
Fully dynamic all-pairs shortest paths with worst-case
update-time revisited∗

Ittai Abraham† Shiri Chechik‡ Sebastian Krinninger§

Abstract

We revisit the classic problem of dynamically maintaining shortest paths between all
pairs of nodes of a directed weighted graph. The allowed updates are insertions and deletions
of nodes and their incident edges. We give worst-case guarantees on the time needed to
process a single update (in contrast to related results, the update time is not amortized
over a sequence of updates).

Our main result is a simple randomized algorithm that for any parameter c > 1 has a
worst-case update time of O(cn2+2/3 log4/3 n) and answers distance queries correctly with
probability 1− 1/nc, against an adaptive online adversary if the graph contains no negative
cycle. The best deterministic algorithm is by Thorup [STOC 2005] with a worst-case update
time of Õ(n2+3/4) and assumes non-negative weights. This is the first improvement for this
problem for more than a decade. Conceptually, our algorithm shows that randomization
along with a more direct approach can provide better bounds.

∗To be presented at the Symposium on Discrete Algorithms (SODA) 2017. This work was done in part while
the authors were at Microsoft Research Silicon Valley Lab, Mountain View, USA.
†Hebrew University of Jerusalem, Israel.
‡Tel Aviv University, Israel. This research was supported by the ISRAEL SCIENCE FOUNDATION (grant

No. 1528/15).
§Max Planck Institute for Informatics, Saarland Informatics Campus, Germany. Work done in part while

at the University of Vienna, Faculty of Computer Science, Austria, and while at the Simons Institute for the
Theory of Computing, Berkeley, USA.

1

ar
X

iv
:1

60
7.

05
13

2v
2

 [
cs

.D
S]

 6
 N

ov
 2

01
6

1 Introduction
In the all-pairs shortest paths (APSP) problem we are interested in computing the distance
matrix of a given graph. In the fully dynamic version of this problem the graph might undergo
updates in the form of insertions and deletions of nodes and their incident edges. The goal is
to refresh the distance matrix after each such update as quickly as possible. In particular we
want algorithms that are more efficient than recomputing the distance matrix from scratch
after every update in the graph. The time needed to perform the operations for refreshing the
matrix is called update time. Our main result is a fully dynamic APSP algorithm for weighted
directed graphs with n nodes. Our algorithm is randomized and answers queries correctly
with high probability (the probability of error is polynomially small (n−c)) against an adaptive
online adversary [BBK+94]. This type of adversary cannot see the algorithm’s random coins
and internal data structure, but it may choose arbitrary updates and path queries based on all
previous responses of the algorithm.

Theorem 1.1. For every c ≥ 1, there is a randomized fully dynamic algorithm for maintaining
the distance matrix of a weighted directed graph containing no negative cycles that, with
probability at least 1− 1/nc, has a worst-case update time of O(cn2+2/3 log4/3 n) and is correct
against an adaptive online adversary.

In the past years (see Section 1.3) there has been significant progress on dynamic shortest
path problems. However, obtaining worst-case bounds for the most general setting of arbitrary
graphs with weights seems challenging. Despite considerable recent attention to dynamic graph
problems, the only result in this model is the deterministic algorithm of Thorup [Tho05] from
STOC 2005 that obtained worst-case update time of Õ(n2+3/4) for non-negative weights.1

We present the first solution that takes advantage of randomization to improve the worst-
case update time from Õ(n2+3/4) to Õ(n2+2/3) and extend it to negative weights. We believe this
trade-off (significantly better update time at the cost of negligible (n−c) probability of being
wrong) is an important point on the design space of fully dynamic shortest path algorithms. In
addition, our solution is arguably simpler than the one of Thorup [Tho05]. The algorithm of
Thorup [Tho05] relies on the algorithm of Demetrescu and Italiano [DI04] and it is essentially
a sophisticated de-amortization of Demetrescu and Italiano [DI04]. In contrast, both our
algorithm and analysis are pretty simple and independent of other sophisticated algorithms.
Although our algorithm is not deterministic, its guarantees are stronger than those of many
other randomized shortest paths algorithms. Namely, it supports updates by an adaptive online
adversary and not just an oblivious adversary. This means that the adversary is allowed to
base its updates on to the shortest paths previously returned by the algorithm (but does not
directly see the algorithm’s internal randomness). The weaker oblivious adversary has to fix its
sequence of updates before the algorithm starts.

Our algorithms compute the distance matrix explicitly after every update. In general, this
is not required for a fully dynamic algorithm as long as it is able to answer queries for the
distances between nodes after each update step. The time needed to perform a single query

1We use Õ(·) to hide polylogarithmic factors in n.

2

is called query time. Our algorithms have constant query time when asked for the distance
between two nodes. They can easily be extended to also output the shortest path connecting
two nodes in time proportional to the length of the path at the cost of an additional factor of
logn in the update time (see Section 4.4). Restricting the allowed updates to insertions and
deletions of nodes is no loss of generality: insertions and deletions of edges as well as edge
weight increases can be simulated by at most two node updates.

1.1 Additional results

We believe that Sankowski’s framework for maintaining the matrix adjoint [San04, San05] gives
a randomized fully dynamic algorithm for maintaining the distance matrix of an unweighted
directed graph with a worst-case update time of Õ(n2+1/2). However it seems that this extension
is inherently limited to maintaining distances and cannot efficiently be extended to output also
the shortest path connecting two nodes in time proportional to the length of the path.

In Section 4.2 we resolve this shortcoming. We show how to extend our scheme to unweighted
graphs with a worst-case update time of Õ(n2+1/2) and allow to output also the shortest path
connecting two nodes in time proportional to the length of the path (see also Section 4.4).

Finally in Section 4.3 we show that our scheme can be extended to a deterministic version
with negative weights and obtain a worst-case update time of O(n2+3/4 log2/3 n). This result
improves on the best known deterministic result by reducing the logarithmic factors.

