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Gyrokinetic simulations of plasma microturbulence in the Helically Symmetric eXperiment are presented.
Using plasma profiles relevant to experimental operation, four dominant drift wave regimes are observed in
the ion wavenumber range, which are identified as different flavors of density-gradient-driven trapped electron
modes. For the most part, the heat transport exhibits properties associated with turbulence driven by these
types of modes. Additionally, long-wavelength, radially localized, nonlinearly excited coherent structures
near the resonant central flux surface, not predicted by linear simulations, can further enhance flux levels.
Integrated heat fluxes are compatible with experimental observations in the corresponding density gradient
range. Despite low shearing rates, zonal flows are observed to regulate turbulence but can be overwhelmed
at higher density gradients by the long-wavelength coherent structures.

I. INTRODUCTION

The development of quasi-symmetry1 has provided
stellarators with a viable path to magnetic confinement
fusion as an alternative to the tokamak. The Helically
Symmetric eXperiment (HSX) is a four period modular
stellarator that possesses quasi-helical symmetry and has
been shown to reduce neoclassical transport levels to val-
ues similar to those observed in tokamaks2. The residual
transport observed in HSX discharges is turbulent. In
this work, we employ gyrokinetic simulation techniques
to study the properties of trapped electron mode turbu-
lence in HSX geometry.
The density-gradient-driven, collisionless trapped elec-

tron mode (TEM)3 has been shown to be a viable
candidate to explain the electron thermal fluxes ob-
served in many tokamak experiments with peaked density
profiles4,5 and is detrimental to achieving confinement
in fusion plasmas. Fundamentally, the density-gradient-
driven TEM exists for drift-wave frequencies ω < ωb,
where ωb is the electron bounce frequency on a flux sur-
face. It is destabilized by density perturbations of the
trapped particle population in the presence of bounce-
averaged bad magnetic curvature. For tokamaks, this
criterion is typically satisfied in a single poloidally local-
ized region near the outboard midplane.
Over the past decade, there has been significant work

and understanding gained in the gyrokinetic simulation
of stellarator plasmas as it relates to the ion tempera-
ture gradient (ITG) and electron temperature gradient
(ETG) modes6–13 and subsequent turbulent transport
optimization14–19. However, only recently have compu-
tational capabilities reached the point where TEMs in
stellarators can be simulated effectively. As such, anal-
ysis of TEM-driven turbulence in stellarators is in the

early stages, with most prior work relating to the W7-X
stellarator12,20–23.
The TEM destabilization condition is easily met in

HSX, as will be shown in Sec. II, due to the overlap
of regions of bad curvature and magnetic wells, a prop-
erty that generally occurs for quasi-symmetric stellarator
configurations8,24. One would then expect TEMs to be
linearly unstable in HSX for some density gradient, which
has been shown in the linear gyrokinetic growth rate cal-
culations performed in Ref.25. The present work repre-
sents the first examination of the nonlinear state of TEM-
driven turbulence in HSX, and together with the work
published in Ref.23 the first examination of TEM turbu-
lence in neoclassical-transport-optimized stellarators.
Previous work on the density-gradient-driven TEM in

tokamaks has shown that zonal flows are the primary
nonlinear saturation mechanism26–28. Zonal flows can
provide a saturation mechanism through flow shear29,30

or by providing a route through which an instability
can couple and transfer energy to damped modes30–36.
The nonlinear simulations of HSX presented in this pa-
per show the development of zonal flows consistent with
the standard picture in tokamaks, and we show that the
zonal flows are the nonlinear saturation mechanism.
The paper is structured as follows: In Sec. II the de-

tails of HSX equilibria are introduced and important nu-
merical considerations in applying gyrokinetics to HSX
are discussed. In Sec. III, we present linear gyrokinetic
simulation results, which show the existence of multi-
ple, distinct ion-scale modes propagating in the electron
direction. The nonlinear simulation results in Sec. IV
show that the excitation of an ion-propagating direction
coherent structure not predicted by linear simulations is
associated with the development of zonal flows. Results
are summarized and discussed in Sec. V.



2

II. NUMERICAL MODELING

We investigate trapped particle drift-waves through
the gyrokinetic framework37,38. TheGene code39 is used
to solve the coupled gyrokinetic Vlasov-Maxwell system
of equations in both linear and nonlinear simulations.
Simulations are performed in flux tube geometry40,41,
where, by definition, the background equilibrium pres-
sure and its gradients are constant. The GIST code42

is used to calculate the metric elements of the 3-D mag-
netic field configuration of HSX in a flux tube, where
the metric elements are now solely a function of the par-
allel coordinate along the magnetic field. In a periodic
modular stellarator such as HSX, the flux tube is only
computed for one field period and quasi-periodic bound-
ary conditions are applied in the parallel direction.
In a tokamak, one flux tube is identical to all other flux

