mechanisms. For instance, [21]
provides a two-level architecture similar to a two-level CLEX system, but
no mated routing algorithms or theoretical analysis is given.

4Although typically bandwidth is the primary concern, recently Barroso
pointed out that it is feasible and crucial to strive for small delays in
warehouse-scale computing [22].

5Adiga et al. [18] state that “MPI AlltoAll is an important MPI collective
communications operation in which every node sends a different message to
every other node.”

fact, one could see this as another step of localization: Our
algorithm reduces the routing problem on the clique level
to one on the node level, namely to the one of efficiently
routing between nε input and output ports. This task now is
to be solved on a physically much smaller scale, dealing with
smaller communication delays and being able to rely on much
better synchronization between the individual components.
Again, one is free to replace the full connectivity between
the ports by any combination of topology and routing scheme
that is efficient at this scale.

To add some salt to the above theoretical considerations, we
assess the efficiency of a CLEX architecture in practice. To this
end, we simulate point-to-point communication in two systems
comprising 324 ≈ 1, 000, 000 nodes and 643 ≈ 250, 000
nodes. The results of our simulation indicate that the usable
bandwidth of a CLEX architecture could be an order of
magnitude larger than the theoretical optimum of the IBM
Blue Gene and Cray XMT tori interconnection networks. Since
our comparison assumes identical total bandwidth in both
designs, this is not a mere consequence of indirectly increasing
bandwidth via node degrees, but a fundamental difference of
the underlying topologies.

II. TOPOLOGY AND ROUTING ALGORITHMS

In this section, we give solutions to the all-to-all and point-
to-point communication problems. To this end, we define an
abstract model amenable to formal analysis. However, the
applied proof techniques extend to stronger models which bet-
ter match a real-world system. In particular, the assumptions
of asynchronicity and fault-free behaviour can be dropped.
After describing the topology of the CLEX architecture, we
briefly compare two algorithms solving all-to-all communi-
cation efficiently on our topology and the three-dimensional
torus. Finally, we give an algorithm for point-to-point com-
munication and analyze its synchronous running time. Our
theoretical findings are supported by the simulations presented
in Section III.

A. Model and Problem Formulation

We model a supercomputer as an undirected graph G =
(V,E), n := |V |, where nodes represent the computing
elements (processors) and edges bidirectional communication
links. To simplify the presentation, we assume that for each
v ∈ V , the loop {v, v} is contained in E, i.e., nodes may “send
messages to themselves”. We assume that communication is
reliable and proceeds in synchronous rounds. Message size is
in Ω(log n), i.e., we assume that a constant number of node
identifiers of size log n fits into a message. Any upper bound
on the message size respecting this constraint is feasible; for
the purpose of our analysis, we however assume that in each
round only one “unit payload” can be sent by each node along
each edge. Nodes have access to an infinite source of random
bits. We point out, however, that our algorithms will in practice
work reliably also with pseudo-random instead of true random
bits, since all our results hold with high probability (w.h.p.)6

6That is, with probability at least 1− 1/nc for a tunable constant c > 0.
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Note that the assumptions on the communication model
(which simplify the presentation) can be considerably relaxed.
Our algorithms can be run asynchronously by including round
counters into messages. Furthermore, as demonstrated in [23],
the load balancing scheme can be made resilient to a constant
(independent) probability of message loss.

Observe that the total delay a message suffers comprises the
time it takes being relayed at intermediate nodes plus the time
the signal travels along the edges of the interconnection net-
work. Thus, the simplistic measure given by round complexity
may not be accurate in practice; we also need to understand
the influence of propagation times. Therefore, we define the
maximal (average) delay d (d̄) as

d := chh + cpp and d̄ := chh̄ + cpp̄,

where h (h̄) is the maximal (average) number of hops until a
message is delivered, p (p̄) is the maximal (average) physical
distance a message travels, and ch and cp are appropriate
constants (comprising units). To get an idea of the order of
magnitude of the respective terms, suppose that it takes a
few clock cycles before a message can be relayed (to a free
channel) and clock speeds are in the order of gigahertz. Thus,
forwarding a message is initiated after a few nanoseconds. At
speed of light, a signal travels about a foot per nanosecond.

Formally, we will solve the following problems.
Problem 2.1 (Point-to-Point Communication): Each node v

is given a (finite) set of messages

Sv = {mi
v | i ∈ {1, . . . , imax

v }}

with destinations d(mi
v) ∈ V . The goal is to deliver all

messages to their destinations, minimizing delays. By

Rv :=
{
mi

w ∈ ∪w∈V Sw
∣∣ d(mi

w) = v
}

we denote the set of messages a node v ∈ V shall receive.
We abbreviate S := maxv∈V |Sv| and R := maxv∈V |Rv|,
i.e., the maximal numbers of messages a single node needs to
send or receive, respectively.