1.2 Recomputing from scratch

An alternative approach is to recompute all-pairs shortest paths from scratch on each update.
Fully dynamic algorithms (like ours and Thorup’s) improve on this approach when the edge
weights can be relatively large or when the graph is unweighted (like ours and Sankowski’s). In
the static setting, Zwick’s pseudopolynomial all-pairs shortest paths algorithm [Zwi02] has a
running time of O(n2.5302) [Gal12] if its input is a directed graph with integer edge weights from
{−W, . . . , 0, . . . ,W} such that W ≤ n3−ω. However, Zwick’s algorithm achieves its superior
running time in this regime by using a fast rectangular matrix multiplication algorithm as a
subroutine. Large constants in the running times of these algorithms make it worthwhile to
find solutions that do not rely on fast matrix multiplication as a subroutine. For arbitrary edge
weights, the current fastest algorithm has a running time of O(n3/2Ω(log1/2 n)) [Wil14, CW16].

1.3 Related work

Unless noted otherwise, the algorithms cited in this section are deterministic and allow insertions
and deletions of nodes and their incident edges in directed graphs with non-negative edge
weights.

Fully dynamic algorithms. The study of fully dynamic APSP algorithms for general
directed graphs was initiated by King [Kin99]. She obtained a fully dynamic algorithm with
a pseudopolynomial amortized update time of O(n2+1/2

√
W logn), where the edge weights

3

have to be positive integers and W is the largest among the weights. She also presented
(1 + ε)- and (2 + ε)-approximations (for any positive constant ε) with amortized update times
of O(n2 log3 (Wn)/ε2) and O(n2 log2 n/ log logn), respectively.

Later, Demetrescu and Italiano [DI06] obtained an algorithm allowing arbitrary edge weight
updates with an amortized update time of O(n2+1/2

√
S log3 n), where each edge can assume at

most S different real values. Using a new framework for exploiting local properties of shortest
paths Demetrescu and Italiano [DI04] obtained an algorithm with an amortized update time of
O(n2 log3 n). This result is essentially optimal (up to logarithmic factors) if we demand that
the algorithm has to maintain the distance matrix explicitly. Thorup [Tho04] slightly improved
this update time to O(n2(logn+ log2 ((n+m)/n))), thus subsuming previous results on this
problem in terms of running time. Subsequently, Thorup [Tho05] developed an algorithm with
a worst-case update time of Õ(n2+3/4) by deamortizing [DI06]. There are also two randomized
algorithms for unweighted directed graphs with non-constant query time. The first one by
Roditty and Zwick has an amortized update time of Õ(m

√
n) and a query time of O(n3/4). The

second one by Sankowski [San05] uses fast matrix multiplication as a subroutine and has a
worst-case update time of O(n1.932) and a query time of O(n1.288).

Further results include fully dynamic algorithms for planar [KS98, HKR+97, FR06, ACG12]
and undirected graphs [RZ12, Ber09, Ber16, ACT14].

Partially dynamic algorithms. In the partially dynamic model only one type of updates
is allowed. The incremental model is restricted to insertions and the decremental model is
restricted to deletions. The amortized update time bounds of partially dynamic algorithms in
all known algorithms do not depend on the number of updates performed. Thus it is often
convenient to report the total update time, which is the sum of the individual update times.

A simple incremental algorithm for inserting a single node can be obtained by running
one iteration of the Floyd-Warshall algorithm, which takes time O(n2), or, total update time
O(n3) for inserting n nodes. Ausiello et al. [AIMS+91] presented an incremental algorithm for
inserting edges or decreasing edge weights in integer weighted graphs with a total update time
of O(n3W log (nW)), where W is the largest edge weight.

In terms of node deletions, the algorithm of Demetrescu and Italiano [DI04] has a total
update time of O(n3 logn). The fastest decremental algorithms for edge deletions have total
update times of randomized O(n3 log2 n) in unweighted graphs [BHS07], or O(n3S log3 n) in
weighted graphs [DI06], where S is the number of different values each edge assumes (edge
deletions are implemented by setting the weight of the edge to ∞). If we allow approximate
answers, the state of the art is a randomized algorithm by Bernstein [Ber16]: in directed graphs
with integer edge weights decremental (1 + ε)-approximate APSP can be maintained with
a total update time of Õ(mn logW/ε), where W is the largest edge weight.2 Related work
includes various approximation algorithms for undirected graphs [BHS03, RZ12, BR11, HKN16,
AC13, HKN14a, ACT14], in particular also for the single-source shortest paths problem [ES81,
BR11, HKN13, HKN14a, HKN14b, BC16].

2Equivalently, if the graph has rational edge weights, the total update time is Õ(mn logR/ε), where R is the
ratio of the largest to the smallest edge weight.

4

2 Preliminaries
In the rest of this paper we consider a weighted directed graph G undergoing insertions and
deletions of nodes and their incident edges. At every insertion of a node its incoming and
outgoing edges and their respective weights are specified. We define V and E to be the sets
of nodes and edges of G, respectively. We set n = |V | and m = |E|. Given a subset S ⊆ V
of nodes we denote by G \ S the subgraph of G induced by V \ S. The weight of an edge
(u, v) ∈ E is denoted by w(u, v). We define the length of a path to be the sum of the weight of
its edges. The shortest path from s to t is the minimum length path from s to t (or ∞ if no
such path exists). The distance from s to t in a graph G is the length of the shortest path from
s to t and is denoted by dG(s, t). A ≤ h hop path is a path consisting of at most h edges. The
shortest ≤ h hop path from s to t is a path with minimum length among all ≤ h hop paths
from s to t. We denote by dh

G(s, t) the length of the shortest ≤ h hop path from s to t (or ∞ if
no such path exists). Note that shortest ≤ h hop paths may be different from shortest paths in
the case where the shortest paths contain more than h edges.

In our algorithm we use the well-known fact that good hitting sets can be obtained by
random sampling. This technique was first used in the context of shortest paths by Ullman
and Yannakakis [UY91]. A general lemma can be formulated as follows.