tubes on the same magnetic surface, and thus a single flux
tube can be used to represent a magnetic surface. This is
not the case in stellarators43, where different flux tubes
can experience different curvatures and trapping regions
along the field line, with resulting changes to drift-wave
behavior. The two representative flux tubes used in this
work at the half-radius in the toroidal flux coordinate
Ψ/Ψ0 ≃ 0.5 (r/a ≃ 0.71) are identified by the shape of
the plasma cross-section at zero poloidal angle. The nor-
malized normal curvature and normalized magnetic field
strength of the flux tubes are given in Fig. 1, correspond-
ing to a bean shaped cross-section, and Fig. 2, corre-
sponding to a triangular cross-section. The flux tubes
will hereafter be identified as HSX-b and HSX-t, respec-
tively, and are the up-down symmetry planes one-half
field period away from each other. As seen in Figs. 1,
2, a feature of both flux tubes is the correlation of the
regions of bad (negative) curvature and magnetic field
minima (trapped particle regions), which is similar to
tokamak geometry. However, unlike a tokamak, the ma-
jority of particles trapped in these wells are not toroidally,
but rather helically trapped.
The geometry of HSX is such that the averaged mag-

netic field shear is very small across the plasma radius. In
flux tube simulations, periodicity at the parallel bound-
ary requires41

Lx = N/
(

|ŝ|kmin
y ρs

)

(1)

where the background magnetic shear is defined as ŝ =
r0
ι

dι
dx

∣

∣

r0
, where d/dx denotes the radial derivative of the

rotational transform profile ι and r0 is the minor radius
of the flux surface under investigation. Lx designates
the radial box size, N is a positive integer and kmin

y ρs
is the minimum binormal mode number simulated. If
ŝ becomes small, the box size in the radial direction can
become quite large, in contrast to many tokamak applica-
tions with ŝ ∼ O(1). At the half-toroidal flux surface, the
background magnetic shear is ŝ = −0.045 and decreases
as r/a → 0, which leads to typical box sizes Lx & 200ρs,
where ρs is the ion sound gyroradius. As the numerical
resolution in the radial direction is set such that O(ρs)

-0.1

 0

 0.1

-1 -0.5  0  0.5  1

 1.1

 1.2

 1.3

κ

|B
|

z (π)

κ
|B|

FIG. 1. Normalized normal curvature (red dotted line) and
normalized magnetic field strength (blue dashed line) in the
parallel direction in HSX-b. Negative curvature indicates bad
curvature.
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FIG. 2. Normalized normal curvature (red dotted line) and
normalized magnetic field strength (blue dashed line) in the
parallel direction in HSX-t. Negative curvature indicates bad
curvature

features are captured, the large radial box size provides
a significant computational constraint for flux-tube sim-
ulations.
Two different TEM parameter sets will be investigated.

As HSX operates with primarily ECRH heating, the ions
have a flat temperature profile for a majority of the mi-
nor radius. As such there will be no ion temperature gra-
dient in the following simulations. The first parameter
set will be called the “standard” TEM and was selected
to capture the essential physics of the density-gradient-
driven TEM when both a density and electron temper-
ature gradient are present but the density gradient is
larger (ηe = dlnTe/dlnne < 1). It uses the normalized
density gradient a/Ln = 2 and normalized electron tem-
perature gradient a/LTe = 1, where a is the averaged

minor radius, Lξ =
1
ξ
dξ
dx

is the inverse length scale for any
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scalar ξ and Te0/Ti0 = 1 with mi/me = 1836, where Ts0,
ms is the background temperature and mass of species
s. The standard TEM parameter set will be applied to
simulations in both flux tubes.
The second parameter set was selected to examine the

sensitivity of the TEM to only the driving density gradi-
ent. This parameter set uses four different density gradi-
ent values, a/Ln = 1, 2, 3, 4 and no electron temperature
gradient. This parameter set will only be used in simula-
tions done for HSX-b. The normalized electron pressure
is β = 8πne0Te0/B

2
0 = 0.05%, where ne0 is the back-

ground electron density.

III. LINEAR INSTABILITY ANALYSIS

The linear growth rates, frequencies and mode struc-
tures presented in this section have been calculated by
two different methods. Initial value simulations are used
to obtain only the fastest growing mode at each kyρs.
Eigenvalue simulations calculate both the dominant and
subdominant modes at each kyρs. The three-dimensional
nature of the magnetic geometry makes for a rich eigen-
mode landscape characterized by many subdominant,
but growing modes for each kyρs.
The growth rates have been checked for convergence

with resolution, by performing a series of simulations
with increasingly fine resolution until the growth rates
show no change. Two factors make these simulations
substantially more expensive than tokamak simulations:
(1) the magnetic field along the field line has more struc-
ture, and as such, stellarator simulations may require be-
tween 3 and 10 times as much resolution in the parallel
direction9,23; and (2) the low ŝ allows linear modes at low
kyρs to become very extended along the field line and re-
quire large numbers of radial connections to resolve, cor-
responding to increasingly fine radial grids in real space.
For linear simulations, we used a numerical grid size of
Nz ×Nv‖ ×Nµ = 64× 36× 8 with 17 ≤ Nx ≤ 97, where
µ is the magnetic moment. The parallel hyper-diffusion
coefficient, see Ref.44, was set to ǫz = 4.