All-to-all communication is a special case of point-to-point
communication.

Problem 2.2 (All-To-All Communication): Each node v ∈
V is given a message mv . The goal is to deliver (a copy of)
each message mv to all nodes, minimizing delay.

Note that this problem is easier to solve, since by setting
Sv = {mw

v |w ∈ V } and d(mw
v ) = w an instance of

Problem 2.1 is obtained.

B. Interconnection Network

Evidently, with node degrees of at most ∆, any algorithm
for Problem 2.2 must take at least n/∆ rounds to com-
plete. Similarly, Problem 2.1 cannot be solved in less than
max{dS/∆e, dR/∆e} rounds, as no node can send or receive
more than ∆ messages in each round. Thus, in order to hope
for good running times, the communication graph needs to
expand very quickly, i.e., for any set of nodes S ⊂ V with
|S| ≤ n/2 it is necessary that S has Ω(∆|S|) outgoing

edges. At the same time, we need to be aware that long-
range links bridging a large physical distance should not be
used frequently, which needs to be respected by our routing
scheme and thus also the underlying topology. This motivates
the following recursive graph construction.

Definition 2.3 (CLEX Graphs): Suppose for a constant s ∈
(0, 1] that ns and 1/s are integer. We recursively define the
(directed) CLEX graph C(s, l) of l ∈ {1, . . . , 1/s} levels. Set
C(s, 1) := Kns , i.e., a clique of ns nodes, and label its nodes
(1), (2), . . . , (ns). Assuming that C(s, l) is already defined,
C(s, l + 1) is composed of ns isomorphic copies C(s, l)i,
i ∈ {1, . . . , ns}, plus additional edges. Using the label
(v1, . . . , vl) ∈ {1, . . . , ns}l a node v ∈ V (C(s, l))i inherits
from C(s, l)i, we can identify it uniquely with (v1, . . . , vl, i) ∈
{1, . . . , ns}l+1.

The edges of C(s, l + 1) are all edges contained in the
C(s, l)i plus

Ei,l+1 := {((v1, . . . , vl, i), (v1, . . . , vl−1, j, vl))
| j ∈ {1, . . . , ns} ∧ v ∈ V (C(s, l)i)},

i.e., E(C(s, l+1)) = ∪ns

i=1(E(C(s, l)i)∪Ei,l+1). See Figures 1
and 2 for an illustration.

Observe that each copy of C(s, l + 1) connects each of its
subgraphs C(s, l)i by |V (C(s, l))| many edges to any C(s, l)j ,
j ∈ 1, . . . , ns, such that degrees increase by exactly ns on each
level. Thus, C(s, 1/s) has uniform degrees of ns/s − 1. Its
diameter D(C(s, 1/s)) is bounded by 2s− 1, as D(Kns) = 1
and D(C(s, l + 1)) is at most 2D(C(s, l)) + 1.7 We remark
that these graphs are not Cayley graphs (cf. [14]).

Note that if for any k, t ∈ N we set n := kt and s := 1/t,
both 1/s and ns are integer, i.e., C(s, l) is defined for l ∈
{1, . . . , t}. In other words, it is possible to choose s arbitrarily
small and n arbitrarily large.

The CLEX topology can be realized with e.g. a grid-like
node positioning. We ensure that nodes that are connected on
low levels are close to each other by arranging them in cubes.
On each new level, we simply arrange an appropriate number
of cubes to a larger cube. Such a system will not experience
a significant stretch in distances due to embedding issues.

As will emerge from the analysis, it is feasible to replace
nodes’ ns edges in Ei,l+1 by a single link of capacity ns

to one of the endpoints of these edges (such that each node
gets also exactly one incoming link of this capacity). This is
also compatible with the solution of Problem 2.2 proposed in
Section II-C. Note that this way, node degrees become ns +
1/s− 2, with merely 1/s− 1 long-range links (i.e., links that
are not on the basic level). Clearly, this is to be preferred in
any real-world system, however, for ease of presentation, we
stick to uniform edge capacities in our exposition.