Lemma 2.1. Let a ≥ 1, let T be a set of size t and let S1, S2, . . . , Sk be subsets of T of size at
least q. Let U be a subset of T that was obtained by choosing each element of T independently
with probability p = min(x/q, 1) where x = a ln (kt) + 1. Then, with high probability (whp), i.e.,
probability at least 1− 1/ta, the following two properties hold:

1. For every 1 ≤ i ≤ k, the set Si contains a node of U , i.e., Si ∩ U 6= ∅.

2. |U | ≤ 3xt/q = O(at ln (kt)/q).

A second ingredient of our algorithm is a simple technique for handling adversarial dis-
tribution of loads. The lemma below was observed by Levcopoulos and Overmars [LO88]
in the context of balanced search trees. Thorup later applied it to bounding the number of
precomputed paths through certain nodes in his fully dynamic APSP algorithm [Tho05].

Lemma 2.2 ([LO88]). Consider the following process for repeatedly distributing L stones on k
piles. In each round, remove the pile with the maximum number of stones (together with the
stones it contains) and let an adversary distribute a total of at most L stones on the remaining
piles. Then, at any time, the maximum number of stones on any pile is O(L log k).

Our last ingredient is a reduction for obtaining a fully dynamic algorithm from a decremental
algorithm. This approach was first taken by Henzinger and King for the dynamic minimum
spanning tree (MST) problem [HK01] and a later variant was used by Thorup [Tho05]. Consider
a decremental algorithm that, after a preprocessing stage, can handle a single batch of up
to 2∆ deletions. First we reduce the cost of the pre-processing by a factor of ∆ at the cost
of supporting at most ∆ deletions (instead of 2∆). This is done by keeping two copies: at
every interval of ∆ operations, one copy is used to answer queries and the other copy is being

5

gradually built (in each round a 1/∆ fraction of the pre-computation is executed). When the
gradually built copy is ready to serve queries, it is ∆ rounds behind, but this is okay because it
can handle 2∆ deletions and we simply add the at most ∆ deletions of the previous interval to
the at most ∆ deletions on the current interval.

Second, reducing this decremental-only algorithm to a fully dynamic one at the cost of
O(∆n2) time per update is done by running a modification of the Floyd-Warshall algorithm.
Recall that standard Floyd-Warshall algorithm operates in iterations. In each iteration the
algorithm selects a new vertex and updates the shortest paths of all pairs by allowing them to
use the new selected node together will all previously selected nodes. Notice that for our needs,
this means that we can start from the result of the decremental algorithm and do only 2∆
iterations, one for each new inserted node. Each iteration takes time O(n2) so the entire process
takes time O(∆n2). Note that we do this operation from scratch after every update. That is,
after every update (deletion or insertion) the algorithms invokes these O(∆) Floyd-Warshall
iterations. Therefore, we only need to maintain the decremental data structure dynamically.
In Section 4.1 we extend this reduction such that the graph may have negative weights, but no
negative cycles, while the decremental algorithm only needs to work with non-negative edge
weights.

Lemma 2.3 ([HK01],[Tho05]). If there is a decremental APSP algorithm supporting any
sequence of up to 2∆ deletions that spends time tpre for preprocessing the initial graph and
worst-case time tdel per deletion, then there is also a fully dynamic APSP algorithm with a
worst-case update time of O(tpre/∆+tdel +∆n2). The query time of the fully dynamic algorithm
is proportional to the query time of the decremental algorithm.

3 Decremental shortest paths for a batch of deletions
In this section we design a randomized algorithm with the following properties. We are given
a directed graph with non-negative edge weights and preprocess it in time Õ(n3). After the
preprocessing phase, a batch of nodes D to be deleted from the graph is given to us and we have
to compute the all-pairs distances in G \D. We will perform this task in time Õ(n2.5√|D|).
Theorem 3.1 (Batch deletion algorithm). Given a graph G = (V,E) and a parameter c ≥ 1,
Algorithm 1 computes a data structure D in time O(n3 log2 n) such that given D and a single set
of nodes D ⊆ V , Algorithm 2 computes the all-pairs distances of G\D in time O(n2.5√|D| logn).
The running time bounds and the correctness each hold with probability at least 1− 1/nc.

Using the reduction of Lemma 2.3 this immediately implies our main result (Theorem 1.1)
by setting ∆ = dn1/3 log2/3 ne. We now describe the decremental algorithm and then analyze
its correctness and its running time.

3.1 Algorithm description

Our algorithm follows a hierarchical approach where, for every 1 ≤ i ≤ dlogne, layer i is used
to obtain the shortest paths whose number of edges is between hi/2 and hi where hi = 2i.

6

Preprocessing. For every layer i (with 1 ≤ i ≤ dlogne), in the preprocessing phase, we
first randomly sample a set Ci of Õ(n/hi) nodes, called centers, which with high probability
will ‘hit’ every shortest path in the graph that has at least hi/2 edges. The bound on the
size of Ci is guaranteed with high probability. After the sampling we visit a subset Ri of the
nodes in a specific order that is determined by the algorithm ‘on-the-fly’. Every time we visit a
node v, we perform the following operations in the graph Gv

i from which all edges incident to
previously visited nodes have been removed: for every node x we compute the shortest ≤ hi

hop path πv
i (v, x) from v to x and the shortest ≤ hi hop path πv

i (x, v) from x to v by running
hi iterations of the Bellman-Ford algorithm in Gv

i and its reverse graph. To be precise, we
compute the shortest ≤ hi hop paths with the minimum number of edges. We keep a counter
for every node u to count the ‘congestion’ of u, which for us is the total number of shortest
≤ hi hop paths containing u computed in the preprocessing.