A. Linear dispersion relation

First we examine the linear behavior for both HSX-b
and HSX-t. The growth rates and real frequencies for the
standard TEM case in both flux tubes are presented in
Fig. 3. The magnitude of the maximum growth rates are
different (γ = 0.643 in HSX-b vs. γ = 0.443 in HSX-t),
and the peak occurs at slightly different kyρs (kyρs = 2.1
in HSX-b vs. kyρs = 1.6 in HSX-t). The difference in
growth rate magnitudes can be explained by examining
Figs. 1 and 2. With z in Figs. 1, 2 as the parallel coor-
dinate, one can see in Fig. 1 (HSX-b) a region centered
around z = 0 corresponding to a magnetic field minimum
and unfavorable curvature. The situation is reversed in
HSX-t, where modes localized near z = 0 see favorable
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FIG. 3. Linear growth rates (top) and real frequencies (bot-
tom) in HSX flux tubes for canoncial TEM parameter set:
a/Ln = 2, a/LTe = 1. The different dominant mode regions
are identified as the B modes for HSX-b and the T modes for
HSX-t. The red dashed lines indicate the approximate bound-
aries between different dominant B modes and the blue solid
line is the approximate boundary between T modes. Neg-
ative real frequencies indicate modes with electron-direction
drift frequencies.

curvature. The observed faster growth at high-kyρs in
HSX-b is more strongly ballooning, i.e. its structure is
mainly confined to kx = 0, whereas its HSX-t counter-
part peaks at a finite |kx| = ±4, 6π.
The peak growth rates in HSX are at larger

kyρs compared with density-gradient-driven TEM in
tokamaks26,28, where kyρs (γmax) . 0.7. They are com-
parable to the kyρs of peak growth rates in W7-X23,
where kyρs (γmax) ≈ 1.6. Applying a simple quasilinear

estimate for the heat flux, QQL
ky ∝ γk/ (kyρs)

2
(assuming

kx = 0) suggests that scales at kyρs < 1, where both
HSX-b and HSX-t have similar linear growth rates, will
likely dominate transport. Thus despite there being a
significant difference in the maximum linear growth rates
between the two flux tubes, the nonlinear behavior of the
flux tubes may be similar.
The real frequencies show electron propagation direc-

tion modes for kyρs ≤ 2. This feature of the linear modes
is robust against variations in β, where the low-kyρs lin-
ear modes maintain electron propagation direction. No
kinetic ballooning modes are expected, as β = 0.05% is
well below marginal ideal MHD ballooning stability point
for HSX45. The real frequencies in Fig. 3 show discon-
tinuities in kyρs for kyρs < 1, which is indicative of the
coexistence of different modes. These modes will be clas-
sified in Sec. III C. At the high-kyρs end of the spectrum,
the real frequencies for both flux tubes cross the ωr = 0
boundary shortly after the peak growth rate, switch-
ing from electron to ion propagation direction. This
type of mode has been observed in linear TEM simu-
lations for a variety of configurations from stellarators23

to tokamaks26,28,46 and the reversed-field pinch47, and is
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FIG. 4. Linear growth rates (top) and real frequencies (bot-
tom) in HSX-b for the density gradient scan: a/Ln = 1− 4,
a/LTe = 0. Approximate mode boundaries are indicated by
the dashed vertical lines. The mode types are determined by
the analysis in Secs. III B and III C.

referred to as the “ubiquitous” mode48. Despite the high
growth rates in these modes, the high kyρs modes con-
tribute a relatively small amount to the overall transport,
as is shown in Sec. IV, due to the quasilinear k−2

⊥ scaling.
To isolate the role of the density gradient, we set the

electron temperature gradient to zero and only vary the
density gradient. The growth rates and real frequencies
for the density gradient scan in HSX-b are presented in
Fig. 4. Without an electron temperature gradient, the
linear growth rates and frequencies for the density gradi-
ent scan are similar to that of the standard TEM, provid-
ing evidence that the standard TEM is a density-gradient
driven TEM with little sensitivity to a/LTe, and is a gen-
eral property of HSX plasmas, consistent with previous
work8,24,25. The high kyρs ubiquitous mode transitions
to a different mode at even higher kyρs as a/Ln is in-
creased. The behavior of the different modes at low kyρs
becomes clearer, as the different mode boundaries are
delineated by discontinuities in the real frequencies. Ex-
amination of the potential mode structures, shown for
the standard TEM parameters in Sec. III C, reveal that
the dominant mode at each kyρs for each a/Ln are the
same as the modes at each kyρs for the standard TEM.
At kyρs = 0.1, the growth rate for each a/Ln is small,
which was also observed in the standard TEM simula-
tions, indicating it may not be necessary to resolve lower
kyρs in nonlinear simulations.