C. All-to-All Communication
Problem 2.2 has simple solutions both on the torus and on

CLEX graphs. On the torus, first nodes exchange all messages

7Any copy of C(s, l) is connected to all other copies, hence we can follow
a shortest path in C(s, l) to one endpoint of this edge, traverse it, and follow
another shortest path in C(s, l) to the destination.
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(1,1)

(2,1)

(3,1)

(3,2)

(2,2)

(1,2)

(1,3)

(2,3)

(3,3)

(•,1)

(•,3)

(•,2)

Fig. 1: Illustration of C(1/3, 2). Each copy of C(1/3, 1) is
enclosed in a grey circle. The links without arrowheads are
bidirectional. For clarity, only the outgoing links of the nodes
in the center copy are depicted, and the redundant links of
node (1, 1) on level 1 (connecting to the nodes of the first
copy) are left out.

(•,1,2)

(1,1,2)

(2,1,2)(3,1,2)

(•,3,2)

(•,2,2)

(•,•,2)

(•,•,1)

(•,•,3)

(•,3,1)(•,1,1)(•,1,1) (•,2,1)

(2,3,1)
(1,3,1)

(3,3,1)

Fig. 2: Illustration of the level 2 links of C(1/3, 3). Copies of
C(1/3, 2) and C(1/3, 1) are enclosed by light and dark grey
circles, respectively. Only the outgoing links of nodes in the
center copy of C(1/3, 1) are depicted. The remaining arrows
subsume the connections of the copies of C(1/3, 1) labeled
(·, 2, 2) and (·, 3, 2). Note that it is not necessary to connect
the subgraphs on level 2 or higher precisely in this way, as
long as bandwidths are well-balanced on each level.

in x-direction, then y-, and finally z-direction. This defines
for each message a tree with the source as root on which the
message is flooded. Thus this scheme is bandwidth-optimal
up to factor three. If links are congested, i.e., the necessary
traffic exceeds the available bandwidth, asymptotic optimality
with regard to delays follows from this observation. On the
other hand, in absence of congestion the solution is also
delay-optimal, as the trees have minimal depth. For the CLEX
design, things are less obvious.

We will show that physical average and maximal routing
path lengths can also be kept close to the optimum in CLEX
systems. For the sake of simplicity, throughout this paper we

assume that the torus is (locally) a perfect three-dimensional
grid of k1 ·k2 ·k3 nodes.8 We assume that the CLEX topology
is realized in a hierarchical cube structure as described in
Section II-B. We assume that cable connections are as short
as possible, for both considered topologies.9

Using the previously explained scheme to solve Problem 2.2
on the torus, messages travel on average h̄T = (k1 + k2 +
k3)/2 ≥ 3n1/3/2 many hops. Hence, the maximal delay in
an uncongested setting would be roughly proportional to this
value. Observe that no architecture can perform significantly
better, as processors cannot be packed much more densely
because of cooling issues and physical routing path lengths
are optimal up to a factor of

√
3.

The strategy to solve Problem 2.2 on C(s, 1/s) is very
similar to the one for tori. Each message mv is flooded
along a tree induced by with respect to hop distance shortest
paths from v to all nodes, where links on lower levels are
preferred (because they bridge shorter distances), giving a
bandwidth-optimal solution up to factor 1/s, since links on
level one have to deal with most of the load. Note that
an asymmetric bandwidth assignment to the different levels
reduces this factor, cf. Section III-A. Messages are delivered
to all destinations after travelling at most one edge on each
level. Since we assumed that processors are arranged in a cubic
grid and links are direct connections, maximal link lengths
on Level l ∈ {1, . . . , 1/s} are

√
3nls/3/2, i.e., maximal

propagation delays are

cpp̄ = cp

√
3n1/3

2

1/s−1∑
i=0

n−is/3 ∈ cp
(1 + o(1))

√
3n1/3

2
.

Hence, we achieve a (1 + o(1))-approximation to physically
optimal delays in C(s, 1/s), which on three-dimensional tori
is impossible. For the test settings presented in Section III, the
(1 + o(1)) term is close to

√
3, i.e., the algorithm will at least

perform as good as any solution on a torus interconnection
network with regard to propagation delays.

Moreover, as observed in Section II-B, the diameter of
C(s, 1/s) is 21/s − 1, i.e., messages make at most that many
hops. For fixed s, we thus achieve asymptotically optimal
maximal delays d proportional to the maximal spatial distance
between any two nodes. For the parameter values considered
in Section III, the number of hops reduces about a factor 10 in
comparison to a torus network of the same size. As in a torus
network typically the number of hops will be the dominant
factor contributing to delays in all-to-all communication, a
CLEX network promises a considerable improvement.

D. Point-to-Point Communication

In the following, w.l.o.g. we assume that in Problem 2.1
S = R, as e.g. in case S < R the number of messages each
node needs to send is upper bounded by R (and we want to

8Due to physical constraints, the embedding will incur an additional stretch
(cf. [20]).