The order in which we visit the nodes is determined as follows. Until all centers have
been visited, we alternate between visiting the center with the largest congestion and the
non-center node with the largest congestion. We will show that this greedy strategy limits the
maximum congestion of each node, which in turn bounds the work we have to do for updating
the shortest paths if this node is deleted later on. Additionally, we compute for every pair of
nodes s and t and every visited node v the distance δi(s, v, t) from s to t through v using the in-
and out-trees computed for v; we then sort all nodes v ∈ Ri according to their value δi(s, v, t)
and store them in a list Li(s, t). Algorithm 1 shows the pseudocode for the preprocessing.
Observe that a shortest path π from s to t can by reconstructed from the stored paths if, for
the hop range hi/2 . . . hi of π, we identify the node v on π that was visited first, which means
that π is contained in Gv, and concatenate πv

i (s, v) and πv
i (v, t). Thus, the minimum of all

δi(s, v, t) gives the distance from s to t (and we can construct the corresponding shortest path).
Whenever a node u is deleted from the graph we destroy some of the paths πv

i (s, v) or πv
i (v, t)

and for such nodes s and t we will recompute the shortest paths from and to v. The number
of destroyed paths is equal to the congestion of u, which is our motivation for limiting the
maximum congestion of each node.

Batch deletions. A batch of deletions given by a set D is processed by first recomputing the
shortest paths consisting of up to h =

√
n/|D| edges and then recomputing the shortest paths

consisting of more than h edges. To find the shortest paths with at most h edges, we perform
the following steps for every 1 ≤ i ≤ dlog he. For every v ∈ Ri, we first iterate over every path
πv

i (x, v) from the preprocessing stage to determine every node x for which the path to v has
been destroyed by one of the deletions in D and store these nodes in the set Uv

i of affected
nodes. Similarly, we add to Uv

i all nodes whose shortest path from v has been destroyed. Note
that for all non-affected nodes the shortest ≤ hi path from and to v did not change since the
preprocessing.

We next explain how to compute the new shortest paths from and to v for nodes in Uv
i

as follows. We compute a sparse sketch graph Hv
i consisting of the following edges. For each

affected node x ∈ Uv
i we add all its incident edges (both incoming and outgoing) to Hv

i . For
each non-affected node x /∈ Uv

i we include two edges: one to the successor of x on πv
i (x, v)

7

Algorithm 1: Preprocessing a graph G = (V,E)
1 Procedure Preprocess(G)
2 for i = 1 to dlogne do
3 hi ← 2i

4 x← 1 + 3(c+ 1) lnn
5 Ci ← ∅ // Set of randomly chosen centers
6 foreach v ∈ V do Ci ← Ci ∪ {v} with probability min(x/hi, 1)
7 Ri ← ∅ // Set of visited nodes
8 foreach v ∈ V do
9 ci(v)← 0 // Initialize congestion counter

10 while Ci \Ri 6= ∅ do // Repeat until all centers have been visited
11 v ← arg maxv∈Ci\Ri

ci(v) // Visit center with largest congestion
12 Visit(v, i)
13 if V \ (Ci ∪Ri) 6= ∅ then // If there are unvisited non-center nodes

// Visit non-center node with largest congestion
14 v ← arg maxv∈V \(Ci∪Ri) c(v)
15 Visit(v, i)

16 foreach pair of nodes s, t ∈ V do
17 Construct list Li(s, t) containing all nodes v ∈ Ri sorted by their value

δi(s, v, t)

18 Procedure Visit(v, i)
19 Construct Gv

i = (V,E \ (V ×Ri ∪Ri × V)) (in which all edges incident to previously
visited nodes are removed)

20 Run hi iterations of Bellman-Ford from v in Gv
i and its reverse graph to compute for

every node x ∈ V \Ri the shortest ≤ hi hop path πv
i (v, x) from v to x and the

shortest ≤ hi hop path πv
i (x, v) from x to v in Gv

i

21 Ri ← Ri ∪ {v}
22 foreach u ∈ V \Ri do

// Increase congestion counter of u by number of ≤ hi hop shortest
paths containing u

23 ci(u)← ci(u) + |{x ∈ V | u ∈ πv
i (x, v) or πv

i (v, x)}|
24 foreach pair of nodes s, t ∈ V do
25 δi(s, v, t)← dhi

Gv
i
(s, v) + dhi

Gv
i
(v, t)

8

and one to the predecessor of x on πv
i (v, x). We will show that by this rule all shortest paths

from and to v in Gv
i \D with at most hi edges are present in the sketch graph. We then run

Dijkstra’s algorithm to determine the shortest paths to and from v in Hv
i . Furthermore, for

each affected node x ∈ Uv
i and every possible start or endpoint y, we recompute δi(x, v, y), the

distance from x to y through v in Hv
i and δi(y, v, x), the distance from y to x through v in Hv

i ,
possibly replacing the corresponding value computed in the preprocessing.

To find the shortest paths consisting of more than h edges, we first run Dijkstra’s algorithm
to compute the shortest paths to and from every center in Cdlog he and then compute the
shortest paths through these centers. Finally, we determine, for every pair of nodes s and t,
the shortest path distance δ(s, t) as the length of the shortest path through any of the centers
used in this algorithm. Algorithm 2 shows the pseudocode for batch deletions.

Algorithm 2: Deletion procedure for a single batch of nodes D
1 h←

√
n/|D|

2 for i = 1 to blog hc do
3 foreach v ∈ Ri do

// Iterate over all paths from preprocessing to determine affected
nodes whose shortest ≤ hi hop paths to or from v was destroyed

4 Uv
i ← {x ∈ V | πv

i (x, v) ∩D 6= ∅ or πv
i (v, x) ∩D 6= ∅}

// Construct sketch graph Hv
i = (V,Ev

i)
5 Ev

i ← ∅
// Add edges to and from all neighbors for affected nodes

6 foreach y ∈ Uv
i do Ev

i ← Ev
i ∪ {(y, z) | (y, z) ∈ E} ∪ {(z, y) | (z, y) ∈ E}

// Add edges of paths from the preprocessing stage for unaffected
nodes

7 foreach y /∈ Uv
i do

8 Determine predecessor x of y on πv
i (v, y) and successor z of y on πv

i (y, v)
9 Ev

i ← Ev
i ∪ {(x, y), (y, z)}

10 Compute SSSP from and to v in Hv
i = (V,Ev

i) using Dijkstra’s algorithm
// Update shortest paths through centers for pairs with at least

one affected node
11 foreach (s, t) ∈ Uv

i ×V and (s, t) ∈ V ×Uv
i do δi(s, v, t)← dHv

i
(s, v) + dHv

i
(v, t)

12 foreach pair of nodes s, t ∈ V do
13 δi(s, t)← minv∈Ri δi(s, v, t) // see 3.8 for implementation using Li(s, t)

14 foreach v ∈ Cdlog he do Compute SSSP from and to v in G \D using Dijkstra’s
algorithm

15 foreach pair of nodes s, t ∈ V do
16 δdlog he(s, t)← minv∈Cdlog he(dG\D(s, v) + dG\D(v, t))
17 δ(s, t)← min1≤i≤dlog he δi(s, t)

9

3.2 Correctness

We have to show that our algorithm can serve a batch deletion correctly with probability at
least 1− 1/nc. Just for the following analysis we assume that among all shortest paths for a
fixed pair of nodes there is a single designated shortest path (e.g., the smallest according to
some order). In order to prove this statement we first show that the sketch graphs used in our
algorithm contain the shortest paths relevant to us.