B. Linear eigenmode structure

The eigenmodes in Figs. 3 and 4 are distinguished un-
der the assumption that the real frequencies of a particu-
lar mode branch should be a continuous function in kyρs.
One can distinguish four different dominant linear modes
in HSX-b but only two different dominant linear modes
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FIG. 5. The normalized real and imaginary parts of the ex-
tended mode structure in the electrostatic potential Φ for the
four different dominant modes in Fig. 3 for HSX-b for stan-
dard TEM parameters: a/Ln = 2, a/LTe = 1.

in HSX-t. The potential structure in the ballooning rep-
resentation for the different mode branches of HSX-b and
HSX-t are shown in Figs. 5 and 6, respectively, as a func-
tion of the ballooning angle θ = z + 2πp, where p is an
integer49. For HSX-b, there is significant variation in
the structure between modes. At kyρs = 0.1, mode B1 in
Fig. 5 has a strongly extended envelope in θ with max-
ima symmetrically located at roughly θ ∼ ±10π in the
ballooning angle. On top of the extended envelope, there
are spikes in the mode amplitude within each radial con-
nection (every 2π in θ), which correspond to the localized
bad curvature at z = 0 in Fig. 1. These spikes are well-
resolved. The broad envelope and narrow spikes indicate
two disparate scales in the modes at low kyρs. The com-
bination of low kyρs and small ŝ leads to a slab-like mode
that extends along the field line, where the larger scale
is related to the magnetic shear ŝ and the small scale is
related to the localization via bad curvature. This re-
sult is consistent with what occurs in a tokamak, where
lower kyρs modes have broader ballooning structure50,
particularly in the ŝ ≪ 1 limit49,51.
For 0.2 ≤ kyρs ≤ 0.6, corresponding to mode B2 of

Fig. 5, the mode still has an extended structure, but the
envelope peaks more narrowly at θ ≈ ±20π, which cor-
responds to a finite-kx mode. Mode B3, dominant for
0.7 ≤ kyρs ≤ 0.9, is considerably more localized but pos-
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FIG. 6. The normalized real and imaginary parts of the ex-
tended mode structure in the electrostatic potential Φ for the
two different dominant modes in Fig. 3 in HSX-t for standard
TEM parameters: a/Ln = 2, a/LTe = 1.

sesses tearing parity, Φ has odd parity, unlike the other
modes. The mode peaks in the first radial connection,
±2π, indicating it is a finite-kx mode. For kyρs > 0.9,
the ubiquitous mode is now highly localized to θ = 0.
This mode is responsible for the maximum growth rate
and the structure of the mode does not change as the
real frequency changes from electron to ion propagation
direction.
Some of the modes in HSX-t show a markedly different

character than the modes at equivalent kyρs for HSX-b.
The mode T1a at kyρs = 0.1 has two distinct, extended
lobes that peak at θ = ±9π. Unlike the mode B1 of
Fig. 5, the amplitude in the central −π < θ < π range,
corresponding to kx = 0, is small. The T2 modes of
Fig. 6, dominant for kyρs ≥ 0.8 have the same character
and parity, with peak amplitudes on either side at θ =
±5π. The T2 modes are identified with the ubiquitous
mode for HSX-t and are distinct from the B3 mode due
to lack of tearing parity. There does not appear to be an
equivalent mode with tearing parity in HSX-t.

C. Linear eigenmode classification

The sensitivity of these modes to the driving gradients
was examined by independently applying a 10% variation

TABLE I. Classification of the different linear modes in HSX-
b and HSX-t based on ∆γ/γ0 change in growth rate for 10%
increases in driving density and temperature gradient, stabi-
lization due to β, negative (positive) sign denotes propagation
in electron (ion) drift direction, and mode parity (ballooning
or tearing). The acronyms are explained in the text.

Mode B1 B2 B3 B4 T1 T2
a/Ln + 10% 0.5 0.076 0.044 0.058 0.068 0.076
a/LTe + 10% 0.0 0.020 0.001 0.012 0.05 0.012
β stab. No Yes Yes Yes Yes Yes
Drift Dir. − − − −/+ − −/+
Parity Ball. Ball. Tear. Ball. Ball. Ball.
Name TEM1 TEM2 TTEM UTEM TEM UTEM

to the density and temperature gradients of the standard
TEM parameter set. For each of the different modes in
Figs. 3 and 4, the growth rates have a positive corre-
lation with increasing density and electron temperature
gradient, but consistently show a stronger dependence
on the density gradient. Increases in β generally result
in moderately decreasing growth rates, hence partial sta-
bilization, for all modes except B1.
With all of these considerations in mind, we have clas-

sified the B modes in HSX-b and the T modes in HSX-t
according to Table I. We will call the B1 mode TEM1
and mode B2 TEM2. The B3 modes are called “tearing-
parity” TEM (TTEM) and behave much like the ubiq-
uitous mode B4. Finally, the B4 modes are ubiquitous
modes (UTEM). HSX-t shows only two distinct modes,
with the T1 mode being a more traditional TEM and
the T2 mode the ubiquitous mode (UTEM) for that flux
tube.
To examine the behavior of the dominant eigenmodes

in Figs. 3 and 4, we computed the first five most unstable
linear eigenmodes for the standard TEM at every kyρs.
The results are shown in Fig. 7 with the five eigenvalues
denoted as EV#1 to EV#5. An aspect of the eigenvalue
decomposition that is pervasive in HSX simulations and
markedly different from tokamak results is the clustering
of linear eigenmodes. The first four most subdominant
modes in the range kyρs ≤ 0.6 all have growth rates
that are only slightly smaller than that of the dominant
mode and very similar, real frequencies. As such, the
precise ordering of the four subdominant modes was not
investigated for kyρs ≤ 0.6.
Fig. 7 shows that the TTEM is the dominant mode for