9However, one might want to arrange connections in a CLEX system in a
more convenient manner, resulting in a small increase in cable length whose
influence we neglect.
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show a bound that is essentially linear in S + R). Rerouting
each message through a uniformly and independently at ran-
dom (u.i.r.) chosen intermediate node (i.e., applying Valiant’s
trick [24]), we need to solve the two slightly simpler problems
that (i) each node needs to send at most S messages whose
destinations are distributed u.i.r. or (ii) each node needs to
receive at most R messages whose origins are distributed
u.i.r. Note that these problems are (asymptotically speaking)
indeed less difficult, as applying Chernoff’s bound we see that
w.h.p., in the first case each node needs to receive at most
R′ ∈ (1 + o(1))S messages, while in the second case, no
node initially holds more than S′ = R′ many messages. Thus,
for the sake of analyzing the asymptotic complexity of the
problem, w.l.o.g. we assume in the following that message
destinations are distributed u.i.r.

We proceed by defining and analyzing the Algorithms A(l),
l ∈ {1, . . . , 1/s}, which solve Problem 2.1 on C(s, l). In case
of l = 1, the communication graph is simply Kns , thus we can
use an algorithm suitable for complete graphs. The advantage
of full connectivity is that any node may serve as relay for
any message, reducing the routing problem to a load balancing
task. We follow the approach from [23]. For the sake of clarity,
we present a simplified algorithm to illustrate the concept.
Initialize i := 1 and k(1) := 1 at each node. The algorithm
executes the following loop until all messages are delivered:

1) Create bk(i)c copies of each message. Distribute these
copies uniformly at random among all nodes, but under
the constraint that (up to one) all nodes receive the same
number of messages.

2) To each node, forward one copy of a message destined
to it (if any has been received in the previous step; any
choice is feasible). Confirm this to the original sender
of the message.

3) Delete all messages for which confirmations have been
received and all currently held copies of messages.

4) Set k(i + 1) := min{k(i)ebk(i)c/5,
√

log n} and i :=
i + 1.

Intuitively, this algorithm exploits that the number of messages
that still needs to be delivered falls rapidly, thus enabling
the nodes to try routing increasingly many redundant copies
of the remaining messages without causing too much traffic.
If just one of these copies can be deleted, the message will
not participate in the subsequent phase. Hence the number of
messages will fall by a factor that is exponential in the number
of copies per message, permitting to use an exponentially
larger number of copies in the next phase without overloading
the communication network.

The techniques and proofs presented in [23] yield the
following bound on the running time of this simple algorithm
for the special case of S = R = n.

Corollary 2.4: Provided that S = R = n, the above al-
gorithm solves Problem 2.1 in O(log∗ n) synchronous rounds
w.h.p., where log∗ x denotes the inverse tower function.10 �

10Formally: log∗ x = 1 for x ∈ (0, 2] and log∗ x = 1+log∗ log x for x >
2. This function grows exceptionally slowly; log∗ x ≤ 5 for x ≤ 265 536.

For ease of presentation, we do not discuss asynchronicity
(which is dealt with by round counters) or the case that S,R 6=
n (requiring to adapt the growth of k) here. In [23] appropriate
modifications of the given algorithm are discussed, leading to
the following more general result.11

Corollary 2.5: An algorithm A(1) exists that solves Prob-
lem 2.1 in an asynchronous system within O((S + R)/n +
(log∗ n− log∗(n/R))) time w.h.p.
It is important to note that A(1) is not uniform, i.e., (an
appropriate estimate of) S+R needs to be known to the nodes
in order to execute the algorithm. However, it is not difficult to
guarantee this in a practical system by monitoring the network
load and updating the nodes frequently. Also, instead of the
“one-shot” version of the problem described, a perpetually
running solution is required that handles the network traffic
generated over time. We argue, however, that in light of the
results from [23], it is feasible to study the simplified version
of the problem in order to assess the potential gain of our
approach.

Having A(1) in place, we rely on recursion to solve the
task on Level l > 1:

1) Calling A(l−1), node v ∈ C(s, l−1)i, i ∈ {1, . . . , ns},
sends each of its messages to a node in C(s, l−1)i whose
edges in Ei,l lead to the copy of C(s, l− 1) containing
the destination of the message, choosing u.i.r. from the
nodes fulfilling this criterion.

2) Each node forwards the received messages over its edges
in Ei,l to the copy of C(s, l − 1) they are destined for,
balancing the load on these edges.

3) A(l−1) is called again to forward all messages to their
destinations.

We will show now that this algorithm is asymptotically optimal
with respect to the number of hops (i.e., required rounds) up
to a small term inherited from A(1).