Claim 3.2. Let 1 ≤ i ≤ dlogne. For every v ∈ Ri and all pairs of nodes s, t ∈ Gv
i \D,

• if there is a shortest path from s to v in Gv
i \D with at most hi edges, then dHv

i
(s, v) =

dGv
i \D(s, v)

• if there is a shortest path from v to t in Gv
i \D with at most hi edges, then dHv

i
(v, t) =

dGv
i \D(v, t).

Proof. We only give a proof of the first item as the proof of the second item is symmetric. Let
π denote the designated shortest path from s to v in Gv

i \D with at most hi edges. The proof
is by induction on the number of edges of π. Remember that πv

i (s, v) denotes the shortest ≤ hi

hop path from s to v in Gv
i determined in the preprocessing. Let x be the successor of s on π

and let y be the successor of s on πv
i (s, v).

If s ∈ Uv
i , then the edge (s, x) is contained in Hv

i by the definition of Hv
i and by applying

the induction hypothesis on x we get dHv
i
(s, v) = dGv

i \D(s, v). If s /∈ Uv
i , then πv

i (s, v) does not
contain any deleted nodes and the edge (s, y) is contained in Hv

i . The weight of πv
i (s, v) equal

the weight of π because otherwise π would have been a shorter ≤ hi hop path than πv
i (s, v)

in Gv
i during the preprocessing. Thus, πv

i (s, v) is a shortest path in Gv
i \D. Furthermore the

number of edges of πv
i (s, v) is at most the number of edges of π as πv

i (s, v) is the shortest ≤ hi

hop path with the minimum number of edges in Gv
i . Therefore we may apply the induction

hypothesis on y and conclude that dHv
i
(s, v) = dGv

i \D(s, v).

Claim 3.3. With probability at least 1− 1/nc, for all pairs of nodes s, t ∈ V , if the designated
shortest path from s to t has at least hi/2 hops, then it contains a center v ∈ Ci.

Proof. We argue that all lexicographic shortest paths with at least 2i−1 edges contain a node
of Ci with probability at least 1 − 1/nc. We apply Lemma 2.1 with a = c, T = V , U = Ci,
t = n, q = hi/2 and by defining S1, . . . , Sk with k ≤ n2 as the sets of nodes on the at most n2

lexicographic shortest paths of pairs of nodes in G \D with at least (hi/2) edges. Remember
that the algorithm performs the sampling by picking each node with probability min(x/q, 1)
where x ≤ c lnn3 + 1. Thus, all lexicographic shortest paths with at least 2i−1 edges contain a
center from Ci with probability at least 1− 1/nc.

Claim 3.4. With probability at least 1 − 1/nc, δ(s, t) = dG\D(s, t) for all pairs of nodes s
and t.

Proof. We prove the claim by assuming that the statement of 3.3 holds. Thus, the claim we
prove also holds with probability at least 1− 1/nc.

10

First, we argue that δ(s, t) ≥ dG\D(s, t). Observe that whenever we set the value of δi(s, v, t)
(for some 1 ≤ i ≤ dlog he and some v ∈ Ri) during the preprocessing or the deletion procedure,
this value corresponds to the length of a path in a subgraph of G. Furthermore, if πv

i (s, v) or
πv

i (v, t) contains a deleted node from D, then the value δi(s, v, t) is updated to the length of a
path in G \D. It is not hard to verify now that δ(s, t) ≥ dG\D(s, t).

We now argue that δ(s, t) ≤ dG\D(s, t). Let π denote the designated shortest path from s to
t in G \D. Consider first the case that π consists of at most h edges (where h =

√
n/|D|, as set

in the algorithm). Let 1 ≤ i ≤ blog hc be the index such that the number of edges of π is between
2i−1 and 2i. By 3.3, π contains a center of Ci with probability at least 1− 1/nc. As Ci ⊆ Ri, π
contains at least one node of Ri. Now let v be the node that, among all nodes of Ri contained
in π, has been visited first in the preprocessing. Then all edges of π are contained in Gv

i \D.
If either s ∈ Uv

i or t ∈ Uv
i , then the update algorithm has set δi(s, v, t) = dHv

i
(s, v) + dHv

i
(v, t).

By 3.2, we have dHv
i
(s, v) = dGv

i \D(s, v) and dHv
i
(v, t) = dGv

i \D(v, t). It follows that

δ(s, t) ≤ δi(s, v, t) = dHv
i
(s, v) + dHv

i
(v, t) = dGv

i \D(s, v) + dGv
i \D(v, t) ≤

dG\D(s, v) + dG\D(v, t) = dG\D(s, t) .

If both s /∈ Uv
i and t /∈ Uv

i , then we have set δi(s, v, t) = dhi
G (s, v)+dhi

G (v, t) in the preprocessing.
As s /∈ Uv

i and t /∈ Uv
i , the paths πv

i (s, v) and πv
i (v, t) both are contained in G \D and thus

δ(s, t) ≤ δi(s, v, t) = dhi
G (s, v) + dhi

G (v, t) ≤ dhi

G\D(s, v) + dhi

G\D(v, t) =

dG\D(s, v) + dG\D(v, t) = dG\D(s, v) .