0.7 ≤ kyρs ≤ 0.9 (the red �) but becomes subdominant
to the ubiquitous mode for kyρs ≥ 1. At no point in the
range 0.7 ≤ kyρs ≤ 2.1 does the TTEM cease to exist
and all the subdominant modes at high kyρs exhibit the
same real frequency behavior as the ubiquitous mode.
One feature of Fig. 7 is the pairing of two subdominant,
unstable modes which are almost identical in both growth
rate and frequency, but not mode structure. For example,
in Fig. 7, for 1 ≤ kyρs, EV#2 has tearing parity (it is
the TTEM) and EV#3 has ballooning parity.
This analysis shows that HSX is unstable to TEM tur-
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FIG. 7. First 5 largest eigenmodes for the standard TEM
parameter set in HSX-b. The eigenvalues at each kyρs are or-
dered from largest to smallest linear growth rate. Continuity
in real frequencies (bottom) shows the existence of at least 5
distinct mode branches for kyρs ≥ 0.7. The different dom-
inant modes (red �) identified by the designations in Table
I.

bulence and there is a variety of linear modes that exist
in the transport-relevant regime in HSX. HSX-b exhibits
multiple TEMs in the range kyρs ≤ 1 while HSX-t ex-
hibits only two different modes. The linear growth rates
calculated in each flux tube are similar in this range de-
spite differences in mode structure. A quasilinear esti-
mate predicts that despite the large growth rates of the
ubiquitous mode, it will not contribute significantly to
transport. The existence of a significant number of multi-
ple, subdominant, unstable eigenmodes at each kyρs adds
complexity to subsequent nonlinear analysis as multiple
modes at the same kyρs can contribute to the turbu-
lence. As a consequence, energy input to the nonlinear
state may be significantly greater than what is inferred
from the dominant mode alone.

IV. NONLINEAR SIMULATIONS OF TURBULENCE IN

HSX

Using the insight gained from linear simulations, non-
linear simulations were performed on the standard TEM
and density gradient scan parameter sets. The default
nonlinear resolution settings use Nky = 48 modes and
kmin
y ρs = 0.1, which sets the radial box size according to

Eq. (1), where N = 1 was chosen to yield the smallest
radial box size possible. The value of kmin

y ρs was checked

for convergence by halving kmin
y ρs and ensuring that the

saturated flux does not change. With kmin
y ρs = 0.1, the

radial box size is Lx = 222ρs and the radial resolution is
set atNx = 192, but as we will show a posteriori, the non-
linear structures are considerably smaller than the radial
box size. Doubling the Nx resolution does not change sat-
urated flux values. The linear resolutions Nz ×Nv‖ ×Nµ
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dard TEM parameters: a/Ln = 2, a/LTe = 1. Also shown
is the time trace of the heat flux in a simulation for HSX-
b where kmin

y ρs was halved (dotted green), showing that the
simulations are converged.

= 64× 36× 8 also result in nonlinearly converged fluxes.
Quantities of interest, such as the heat flux, are deter-

mined, unless otherwise noted, by time averaging over the
quasi-stationary state. All heat fluxes reported here have
gyro-Bohm normalizaion, QgB = csne0Te0 (ρ

∗
s)

2
, where

ρ∗s = ρs/a with a the average minor radius, ne0 is the
background electron density and Te0 is the background
electron temperature. The fluctuating electrostatic po-
tential Φ and electron density ne are reported as normal-
ized values: Φ in terms of (Te0/e)ρ

∗
s and n in terms of

ne0ρ
∗
s.

A. Standard TEM

The time traces of the electron heat flux for both HSX-
b and HSX-t are shown in Fig. 8. From the time traces,
it is apparent that the quasi-stationary electrostatic elec-
tron heat fluxes in the two flux tubes are very similar,
with 〈Qes〉 = 1.75 for HSX-b and 〈Qes〉 = 1.59 for HSX-
t. This result is consistent with the arguments made in
Sec. III A, where the quasilinear estimate predicts that
the kyρs < 1 modes, where both flux tubes have similar
growth rates, dominate the transport.
The electron heat fluxes in Fig. 8 have been decom-

posed into spectral components in kyρs in Fig. 9, high-
lighting some moderate differences between the flux tubes
while confirming the relevance of the kyρs ≤ 1 region.
The heat flux spectrum for HSX-t has only one peak at
kyρs =0.5-0.6 and exhibits a quick decay toward high
kyρs. The spectrum in HSX-b is similar, but the peak
heat flux occurs at slightly higher kyρs = 0.7-0.8. The
important difference between the flux tubes, however, is
the presence of significant flux at kyρs = 0.1 for HSX-b,
which is not predicted by the linear growth rate results
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FIG. 9. Heat flux spectrum in HSX-b with kmin
y ρs = 0.1

(red solid), kmin
y ρs = 0.05 (green dotted) and HSX-t with

kmin
y ρs = 0.1 (blue dashed) for standard TEM parameters:

a/Ln = 2, a/LTe = 1. The simulation with kmin
y ρs = 0.05

has been scaled by a factor of 2 to illustrate more clearly its
near-identical integrated flux level.