Theorem 2.6: Algorithm A(1/s) solves Problem 2.1 on
C(s, 1/s). Its running time is w.h.p. bounded by O((S +
R)/ns + (log∗ ns − log∗(ns/R)).

Proof: We prove the statement by induction on l ∈
{1, . . . , 1/s}, i.e., we show that for any l, A(l) solves Prob-
lem 2.1 on C(s, l) within the stated number of rounds w.h.p.
For l = 1 this claim immediatelz follows from Corollary 2.5.
Observe that for l > 1, A(l) will eventually deliver all
messages to their destinations since A(1) does, i.e., it is
sufficient to show the stated bound on the running time.
Moreover, note that it does not matter how the constants in
the O-term grow with l since l is constantly bounded.

Assume that the claim is correct for some l ∈ {1, . . . , 1/s−
1}. We show that whenever A(l+1) calls A(l), w.h.p. at most
O(S+R+ log n) many messages have to be sent or received
by any node. Recalling that message destinations are w.l.o.g.
distributed u.i.r., we have that the at most R|V (C(s, l)| mes-
sages that have destinations in some given copy of V (C(s, l)

11In fact, [23] presents an asymptotically optimal solutions without the
additive log∗ overhead. However, for any practical purposes, log∗ n is a
constant, and the “optimal” solution is more complex, less robust, and for
reasonable parameters slower than the given algorithm.
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are distributed u.i.r. among all copies of V (C(s, l). Hence,
between any pair V (C(s, l)i, V (C(s, l)j of such copies, in
expectation at most R|V (C(s, l))|/ns messages need to be
exchanged. Thus, Chernoff’s bound yields that w.h.p. no more
than O(R|V (C(s, l))|/ns + log n) messages need to be sent
from V (C(s, l)i to V (C(s, l)j .12

Afterwards, applying Chernoff’s bound again, we infer that
the number of messages a single node needs to receive in
Step 1 is w.h.p. at most O(R + log n), as a fraction of 1/ns

of the nodes in V (C(s, l)i have edges in Ei,l that lead to
V (C(s, l)j . By induction hypothesis, each call of A(l) in
Step 1 will thus terminate within O((S+R)/ns + (log∗ ns−
log∗(ns/R))). rounds w.h.p. Moreover, as for each node its
ns edges in Ei,l lead to the same copy of C(s, l), Step 2
terminates in O((R + log n)/ns) = O(R/ns) rounds w.h.p.
In addition, this implies that no node will have to send more
than O(R) messages in Step 3 w.h.p. Hence, we can apply
the induction hypothesis again in order to see that Step 3
terminates within O((S + R)/ns + (log∗ ns − log∗(ns/R)))
rounds w.h.p. This concludes the induction step and the proof.

A closer examination of the involved constants reveals that
they grow exponentially in 1/s. However, in recursive calls
the algorithm uses exclusively links on lower levels. Since the
number of nodes on each level grows rapidly, the physical
distances of the nodes grow by more than factor 2 for each
added level. Thus, overall routing path length is bounded by a
geometric series with constant limit times the lengths of links
on the top level. On the other hand, since we will choose s
not too small (1/3 resp. 1/4), the number of routing hops is
still small.

We remark that it is possible to generalize Theorem 2.6 to
non-constant values of 1/s ∈ O(

√
log n/ log log n), however,

choosing s too small is not desirable since the number of
routing hops grows exponentially in 1/s.

III. PERFORMANCE ESTIMATION

In this section, we study the practical merits that are to
be expected from implementing the proposed communication
strategy. We base our reasoning on simulation results and dis-
cuss in detail what effects on bandwidth and delays of arbitrary
point-to-point communication can be deduced in comparison
to a torus network. Furthermore, we briefly address some
advantages regarding the robustness of the proposed routing
scheme.

A. Dense Traffic (Bandwidth Comparison)

Theorem 2.6 states an asymptotic result, i.e., for sufficiently
large n and any constant s ∈ (0, 1), outdegrees of ns+1/s−2
suffice to guarantee good load balance and a running time that
is only a constant factor larger than the optimum. However, it
is not clear how large the number of nodes needs to be for a
certain value of s in order to ensure good performance. The
strong probability bounds obtained in Section II-D indicate

12Note that a simple application of the union bound shows that for any
polynomial number of events that occur w.h.p., it holds that all of them occur
concurrently w.h.p.

that the approach is quite robust, therefore good results for
practical values of n can be expected.

