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SI-1. Dyson orbitals 

The Dyson orbitals (DO) associated with a particular I → F transition is a single electron wavefunction 

containing information on where the ejected electron was removed from. This section is devoted to find 

explicit expressions to calculate the DOs. To do that, let us first define the vectors 1( , , )N N r r r  and 

1 1 1( , , )N N  r r r , so that the DO is written as  

 1 1( ) ( ) ( ),d

IF N N F N I NN d    r r r r  (1) 

where N is the number of electrons in the I state. 

Consider now that I  and 
F  can be represented as a linear combination of Slater 

determinants, i.e.,  

 
maxN

0

( ) ( )I N n n N

n

c


  r r  (2) 

and 

 
maxM

1 1

0

( ) ( ),F N m m N

m

c 



  r r  (3) 

where maxN  and maxM  are the maximum number of terms used in the expansions. It is shown in the 

Section SI-1.1 of this Supporting Information, that each Slater determinant in Eq. (2) can be rewritten as  
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( 1) ( ) ( ),

N
N j j j

n n N q N

jN






    r r  (4) 

where 
1( )j

n N r  is the ( 1) ( 1)N N    Slater determinant associated with the minor that results from 

removing the Nth row and the jth column out of ( )n N r . The superscript in the spin-orbital 
( ) ( )j

q N r  in 

Eq. (4) denotes the column occupied in ( )n N r . 

By inserting Eq. (3) and Eq. (2) into Eq. (1), with the n  given by Eq. (4), the DO can be 

rewritten as  

 
maxN

( )

0 1

( ) ( ),
N

d q j

IF N n j q N

n j

d 
 

 r r  (5) 

with 

 
maxM

0

( 1) | .q N j j

n j n m m n

m

d c c



      (6) 

In Eq. (6), the integration is over 1Nr  and the q superscript denotes the actual index of the spin-orbital 

removed from the jth column. 

Regarding this, the spin-orbital 
( )j

q , removed from the jth column out of each Slater determinant 

n , can be in principle any of the 
bfN  spin-orbitals conforming the basis set used to describe the 

electronic state, i.e. {1, , }bfq N  . Therefore, by grouping the 
q

n jd  coefficients corresponding to the 

same spin-orbitals, Eq. (5) can be conveniently rearranged as  

 
1

( ) ( ),
b fN

d

IF N s s N

s

b 


r r  (7) 

with  

 
maxN

0 1

,
N

q

s n j qs

n j

b d 
 

  (8) 

where qs  is the Kronecker delta function. Using Eq. (7), the norm of the DO can be easily computed as  

 

1/2

2

1

,
b fN

d

IF s

s

b


 
   
 
  (9) 

which, in general, is not equal to one.  

Eq. (7) also illustrates the fact that the DOs are formed from a linear combination of spin-orbitals 

of the initial state. The contribution of each spin-orbital to the DO will depend on (i) the expansion 

coefficients nc  and mc  of the electronic wavefunctions and (ii) the overlaps between single Slater 

determinants of the initial and final states. The first quantity is specific to the method used to solve the 

electronic problem and it is discussed for the particular case of TDDFT in the main paper. The second 

quantity can be computed as follows. 
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Suppose 1|m p b      is a given Slater determinant of the F state and 

1|j

n q a      one associated with a minor of the I state, both of range ( 1) ( 1)N N   . To 

simplify the notation, the superscript denoting the column has been omitted. Remember that, as discussed 

in the introduction, within the -methods framework,  q and p are determined by two independent 

calculations for the N and N1 systems, and they are not orthogonal to each other. It is possible to show 

that the overlap between the Slater determinants in Eq. (6) can be written as the following determinant 

 

1 1 1 1

1

1

| | |

| | || .

| | |

q a

j
p p q p am n

b b q b a

     

     

     

     

        

     

 (10) 

To compute each element in the previous equation, we first represent the spin-orbitals in the 

atomic orbitals basis set, i.e.,  

 
1

bfN

p up u

u

a 


  (11) 

and  

 
1

.
bfN

q vq v

v

a 


  (12) 

Notice that as the ionization is very fast as compared with the nuclear motions, the nuclear positions are 

considered fixed while the electron is ejected and therefore the same atomic basis set { }  has been used 

in the expansions. Thus, by using Eqs. (11) and (12),  

 
, 1

| ,
bfN

p q up vq uv

u v

a a S 


     (13) 

where |uv u vS      is the overlap matrix between the atomic orbitals, a standard output when 

computing the electronic states. 

To recap, the calculation of the DOs requires first to solve the electronic problem and represent 

the electronic wavefunctions of the initial and final states as a linear combination of Slater determinants. 