FIG. 10. Nonlinear frequencies ω in HSX-b for standard TEM
parameters. The frequencies are obtained by performing a
Fourier transform in time over the quasi-stationary state. The
color scale is linear and independent for each kyρs. Linear
frequencies from Fig. 3 are overlaid with the white and black
dash line.

of Sec. III A.
In a numerically resolved simulation, it is desired to

have only a small amount of flux in the kmin
y ρs wavenum-

ber of the simulation. Fig. 8 shows that HSX-b exhibits
no change in the integrated flux when kmin

y ρs is lowered
to kyρs = 0.05. Fig. 9 demonstrates there is little flux in
the kyρs = 0.05 wavenumber but a peak in the heat flux
spectrum remains at kyρs = 0.1 (and a second peak at
kyρs = 0.2). This indicates that the overall flux in this
low-kyρs feature is captured in either case. As such, ev-
ery result hereafter that we will show uses kmin

y ρs = 0.1.
The nonlinear real frequencies vs. kyρs are shown in

Fig. 10 for HSX-b. The linear frequencies have been over-
laid and the magnitude of the nonlinear frequencies at
higher kyρs are roughly a factor of 3 larger than the lin-

FIG. 11. Contours of Φ (normalized by Te0ρ
∗
s/e) and ne (nor-

malized by ne0ρ
∗
s) fluctuations at zero poloidal angle in (a)

HSX-b and (b) HSX-t. The x direction is radial and the y
direction is poloidal. Zonal flows are present in both flux
tubes, however a coherent structure centered at x = 0 is only
observed in HSX-b.

ear frequencies. The modes corresponding to dominant
transport peak (kyρs ≥ 0.5) have negative frequency,
which indicates they are TEM. The difference in magni-
tude between the linear and nonlinear frequencies could
be the result of either subdominant modes with higher
frequencies or of three wave coupling between different
unstable modes. Without any ion temperature gradient,
no ITG modes are present in these simulations, however,
the modes at low kyρs, near to the low-kyρs transport
peak, all propagate in the ion direction. It is important
to reiterate that no linear subdominant mode with posi-
tive frequency was found at these kyρs.
The contours of the electrostatic potential and electron

density for HSX-b and HSX-t are shown in Figs. 11a and
11b, respectively. These contours are a representative
snapshot taken at the final time step of the simulation
and are not averaged over the saturated phase. There
is zonal flow activity in both flux tubes, as evidenced
by the well-defined, alternating vertical bands of positive
and negative potential. Zonal density structures are rel-
atively weak in the present case, indicating that they do
not play an important role in nonlinear saturation, con-
sistent with corresponding density-gradient-driven toka-
mak results27,28 . The density fluctuations do show that
the turbulence has a somewhat different character be-
tween the two flux tubes. The density fluctuations in
HSX-b (Fig. 11a) away from x = 0 are anisotropic in the
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x-y plane with radial elongation not exceeding the zonal
flow width, which is consistent with one requirement for
eddy shearing by the zonal flows29,30. The HSX-triangle
density fluctuations (Fig. 11b) are more isotropic but are
still appear sheared along the zonal flow boundaries.
The appearance of the zonal flow corresponds with the

turnover of the heat flux at t ≈ 15a/cs in Fig. 8 and
the development of the quasi-stationary state. This in-
dicates that the zonal flows may play a role as the non-
linear saturation mechanism in these simulations, how-
ever the time-averaged, fluctuation-driven E × B shear-
ing rate ωE =

〈

d2Φky=0/dx
2
〉

≈ 0.35 in both flux tubes
and is on the order of the respective linear growth rates.
This shearing rate has not been corrected for the finite-
frequency effects of Ref.52. Typically, uncorrected values
of ωE as defined are consistent with the rule of thumb es-
tablished in Refs.10,53, where ωE ≃ 10γmax should be sat-
isfied if the zonal flows are to be an important nonlinear
saturation mechanism. A different definition of the shear-
ing rate was used in Refs.28,54, where time scales shorter
than an eddy lifetime and spatial scales smaller than the
radial correlation length were filtered from fluctuating
zonal potential, as a result of which their subsequent
shearing rate has to be compared directly to the linear
growth rate, without the application of finite-frequency
corrections or a factor of ≃ 10. To confirm equivalence of
both approaches, our present formalism was applied to
the data of Ref.54, and our definition was found to yield
a shearing rate value about eight times as large as the
other definition, consistent with the aforementioned rule
of thumb.
For the present case, the values of ωE reported here

indicate that the zonal flows may not play as big a role
as a saturation mechanism. A simulation performed with
the zonal flows artificially removed showed that the TEM
turbulence still saturates in the absence of the zonal flows
but with a quasi-stationary flux level 2.7 times larger.
This result confirms that zonal flows are important to
the saturation of the TEM in HSX; this is consistent
with previous results of density-gradient driven TEMs in
tokamaks27,53, where the absence of zonal flows leads to
larger transport. As a consequence, it is concluded that
the use of the shearing rate to determine saturation via
zonal flows does not apply in the present case, perhaps
due to low magnetic shear or the specifics of the satura-
tion.
In the contours of HSX-b in Fig. 11, there is a large

scale coherent structure at x = 0 in the fluctuating po-
tential and density that is not present in HSX-t. This
coherent structure is not static and drifts in the -y (ion)
direction. Filtering out the 0.1 ≤ kyρs ≤ 0.3 components
in Fig. 11 removes this structure and reveals an under-
lying zonal flow smaller in amplitude than the coherent
structure and similar in amplitude to the zonal flows at
other radial positions in the box. The large flux seen in
the flux spectrum of Fig. 9 at kyρs ≈ 0.1 is a product of
this coherent structure.
The coherent structure observed in Fig. 11a shows a
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FIG. 12. kyρs resolved electron heat flux spectrum for stan-
dard TEM parameters in HSX-b for β = 5× 10−4 (solid red)
and β = 5×10−5 (dashed blue). While these values appear to
be rather low, when normalizing to the ballooning threshold,
they become more sizable.