In order to estimate the bandwidth and delays a CLEX
system will feature in comparison to a torus grid of the
same size and total bandwidth, we performed simulations
of the proposed point-to-point communication algorithm on
C(1/4, 4) with n = 324 ≈ 106 and on C(1/3, 3) with
n = 643 ≈ 2.5 · 105 nodes.13 Due to memory constraints, we
confined ourselves to simulating the algorithm synchronously
and solving recursive calls iteratively one after another. As
pointed out earlier, both algorithm and analysis are resilient
to asynchronicity; hence, neither parallel nor sequentially
executed recursive calls interfere with each other, implying
that the obtained results should allow for a valid performance
estimation of a real-world system.

Furthermore, we adapted the algorithm from Section II-D
slightly. Firstly, we are primarily interested in the case of
uniformly distributed traffic, i.e., there is no need for the
algorithm to establish a uniform distribution of messages by
itself. Thus, we do not apply Valiant’s trick here, but rather
start with uniformly distributed destinations. Note that in case
of “somewhat, but not entirely uniform” distributions, it is
easy to apply a “lightweight” version of Valiant’s trick: just
redistribute the messages uniformly within e.g. level 1/s−1 or
1/s−2 clusters. This drastically reduces the factor 2 overhead
incurred by Valiant’s trick, both with respect to the number of
hops and the distance messages travel. Secondly, for l > 1, in
Step 2 of A(l) we choose the subset of neighbors receiving
one message more than the others uniformly at random; this
slightly improves the load balance. Thirdly, when calling A(1)
on the subgraphs C(1, s), nodes initially send along each
link one message (if available) directly to its destination.
Hence, a large fraction of the messages require only one hop
to reach their (interim) destinations. Finally, to further save
bandwidth, nodes may refrain from sending several copies of
the remaining messages to potentially relaying nodes. Rather,
they merely request a message to be forwarded to its target
by a neighbor, which requires negligible14 log(32) + 2 = 7
respectively log(64) + 2 = 8 bits (the destination’s identifier
in the Level-1 clique plus a phase counter for all phases after
the first in an asynchronous execution of algorithm A(1),
cf. Figure 3). These bits may also be piggybacked on another
message. Then, after receiving a positive acknowledgement,
the actual message is sent. Though this will delay the messages
that are not delivered immediately by two more rounds, we
will later see that the accordant delays do not significantly
contribute to the total time until a message is delivered.

In a first simulation experiment, we consider almost sat-
urated channels, i.e., each node initially is source for 28 ≈
0.9 · 32 respectively 57 ≈ 0.9 · 64 messages. Unless the com-
munication system gets overloaded (i.e., more messages arrive

13Sequoia, featuring a Blue Gene/Q architecture, will comprise 1.6 million
processors and is expected to go into service in 2012 [25].

14Message headers must contain the target node ID for routing purposes
(20 bits for a million nodes) and probably some other information like e.g. a
timestamp. Certainly the payload of a message should be considerably larger.
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than can be delivered quickly), it is reasonable to expect that
not all nodes generate the same amount of messages. However,
due to the randomized allocation of messages to relaying and
target nodes, larger average loads support a balanced load
distribution (and thus throughput). Hence, we chose to initially
assign to all nodes roughly 90% of the messages that can
be transferred on a level in a single round, thus permitting a
worst-case estimation of the bandwidth utilization under full
load while getting useful results with regard to message delays.
Message destinations follow a uniformly random permutation
of the set containing each node 28 resp. 57 times, i.e., each
node has to send and receive the same number of messages.
Thus, results afford an easy comparison to the values for all-
to-all communication given in Section II-C.

For each Level l, we measured four values: the maximal
number of rounds (excluding recursive calls) that any instance
of A(l) required, the average number of rounds (excluding
recursive calls) messages spent on this level in total, the max-
imal average load per node any instance of A(l) had to deal
with, and the (average) number of edges messages traversed
on Level l during the course of the complete algorithm. The
outcomes of the measurements are listed in Tables I and II.

TABLE I: A(4) on C(1/4, 4) with 324 nodes, 28 messages
from and to each node

lvl. max. rds. avg. rds. max. avg. load avg. hops
1 11 13.69 33.44 10.63
2 2 4.11 30.33 4
3 2 2.05 28.06 2
4 2 1.03 28 1

TABLE II: A(3) on C(1/3, 3) with 643 nodes, 57 messages
from and to each node

lvl. max. rds. avg. rds. max. avg. load avg. hops
1 9 6.90 62.06 5.34
2 2 2.03 57.30 2
3 2 1.01 57 1