Finally, consider the case that π consists of at least h edges. Then, by another application of
3.3, π contains a center v ∈ Cdlog he and thus δ(s, t) ≤ δdlog he(s, t) ≤ dG\D(s, v) + dG\D(v, t) =
dG\D(s, t).

3.3 Running time

In the following we analyze the time our algorithm needs for performing the preprocessing and
for recomputing the all-pairs distances after a batch of deletions. The running time guarantees
hold with high probability as they depend on the size of the randomly chosen sets in the
preprocessing.

Claim 3.5. With probability at least 1− 1/nc, the size of Ci is O((n logn)/hi) for all 1 ≤ i ≤
dlogne.

The claim follows in a straightforward way from Lemma 2.1 and its proof is thus omitted.
In the remainder of this section we omit the c in the O-notation for readability.

Claim 3.6. The preprocessing takes time O(n3 log2 n) with probability at least 1− 1/nc.

Proof. We analyze the running time of each iteration i, where 1 ≤ i ≤ dlogne. We obtain the
set Ci of sampled nodes in time O(n). Running hi iterations of Bellman-Ford on a graph with

11

at most n nodes takes time O(hin
2). We perform one such computation for every node in Ri

and |Ri| ≤ 2|Ci| = O((n logn)/hi) (by 3.5). Thus, the total time spent for the Bellman-Ford
computations in iteration i is O(|Ri|n2hi)) = O(n3 logn). For updating the counters we iterate
over all nodes in the ≤ hi shortest paths in total time O(|Ri|nhi) = O(n3). For constructing the
list Li(s, t) for each pair of nodes s and t we sort at most n nodes and thus constructing all the
lists takes time O(n3 logn). It follows that the running time in each iteration is dominated by
the term O(n3 logn). As there are O(logn) iterations, the total time spent in the preprocessing
is O(n3 log2 n).

To bound the time for processing a batch of deletions we first show that the special order
in which we have visited the nodes in the preprocessing stage guarantees that only few nodes
are affected by each deletion. The fewer nodes are affected, the faster our algorithm runs.

Claim 3.7. For each 1 ≤ i ≤ dlogne, every node is contained in at most O(hin logn) of
the stored shortest ≤ hi hop paths after the preprocessing, i.e., |{(x, v) ∈ V × Ri | u ∈
πv

i (x, v) or u ∈ πv
i (v, x)}| = O(hin logn).

Proof. Observe that we can prove the claim by showing that for every node u the counter ci(u)
is O(hin logn) at any time. In the preprocessing we alternate between (a) visiting the center
node with maximum counter and (b) visiting the non-center node with maximum counter (if
such a node exists). After visiting a node v, the sum of the counters increases by at most 2hin
as for every node x the number of nodes on πv

i (x, v) and πv
i (x, v) (except for v itself) is at

most hi, respectively. A visited node is removed from the graph and thus not visited again in
iteration i.

Consider the following two processes for distributing stones on piles. In process 1 we have
k1 = |Ci| piles, one for each center, and in process 2 we have k2 = |V \ Ci| piles, one for each
non-center node. Every time our algorithm visits a node v we do the following: If v is a center
node, we remove the corresponding pile (and the nodes it contains) from process 1. Similarly,
if v is a non-center node, we remove the corresponding pile (and the nodes it contains) from
process 2. After visiting v, the algorithm increases the counters of certain nodes and we add
the corresponding number of stones to the piles in processes 1 and 2.

Observe that whenever we remove a pile from process 1 this pile always carries the maximum
number of stones and between any two removals of piles we have added at most 4hin stones
to the piles. Therefore, the total number of stones on any pile of process 1 (and thus the
maximum counter of any center) is O(hin log k1) = O(hin logn) by Lemma 2.2. By the same
reasoning the maximum counter of any non-center node is O(hin logn) as well.

Claim 3.8. The time for processing a single batch of deletions given by a set D is O(n2.5√|D| logn).

Proof. For every 1 ≤ i ≤ blog hc and every v ∈ Ri, we compute the set of affected nodes Uv
i by

iterating over all shortest ≤ hi hop paths to and from v determined in the preprocessing. This
takes time O(hin) for fixed v and i and thus time O(

∑blog hc
i=1 |Ri|hin) = O(n2 log2 n) in total.

Constructing all sketch graphs and then running Dijkstra’s algorithm on them takes time
O(
∑blog hc

i=1
∑

v∈Ri
(|Ev

i |+ n logn)). For every 1 ≤ i ≤ blog hc we bound the size of the sketch

12

graph Hv
i by |Ev

i | ≤ |Uv
i |n + 2n as each node in Uv

i contributes at most n edges to all its
neighbors and each other nodes contributes at most 2 edges. By 3.7, each deleted node of D
is contained in O(hin logn) of the ≤ hi hop shortest paths determined in the preprocessing.
Therefore the total number of nodes affected by the deletions is

∑
v∈Ri

|Uv
i | = O(|D|hin logn)

and thus
∑

v∈Ri
|Ev

i | = O(|D|hin
2 logn+ |Ri|n). Dijkstra’s algorithm in all sketch graphs of

layers 1 to blog hc then takes total time

O

blog hc∑
i=1

∑
v∈Ri

(|Ev
i |+ n logn)

 ≤ O
blog hc∑

i=1
(|D|hin

2 logn+ |Ri|n logn)

 ≤
O

blog hc∑
i=1

(|D|2in2 logn+ n2 logn)

 ≤ O(|D|hn2 logn+ n2 log2 n) ≤ O(n2.5
√
|D| logn) .

To compute the minimum δ(s, t) = minv∈Ri δi(s, v, t) we do the following. We first compute
the minimum over all values for which δi(s, v, t) has changed since the preprocessing. Then,
we find the first value of the sorted list Li(s, t) for which the value δi(s, v, t) computed in the
preprocessing has not changed. Clearly, the minimum of both values gives minv∈Ri δi(s, v, t) and
both steps takes time proportional to the number of changed values, which is O(|D|hin

2 logn).
Finally, we bound the time spent on running Dijkstra’s algorithm for every node v ∈ Cdlog he

and computing δdlog he(s, t) for every pair of nodes s and t. By the sampling procedure, the
size of Cdlog he is O((n logn)/h) and thus both of these steps take time O((n3 logn)/h) =
O(n2.5√|D| logn).