Then, with (i) the expansion coefficients nc  and mc , (ii) the spin-orbitals { }p  and { }q  in the atomic 

orbitals representation, and (iii) the overlap matrix uvS , the DOs and their norms can be computed by 

means of Eqs. (5)-(9). 

To reduce computational costs, 
q

n jd  terms with expansion coefficient nc  or mc  smaller than cis  

can be neglected. In all results discussed here, we have adopted 0.01cis  .    
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SI-1.1 Demonstration of Eq. (4) 

A typical N N  Slater determinant in Eq. (35) for a particular set of spin-orbitals, say for instance, 

1{ }q a   , reads  

 (1) ( 1) ( )

1

1

1
( 1) | ( ),

!

N
N j N j

n a q N

jN
   



    r   (14) 

where a superscript in the spin-orbitals has been intentionally added to denote the column they occupy. 

This generic determinant in Eq. (14) can be expanded over the Nth row (Laplace's formula), 

leading to  

 (1) ( 1) ( )

1

1

1
( 1) | ( ),

!

N
N j N j

n a q N

jN
   



    r  (15) 

where 
(1) ( 1)

1| N

a     is the ( 1) ( 1)N N    minor that results from removing the Nth row and the jth 

column (initially occupied by the spin-orbital 
( )j

q ) out of the determinant in Eq. (14). Denoting the 

Slater determinant associated with 
(1) ( 1)

1| N

a     as  

 
(1) ( 1)

1 1

1
( ) | ,

( 1)!

j N

n N a
N

  

  


r  (16) 

Eq. (15) can be rewritten as  

 ( )

1

1

1
( 1) ( ) ( ).

N
N j j j

n n N q N

jN






    r r  (17) 

SI-2. Ionization rules 

For practical purposes, it is useful to have a simple way to predict whether or not the ionization is 

allowed, without explicit calculation of Dyson orbitals and transition dipoles. For decades, such analysis 

has been carried out based on orbitals analysis, which distinguishes between single- and double-electron 

processes leading to, respectively, allowed and forbidden single ionization.1 In particular, the double-

electron forbidden processes can borrow intensity from allowed transitions by configuration interaction 

giving rise to weak shake-up bands.2-3 In this section, we will briefly review the theory associated to these 

allowed and forbidden processes in terms of the developments presented so far. 

To do so, let us consider a given I → F photoionization, where I  and 
F  are dominated by 

only one electronic configuration each, not necessarily the one corresponding to the ground state. For 

instance, assume r and s are the indexes of the Slater determinants respectively dominating the I and F 

states. Thus, the expansion coefficients n rnc   and .m smc   By using Eqs. (5) and (6), the DO reduces 

to  

 ( )

1

( 1) | .
N

d N j j j

IF r s q

j

 



      (18) 
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Notice that 
j

s , of range ( 1) ( 1)N N   , is obtained by removing the spin-orbital at column j from 

s . In addition, let us assume in a first step that the Koopmans approximation is valid and the set of 

spin-orbitals used to describe the I and F electronic states are strictly the same. 

Now, suppose that the particular electronic arrangements corresponding to r  and 
s  differ by 

only one spin-orbital. For instance, consider the case 
(1) ( ) ( )

1| i N

r k a      and 

(1) ( 1)

1| N

s a     , with k  located at column i  being the different one. According to Eq. (10), 

unless k  is removed from r , the whole column with the overlaps of k  with each of the spin-orbitals 

of 
s  will be zero, making zero the determinant, the DO, and, therefore, the transition dipole. This 

means analytically that | j

r s ij    , which reduces Eq. (18) to the simple form  

 ( 1) ,d N i

IF k    (19) 

with norm 1d

IF k   . This well-known result4 can be formulated in what it will be called in the 

following as the first ionization rule.  

First ionization rule: when the electronic configuration describing the initial state differs by 

only one spin-orbital from the electronic configuration of the final state, the ionization is possible 

and the Dyson orbital matches, except possibly by a sign, this different spin-orbital. 

Consider now the situation when r  differs by two spin-orbitals with respect to 
s . For 

instance, assume that 
(1) ( ) ( 1) ( )

1| i i N

r k l a       and 
(1) ( 1)

1| N

r a     , with k  and l  being 

the different ones. In this case, following the same reasoning as before, it does not matter which one of 

the different spin-orbitals we remove, there will always be a whole column full of zeros in Eq. (10), 

corresponding to the overlaps of the other one with all the spin-orbitals of 
s . As a result, the DO and, 

therefore, the transition dipole will always vanish. By the same argument, if there are more than two 

different spin-orbitals between r  and 
s , the transition dipole will also vanish. This can be 

formulated as the second ionization rule.  

Second ionization rule: when the electronic configuration describing the initial state differs by 

two or more spin-orbitals from the electronic configuration of the final state, the ionization is not 

allowed. 

