English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Evolution of the Immune System in the Lower Vertebrates

MPS-Authors
/persons/resource/persons190993

Boehm,  Thomas
Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons191124

Iwanami,  Norimasa
Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons191100

Hess,  Isabell
Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Boehm, T., Iwanami, N., & Hess, I. (2012). Evolution of the Immune System in the Lower Vertebrates. Annual Review of Genomics and Human Genetics, 13, 127-149. doi:10.1146/annurev-genom-090711-163747.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002B-8D39-F
Abstract
The evolutionary emergence of vertebrates was accompanied by the invention of adaptive immunity. This is characterized by extraordinarily diverse repertoires of somatically assembled antigen receptors and the facility of antigen-specific memory, leading to more rapid and efficient secondary immune responses. Adaptive immunity emerged twice during early vertebrate evolution, once in the lineage leading to jawless fishes (such as lamprey and hagfish) and, independently, in the lineage leading to jawed vertebrates (comprising the overwhelming majority of extant vertebrates, from cartilaginous fishes to mammals). Recent findings on the immune systems of jawless and jawed fishes (here referred to as lower vertebrates) impact on the identification of general principles governing the structure and function of adaptive immunity and its coevolution with innate defenses. The discovery of conserved features of adaptive immunity will guide attempts to generate synthetic immunological functionalities and thus provide new avenues for intervening with faulty immune functions in humans.