We see that loads are well-balanced on all levels; due to
the small number of nodes on Level 1 some instances of A(1)
invoked on C(1/4, 4) are slightly overloaded. Accordingly, the
vast majority of the messages can be forwarded immediately
on all but the first level, where a different routing scheme is
employed. On the first level, a small but relevant fraction of the
messages cannot be forwarded at once, leading to delays that
are roughly 75% larger than the minimal possible 8 respec-
tively 4 rounds.15 These messages lead to an increase of about
30% in traffic, since they are relayed by other nodes, requiring
one additional hop. The large maximal number of rounds A(1)
takes to complete is in accordance with theory. The algorithm
runs O(log∗ n) phases w.h.p., where in our implementation the

15Each round incurs (i) one “hop” delay ch since processors need to decide
how to deal with a message and (ii) one “propagation” delay depending on
the respective length of connections on that level.

first phase takes 1 round and each subsequent phase 2 rounds;
we incur a delay of 2 more rounds due to the modification that
relaying messages is preceded by an acknowledged request
(except for the first phase). Consequently, the algorithm should
terminate within roughly 1 + 2 log∗ 32 = 1 + 2 log∗ 64 = 7
rounds, which is true for most instances; the large number
of recursive calls and the fact that on C(1/3, 3) some of the
calls have higher average loads than nodes’ degrees explain
the differences. Figure 3 depicts the number of remaining
messages of all invoked instances of A(1) plotted against the
number of passed phases.

Note that a single message is unlikely to experience large
delays in all calls of A(1) it participates in. The total number
of rounds a message spends on Level 1 can be stochastically
bounded from above by the sum of independent random
variables describing the number of rounds passing until a
message is forwarded in the most loaded instance of A(1).
Thus, Chernoff type bounds apply, giving exponential tail
bounds on the probability that the random variable exceeds
its expectation. As on higher levels almost all messages are
forwarded immediately, we have a strong indication that few
messages will be delayed more than 2-2.5 times the expected
average delay, both with respect to hops and propagation time.

Due to the increase of the number of nodes on each level by
a factor of 32 (64), the physical distances of the processors—
and hence the length of connecting cables—grow by factor
321/3 ≈ 3.2 (641/3 = 4) per level.16 On the top level,
link lengths will be in the order of the network diameter.
Shortest-path routing in a torus grid bridges on average similar
distances as one hop on the top level of C(s, 1/s).17 We
conclude a worst-case bound on the competitive ratio with
respect to p̄ of about (cf. Tables I and II)

2.5 ≈ 1.03 +
2.05

3.2
+

4.11

3.22
+

13.69

3.23

resp. 2 ≈ 1.01 +
2.03

4
+

6.90

42

in comparison to the theoretical optimum in a torus grid
that does not suffer from congestion. In contrast, the average
number of hop delays decreases by factors

7.3 ≈ 3 · 324/3

2(1.03 + 2.05 + 4.11 + 13.69)

resp. 9.7 ≈ 3 · 643

2(1.01 + 2.03 + 6.90)
.

Recalling that delays in torus networks are dominated by the
time it takes to forward messages, we deduce that CLEX

16We assume that physical distances on Level 1 are not determined by the
volume required by the links connecting processors, but rather by cooling
requirements, i.e., the number of processors in a cube of edge length l
is approximately (l/dmin)

3, where dmin is the minimal feasible distance
between processors. Otherwise, we had an increase of up to

√
32/6 ≈ 2.3

(3.3) in cable length.
17 Strictly speaking, the distortion of the network embedding and the fact

that messages do not take physically shortest paths implies that on the torus
topology total delays are a constant factor larger than the average delay of top
level links in C(s, 1/s). However, since we do not quantify these influences,
we do not incorporate them into our analysis.
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Fig. 3: Number of messages instances of A(1) still needed to deliver against passed phases. Left: C(1/4, 4) with 324 nodes
and 28 initial messages per node, right: C(1/3, 3) with 643 nodes and 57 initial messages per node. In both cases most of the
instances terminated after three phases; on C(1/4, 4), a single instance required 5 phases.

architectures will feature significantly smaller overall message
delays even when close to maximal communication load.18

Next, we compare the bandwidth we provide to each node
to the theoretical optimum in a three-dimensional torus in-
terconnection network. In both settings, the topology appears
identical to each node. Therefore, it is reasonable to assume
that each node has the same total bandwidth capacity of
B. Moreover, the amount of inbound and outbound com-
munication is identical, implying that we can confine our
considerations to outgoing messages.

For symmetry reasons, in a torus network of n = k3 nodes
(k nodes in each spatial direction) an optimal scheme assigns
each link the same capacity of B/6. We partition the nodes
into two sets of equal size, such that the corresponding cut
is minimum, containing 2k2 edges.19 If message destinations
are distributed u.i.r., in expectation every second message
needs to pass this cut. Hence, with regard to uniformly
distributed traffic, the effective average bandwidth with regard
to Problem 2.1 provided to each node is bounded from above
by 2B/(3n1/3).