significant dependence on several parameters: the pres-
ence of zonal flows, β, and the background magnetic
shear. In the zonal-flow-free simulation, the coherent
structure was also absent, suggesting that the evolution
of the coherent structure may be moderated by the zonal
flow. Fig. 12 shows that the low-kyρs peak in transport
is eliminated when β is changed from β = 5 × 10−4 to
β = 5×10−5. The time trace (not shown) of heat flux has
slightly higher quasi-stationary flux levels for the lower-β
case, consistent with the linear result where growth rates
throughout most of the kyρs range are slightly stabilized
with increasing β. Simulations performed with an artifi-
cially increased background magnetic shear (not shown)
have reduced the low-kyρs flux and lack a nonlinear co-
herent structure at x = 0, while the integrated flux levels
are not affected as much.
The cross phases of Φ with ne, Te‖, and Te⊥, shown

in Fig. 13, show a clear difference between linear and
nonlinear simulations at low kyρs in HSX-b. In all three
phase relations, the potential is out of phase with the
other quantities at kyρs ≤ 0.2, corresponding to the co-
herent structure. As kyρs increases, the linear and non-
linear phases agree reasonably well for kyρs > 0.3. The
Φ vs. ne and Φ vs. Te⊥ cross phases, Figs. 13a,c, fol-
low the same trend as the trapped-particle population in
Ref.55 for temperature-gradient-driven turbulence, where
the phase angle increases with increasing kyρs. This in-
dicates that despite the linear-nonlinear frequency mis-
match, the turbulence is of TEM type. Next, this inter-
pretation shall be confirmed by comparing dependencies
in the driving density gradient.
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FIG. 13. Nonlinear cross phases between Φ and ne, Φ and
Te‖, and Φ and Te⊥ for the standard parameters in HSX-
b. Overlaid are the linear cross phases (black line) for each
quantity. The color scale for the nonlinear cross phases is
logarithmic. The linear and nonlinear phases differ for kyρs ≤

0.2 where the coherent structure lies, but generally agree for
kyρs > 0.3, where linearly the TEM is dominant.

B. Impact of the density gradient

The nonlinear electrostatic electron heat fluxes for the
density gradient scan parameters, where a/LTe = 0, are
presented in Fig. 14. These values are on the order of the
observed experimental fluxes obtained from calculations
of the power deposition profile56, where 3 . a/Ln . 4
and 2 . 〈Qexp

es 〉 /QgB . 7 in the region 0.4 ≤ r/a ≤ 0.6.
This suggests that TEM turbulence is responsible for the
observed heat fluxes in HSX.
The scaling of the nonlinear saturated heat flux with
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FIG. 14. Time trace of the electron electrostatic heat fluxes in
HSX-bean for density gradient scan: a/Ln = 1−4, a/LTe = 0.
Larger variability in the flux corresponds with the growth of
the central coherent structure, much like in Fig. 11a.
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kyρs = 0.7 (red �) and nonlinear electron heat flux (blue ⊙)
in HSX-b. A square root fit predicts a linear critical gradient
at a/Ln ≈ 0.2. A linear fit of the a/Ln ≤ 3 range of the
nonlinear fluxes produces an upshift with a nonlinear critical
gradient predicted at a/Ln ≈ 0.8.

driving gradient is shown in Fig. 15 and compared with
the linear growth rates at kyρs = 0.7, approximately
where the nonlinear heat flux spectrum peaks in Fig. 16.
A linear fit has been applied to the nonlinear flux data
for a/Ln ≤ 3. An upshift in critical density gradient
is observed for the nonlinear saturated fluxes, consis-
tent with the TEM nonlinear upshift discovered in toka-
mak simulations26, with a critical density gradient at
a/Ln ≈ 0.8 as compared with a critical density gradi-
ent at a/Ln ≈ 0.2 predicted by the linear growth rate
scaling. The fact that there is an upshift again provides
evidence that zonal flows play a role in moderating the
turbulence28.
The electron heat flux spectrum presented in Fig. 16
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FIG. 16. Electron electrostatic heat flux spectrum for HSX-
b for the density gradient scan: a/Ln = 1 − 4, a/LTe = 0.
The flux at low-kyρs increases steadily with increasing a/Ln,
however the TEM peak at kyρs = 0.7-0.8 still determines the
overall flux level.