Naturally, these rules are rigorously valid only within the Koopmans approximation. Many-body 

effects, such as orbital relaxation and correlation shifts after hole creation, will always cause changes in 

the intensities.2 However, in many practical problems, a Koopmans’ analysis gives a fair description of 

the electronic wavefunction. Thus, these rules can still be applied for a qualitative evaluation. Let us 

examine first imidazole (N = 36 electrons).  

According to the DFT results for the 0 → 0 transition, the electronic ground state wavefunctions 

of the neutral molecule and the cation are 0 |1 1 17171818    and 0 |1 1 171718   , 

respectively. They are both represented in the left panel of Figure S1. Here q ( )q  denotes the qth  () 

orbital. As can be noticed, the electronic configurations of both species differ by only one spin-orbital, the

18 . Thus, according to the first ionization rule, the ionization is allowed and 
00 0 18( )d R . The 

accurate calculation of the DO shows that 99% of the DO comes, in fact, from the 18  spin-orbital.  
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For the 0 → 1 transition of imidazole, represented in the right panel of Figure S1, the TDDFT 

calculations show that 1 |11 171818   . According to the first ionization rule, the ionization is 

allowed and now 
01 0 17( )d R . Once again, the accurate calculation of the DO confirms that.  

Up to F = 3, the cationic electronic wavefunctions are mostly dominated by one Slater 

determinant and a similar analysis is possible. For F ≥ 4 and especially for the higher states, several 

electronic configurations are involved in the wavefunctions and the analysis has to be performed 

individually for each Slater determinant. Even so, for all transitions, the ionization rules are able to 

predict qualitatively the norm and composition of the DOs. 

 

Figure S1 - Electronic configurations of the neutral molecule and the cation for the 0 → 0 (left) and 0 → 

1 (right) photoionizations of imidazole. In red, the orbitals of the neutral molecule that do not match any 

of the orbitals of the cation. When enclosed with a green line, they correspond to the DO.  

For adenine (N = 70 electrons), with electronic ground state wavefunction 

0 |1 1 34 34 35 35   , the ionization rules are also able to (qualitatively) predict the norm and shape 

of the DOs for each 0 → F transition. Let us show that with two illustrative examples, represented in 

Figure S2. The first one is the 0 → 3 transition (left panel), for which

3 |1 1 3135 32 32 34 34 35   . As the only different spin-orbital between 
3  and 0  is 32 ,  

invoking the first ionization rule, 
03 0 32( )d R . This is confirmed by the accurate calculation of the 

DO, which shows that the DO has a 99% contribution from the 32  spin-orbital.  

The second example is the 0 → 8 transition (right panel in Figure S2). For F = 8, the major 

contribution in 
8  comes from the Slater determinant |11 333336 34 35   . As 34  and 35  in 

0  do not match any of the spin-orbitals of  , according to the second ionization rule, the ionization is 

not allowed. The accurate calculation of the DO shows that 08 0( ) 0.1d R , which leads to an 

(approximate) ionization probability of 
2

08 08 0( ) 0.01dP  R , in practice a very weak shake-up band.  
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Figure S2 - Electronic configurations of the neutral molecule and the cation for the 0 → 3 (left) and 0 → 

8 (right) photoionizations of adenine. In red, the orbitals of the neutral molecule that do not match any of 

the orbitals of the cation. When enclosed with a green line, they correspond to the DO. 

SI-3. Computational Times 

Here we provide some guidelines to estimate the costs for simulation of steady and time-resolved 

photoelectron spectra using the methods discussed in the paper. 

For the steady spectrum, the major cost is to compute the energies for each point of the ensemble. 

In our case, 500 geometries, this is the time to run 500 independent single-point TDDFT energy 

calculations. The time to compute the DOs is marginal compared to that. The time to compute the cross 

sections is significant, but still shorter than of a single point calculation.  

In the case of the time-resolved spectrum, most of time is spent on the dynamics itself. This time 

is about the number of trajectories times the number of time steps in each trajectory times the time for a 

single point TDDFT calculation of energies and gradient. In our case, this amounts to 100,000 single 

point calculations. The cost of the spectrum is the cost of a steady spectrum times the number of time 

windows in which the dynamics is split. In our case, we split 500 fs in intervals of 20 intervals of 25 fs. 

Therefore, the cost of the time-resolved spectrum was about 20 times that of the steady spectrum. 

Based on the discussion above, concerning time, the system size limitation is basically controlled 

by the electronic structure calculations. If for a certain molecule we can afford to compute about 500 

single points, then the steady spectrum is feasible. If we can afford 100,000 single points, the time-

resolved spectrum is feasible. 

Finally note that most of steps above are independent calculations that can be trivially parallelized 

and distributed over as many machines as available. 
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