On C(s, 1/s), we assert bandwidth according to the simu-
lation results, i.e., each node first divides its bandwidth to the
levels according to the weights given by the average hops
messages travelled on each level (cf. Tables I and II) and
then the bandwidth on each level evenly among the links on
that level. Each message will consume one unit of bandwidth
per hop. We conclude that the gain in effective point-to-point
bandwidth compared to the theoretical maximum for a torus

18We remark that our estimates do not cover a possibly increased hop delay
in the CLEX system imposed by the larger node degrees. As most hops are
inside level one clusters where 5- or 6-bit addresses need to be resolved (in
comparison to the three bits for grid links), one still can expect delays that
are considerably smaller.

19If the length of cycles is different in x-, y-, and z-direction, we need
to consider different minimum cuts given by planes orthogonal to each
dimension. It is easy to see that for one of the cuts, the bandwidth-to-nodes
ratio is at least as bad as for the symmetric case.

architecture will be at least roughly

8.6 ≈ 3 · 324/3

2(1 + 2 + 4 + 10.63)

resp. 11.5 ≈ 3 · 64

2(1 + 2 + 5.34)
.

Recall that the proposed asymmetric assignment of band-
width also improves the efficiency of the simpler mechanism
for all-to-all communication presented in Section II-C. Since
most communication takes place on level 1, to which we
assigned the majority of the bandwidth, we achieve a band-
width utilization for Problem 2.2 that is at least 2-competitive,
regardless of s.

B. Light Traffic (Delay Comparison)

Total message delays will be smaller if traffic is less
dense, since most messages can be forwarded immediately.
Consequently, for a fair comparison of delays, we consider
light traffic matching the maximum throughput of a torus
network. From the previous results we infer that initial loads
need to be 4 > 28/8.6 and 5 > 57/11.5, respectively.
Moreover, since saving bandwidth is not crucial any longer, we
can refrain from requesting message indirection on the lowest
level prior to sending complete messages. Apart from these
two modifications, the test settings are identical. The results
are given in Tables III and IV.

TABLE III: A(4) on C(1/4, 4) with 324 nodes, 4 messages
from and to each node

lvl. max. rds. avg. rds. max. avg. load avg. hops
1 5 9.02 9.02 10.53
2 1 4 7.32 4
3 1 2 4.02 2
4 1 1 4 1

We observe that dropping the mechanism to save bandwidth
reduces delays on Level 1 significantly, while due to the
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TABLE IV: A(3) on C(1/3, 3) with 643 nodes, 5 messages
from and to each node

lvl. max. rds. avg. rds. max. avg. load avg. hops
1 5 4.32 10.36 5.11
2 1 2 5.09 2
3 1 1 5 1

smaller loads the average bandwidth consumption per mes-
sage is roughly the same as before. Repeating the previous
calculations for the new data, we see that average propagation
delays slightly improve to at worst (cf. Tables III and IV)

2.3 ≈ 1 +
2

3.2
+

4

3.22
+

9.02

3.23

resp. 1.8 ≈ 1 +
2

4
+

4.32

42

times the average time a signal requires to follow physically
shortest paths. The required number of hops reduces consid-
erably, widening the gap to torus interconnection networks to
factors

9.5 ≈ 3 · 324/3

2(1 + 2 + 4 + 9.02)

resp. 13.1 ≈ 3 · 643

2(1 + 2 + 4.32)
.

Moreover, we see that all messages can be forwarded
immediately on all but the lowest level and A(1) terminates
after at most 5 rounds in all instances.

IV. CONCLUSION

In this work, we proposed the CLEX interconnection and
routing scheme for supercomputers. Our results emphasize the
advantages of small diameters when aiming for small delays
and high bandwidth utilization in face of growing numbers
of processors. We simulated configurations of 3- respectively
4-level CLEX architectures comprising half a million and
a million nodes. The results indicate performance gains of
roughly an order of magnitude for point-to-point communi-
cation in comparison to three-dimensional torus topologies.
This comparison is based on the principal limitations of a
torus topology, i.e., it does for instance not respect that a
real-world routing mechanism will not be able to concurrently
propagate all messages along shortest paths. Certainly, this
performance gap will more than compensate for an increased
local switching time due to larger node degrees, and it might
justify the larger expense for the routing hardware. We believe
this to be particularly true in the future, since in the past (paral-
lel) computation power grew much faster than communication
capacity, and there is no sign that this trend might stop anytime
soon.
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