4 Extensions and Additional Results

4.1 Negative edge weights

We extend the reduction of Lemma 2.3 such that the graph may have negative weights, but no
negative cycles, while the decremental algorithm only needs to work with non-negative edge
weights. A potential function p is a function that assigns a value p(v) to every node v such that,
for every edge (u, v) ∈ E, w(u, v) + p(u)− p(v) ≥ 0. Such a potential exists if and only if the
graph contains no negative cycle. We call wp(u, v) = w(u, v) + p(u)− p(v) the modified weight
of the edge (u, v) under the potential function p. For any valid potential function the modified
edge weights are obviously non-negative and it is well-known that the shortest paths under the
original edge weights are the same as under the modified edge weights. This is known as the
“Johnson transformation” [Joh77].

The reduction now has the following additional steps. In the preprocessing we construct
a graph Gq that contains an additional node q and an edge (q, v) of weight 0 to every other
node v. On this graph we run the Bellman-Ford algorithm in time O(mn) = O(n3) which
either detects a negative cycle or computes dGq (q, v) for every node v. It is well-known that
p(v) = dGq (q, v) is a valid potential function. Observe that this potential function remains
valid even when we delete edges or nodes from the graph. Thus, the update procedure of
our decremental algorithm computes the shortest paths of the graph correctly. After running

13

the updates of the decremental algorithm, we undo the potential transformation. In the fully
dynamic algorithm, we then deal with the up to 2∆ inserted nodes by running 2∆ iterations of
the Floyd-Warshall algorithm, which by default can deal with negative edge weights.

4.2 Unweighted graphs

In unweighted graphs the shortest ≤ h hop paths are identical to the shortest paths with at
most h edges. Thus, in the preprocessing, we can determine the shortest ≤ hi hop paths by
performing breadth-first search up to depth hi in time O(n2). The total time spent for layer i
in the preprocessing is therefore O(n3/hi).

We slightly alter the reduction of Lemma 2.3 to obtain the fully dynamic algorithm by
using different value of ∆ for each layer i. Specifically, we use layer i of the decremental
algorithm for 2∆i = 2

√
n/(hi

√
logn) updates before we rebuild it. At every update, besides

running each layer of the decremental algorithm we reconstruct shortest paths consisting of
more than h =

√
n edges in time O((n3 logn)/h) and run the Floyd-Warshall algorithm for

at most 2∆ = 2
√
n iterations in time O(∆n2) to handle the latest 2∆ insertions (note that

∆ ≥ ∆i for all 1 ≤ i ≤ blog hc). Thus, the total update time is

O

 ∑
1≤i≤blog hc

(
n3

hi∆i
+ ∆ihin

2 logn+ ∆n2
)

+ n3 logn
h

 = O(n2+1/2 log3/2 n) .

4.3 Deterministic algorithm

In the following we sketch a deterministic fully dynamic APSP algorithm with a worst-case
update time of O(n2+3/4 log3/4 n). We again design an algorithm that, after some preprocessing,
can handle a single batch of up to ∆ deletions and turn this into a fully dynamic algorithm
using the reduction of Lemma 2.3. The parameters of our algorithm are ∆ and h and we will
explain how to set them optimally in the running time analysis.

In the preprocessing we prepare a data structure from which the shortest paths with at
most h edges can be reconstructed after any batch of at most ∆ deletions. We again keep a
congestion counter for each node and in each round visit the node with the maximum counter
until all nodes have been visited. When we visit a node v, we compute the shortest ≤ h
hop paths to and from v, denoted by πv(x, v) and πv(v, x), by running h iterations of the
Bellman-Ford algorithm in the graph Gv from which all edges incident to previously visited
nodes have been removed. We then update the congestion counters according to the number of
appearances of each node in these paths. By Lemma 2.2, this order of visiting nodes guarantees
that after the preprocessing, for every node u, there are at most O(hn logn) pairs (x, v) or
(v, x) such that v is contained in πv(x, v) or πv(v, x), respectively. Again, the idea is that if we
later on delete u we only have to repair the shortest paths for such pairs.

When we delete a set of nodes D, we first determine, for every node v, the set of affected
nodes Uv consisting of all nodes x such that πv(s, v) or πv(v, t) was destroyed by one of the
deletions. We then build a sketch graph Hv as follows: For every affected node x ∈ Uv we
add edges to all neighbors of x to Hv and for every non-affected node x /∈ Uv we add the

14

edge to the successor on πv(x, v) as well as the edge to the predecessor on πv(x, v) to Hv. We
then run Dijkstra’s algorithm in Hv to recompute the shortest paths to and from v with at
most h edges in Gv \D. Finally, for every pair of nodes s and t we find the “middle node” v
connecting s and t in the shortest way, either by using paths from the preprocessing stage or
new paths computed during the update procedure. This gives us all shortest paths that have
at most h edges. Using this information we can then compute all shortest paths with more
edges deterministically by finding a set of centers that “hits” all the shortest paths with at
most h edges using a greedy heuristic. To the best of our knowledge this method was first
described in [Zwi02].

Lemma 4.1 ([Zwi02]). For every (weighted directed) graph G and every h ≥ 1, given all
shortest paths in G that have at most h hops, one can compute dG(s, t) for all pairs of nodes s
and t (and the corresponding shortest paths) in time O(hn2 + n3 logn/h).

The correctness and the running time follow the same arguments as for the randomized
algorithm in Section 3. However, the deterministic algorithm is slower because we do not know
how to extend it to the multilayer approach of the randomized algorithm. The preprocessing
time is dominated by the term O(n3h), which is the time needed for running h iterations
Bellman-Ford algorithm for all nodes. As in the randomized algorithm, the running time
for processing a single batch of deletions is dominated by the time needed to run Dijkstra’s
algorithm in each sketch graph where the total size of all sketch graphs is O(∆hn2 logn). Thus,
running Dijkstra’s algorithm in all sketch graphs takes total time O(∆hn2 logn+ n2 logn) =
O(∆hn2 logn). Overall, the update time of this deterministic fully dynamic algorithm is
O(n3h/∆ + ∆hn2 logn + hn2 + n3 logn/h + ∆n2). By setting ∆ = n

1/2/ log1/2 n and h =
n

1/4/ log1/4 n, this is O(n2+3/4 log3/4 n).