shows that the fraction of the flux contributed by the low-
kyρs wavenumbers increases with driving density gradi-
ent. At a/Ln = 4, the fraction of flux for kyρs ≤ 0.3
is approximately 22% of total integrated flux. Again,
the nonlinear frequencies for the low-kyρs modes are ion
frequencies, consistent with Fig. 10.
The increase in a/Ln leads to an increase both in the

variability of the heat flux and in the transport in the
lowest-kyρs wavenumbers, the cause of which can be de-
termined by examining the contours of electrostatic po-
tential, shown for all four a/Ln in Fig. 17. The poten-
tial structures in Figs. 17a and 17b are similar to both
Fig. 11a and Fig. 11b for standard TEM parameters,
showing clear zonal flows. However, there is no coher-
ent structure observed for a/Ln = 1 and subsequently
no low-kyρs transport peak in Fig. 16. For a/Ln = 2
(Fig. 17b), the coherent structure is located near the
radial boundary of the box and is responsible for the
low-kyρs transport peak in Fig. 16. For a/Ln = 3 and
a/Ln = 4, Figs. 17c and 17d show a large amplitude po-
tential structure centered at x = 0 that drifts in the ion
direction and locally dominates the zonal flows.
Decreasing kmin

y ρs to 0.05 (equivalent to doubling the
box size in the y direction) for the a/Ln = 4 simulation
shows the coherent structure at x = 0 retains a similar
scale as in Fig. 17d and that the quasi-stationary flux
level is similar to the kmin

y ρs = 0.1 simulation, indicating
that the a/Ln = 4 simulations presented here are suf-
ficiently resolved to capture the turbulent dynamics at
low kyρs. The bursts and fluctuations seen in Fig. 14 for
a/Ln = 4 are also present in the higher resolution simu-
lation due to the large size and amplitude of the coherent
structure at x = 0.
The same observations about the zonal flow as the sat-

uration mechanism as for the standard TEM parameters
apply here. For a/Ln ≤ 3, the shearing rate ωE is al-

FIG. 17. Contours of Φ fluctuations at zero poloidal angle
in HSX-bean tube with a/LTe = 0 in all simulations. Zonal
flows are present in all simulations and the coherent structure
develops as a/Ln is increased.

ways smaller than the maximum linear growth rate and
only slightly larger than the maximum linear growth rate
for a/Ln = 4. Therefore, zonal-flow-based turbulent sat-
uration may rely on energy transfer to damped modes
rather than shearing. The associated density fluctua-
tions to Fig. 17 are comparable to the potential fluctu-
ations but zonal density as a saturation mechanism is
again precluded by the absence of zonal structures in the
density.

V. CONCLUSIONS

We have performed an in-depth gyrokinetic study of
density-gradient-driven TEM turbulence in the HSX stel-
larator. Linear simulations show that HSX profiles are
unstable to TEMs across a large kyρs range, with the
HSX flux tube corresponding to the “bean” shape having
larger growth rates than the HSX flux tube correspond-
ing to the triangular cross section. In the investigated
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range 0.1 ≤ kyρs ≤ 6 we have found four distinct domi-
nant TEM-type modes in HSX-b and two in HSX-t. The
TEMs at low kyρs have a two-scale ballooning structure,
with an extended envelope whose width is influenced by
the low shear and localized spikes in amplitude due to lo-
calized regions of overlapping bad curvature and particle
trapping. At higher kyρs, the modes become substan-
tially more localized, and an analysis of the five most
unstable modes for each kyρs in HSX-b shows that there
is a distinct tearing parity TEM that transitions from
dominant to subdominant as kyρs exceeds 0.9. HSX-t
does not exhibit a dominant tearing parity TEM at any
point.
Nonlinear TEM simulations show that the two flux

tubes have similar quasi-stationary flux levels, in agree-
ment with quasilinear estimates based on the similarity of
growths for kyρs < 1. The kyρs flux spectra between the
two flux tubes only differ in that there is a peak in the flux
at kyρs = 0.1 in HSX-b, which does not occur for HSX-
t and is not predicted by a quasilinear estimate. This
low-kyρs transport peak is the consequence of a robust
coherent structure in HSX-b, which is further destabi-
lized by a/Ln and β and can be eliminated by increasing
the background magnetic shear. The characteristic fre-
quencies and phase relations associated with the coherent
structure have no equivalents in any of the performed lin-
ear calculations. Examination of the potential contours
shows that the nonlinear coherent structures are radially
localized to the resonant magnetic surface at the center
of the simulation domain.
Zonal flows were present in all nonlinear simula-

tions, consistent with the tokamak-based expectations for
density-gradient-driven TEM. Artificially removing the
zonal flows confirms that the TEM is saturated by zonal
flow interactions, however, the E×B shearing rates are
much smaller than what one would expect in turbulence
that saturates through zonal flow shearing. Instead, en-
ergy transfer between different modes and moderated by
the zonal flows may be responsible for nonlinear satura-
tion. This, however, has not been confirmed and will be
left for future investigation.
Simulated turbulent heat fluxes are comparable with

experimental observations. While additional study along
these lines will be necessary – e.g., investigating the im-
pact of non-unity temperature ratio – it is concluded that
density-gradient-driven TEM microturbulence is an ex-
cellent candidate in explaining heat fluxes in the HSX
stellarator.
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