4.4 Returning shortest paths

The algorithm of Theorem 1.1 we have formulated above only returns the distance matrix for
all pairs of nodes. Our decremental algorithm be extended in a straightforward way to return
a shortest path matrix that contains, for every pair of nodes s and t the first edge (s, x) on a
shortest path from s to t by additionally storing with every intermediate distance estimate the
first edge on the path yielding the corresponding value. The Floyd-Warshall algorithm can also
compute the shortest path matrix along with the distances. This matrix provides sufficient
information to compute a shortest path between a source and a target in time proportional to
the number of edges of this path. Without additional effort however, we can only show that
such an algorithm is correct with high probability against an oblivious adversary who chooses
its sequence of updates and queries in advance. In the following we sketch how to modify our
algorithm such that it is correct with high probability against an adaptive online adversary
that may adapt its sequence of updates according to the shortest path matrix returned by the
algorithm. Intuitively, this means that we have to avoid that the adversary chooses a clever
sequence of updates and queries such that it can identify the random centers picked by our
algorithm and alter the graph such that the properties we gained from the random choice
of centers will not hold anymore. Note that this is not an issue for algorithms that merely

15

compute the distance matrix since the exact distances are uniquely defined in every graph and
thus the adversary cannot learn anything about our algorithm (and its random choices) by
observing its outputs. If we allow path queries, where the adversary may pick any pair of nodes
s and t and ask for a shortest path from s to t, then we do not have this uniqueness property
because there might be several paths from s to t of minimum weight.

We counter this problem by modifying our algorithm such that it computes lexicographic
shortest paths at the cost of an additional factor of logn in the update time.3 First, we assume
without loss of generality that all shortest paths of the graph have the same number of edges.
This can be ensured by adding a sufficiently small penalty to every edge weight. Now assume
an arbitrary but fixed order on the nodes and identify a path with its sequence of nodes. We
say that a path π1 is lexicographically smaller than a path π2 if either π1 is a prefix of π2 or
π1 = π ◦ v1 ◦π′′1 and π2 = π ◦ v2 ◦π′′2 where v1 < v2. The latter condition means that at the first
position where π1 and π2 differ, the node of π1 is a smaller than the one of π2. The lexicographic
shortest path from s to t is the path that among all shortest paths from s to t is smallest
according to the lexicographic order. To compare paths lexicographically we use the minimum-
index tree structure (short: MITS) of Cabello, Chambers, and Erickson [CCE13], which can be
implemented using Euler-tour trees [RHK99, Tar97] or self-adjusting top trees [TW05]. This
minimum index tree structure allows adding and removing edges to and from a tree with given
root s. Given two nodes u and v as its input it can answer the following query: is the path
from s to u in the tree lexicographically smaller than the path from s to v? All operations of
this data structure take time O(logn). Cabello, Chambers, and Erickson [CCE13] explain how
use the MITS to adapt Dijkstra’s algorithm for computing lexicographic shortest paths at the
cost of an additional factor of O(logn) in the running time. In a similar way the Bellman-Ford
algorithm can be modified to compute the lexicographic ≤ h hop shortest paths.

We now explain how to modify our algorithm to compute, for every pair of nodes s and t,
the first edge (s, x) on the lexicographic shortest path from s to t in G\D. In the preprocessing
algorithm the only modification is to use the modified Bellman-Ford algorithm to compute
the lexicographic ≤ hi hop shortest paths. In the update procedure we first run the algorithm
for computing the distance matrix completely so that we know the value of dG\D(s, t) for all
pairs of nodes s and t. We then initialize an MITS for every node s and add to it the following
paths computed by our algorithm.

1. For every 1 ≤ i ≤ blog hc and every v ∈ Ri we add the shortest ≤ hi hop path πv
i (s, v)

from the preprocessing to the MITS if the weight of πv
i (s, v) is equal to dG\D(s, v).

2. For every 1 ≤ i ≤ blog hc and every v ∈ Ri such that s ∈ Uv
i , we add the lexicographic

shortest path π from s to v in Hv
i to the MITS if π has at most hi edges and the weight

of π is equal to dG\D(s, v).

3. For every v ∈ Rdlog he we add the lexicographic shortest path from s to v in G \D to the
3An intuitive alternative for enforcing that shortest paths are unique is to add random perturbation to the

edge weights. However we do not know how to use this scheme in our dynamic setting. While one can guarantee
that a random perturbation makes shortest paths unique in the initial graph, it is not clear how to obtain this
property in all versions of the graph.

16

MITS.

Using similar arguments as in Section 3.2 it follows that (1) we only add lexicographic shortest
paths to the MITS leading to a tree structure and (2) for every lexicographic shortest path π
from s to some node t there is some node v on π such that the subpath from s to v is contained
in the MITS of s. The running time for these insertions of paths to the MITS’s can be bounded
as follows: As, for each 1 ≤ i ≤ blog hc, Ri = O((n logn)/hi) and each inserted path has at most
hi edges, the total time for the insertions in step 1 is O(n2 log3 n). The total time for step 2 can
be bounded by recalling that the total number of affected nodes is

∑
v∈Ri

|Uv
i | = O(∆hin logn),

yielding a total time of O(∆hin
2 log2 n). Since |Rdlog he| = O((n logn)/h) the total time for

step 3 is O((n3 log2 n)/h).
To obtain the lexicographic shortest paths of G \ D for every pair of nodes s and t (or

rather the first edge of this path) we do the following: We let X(s, t) be the set of nodes v
satisfying one of the following three conditions:

1. v ∈ Ri for some 1 ≤ i ≤ blog hc and πv
i (s, v) + πv

i (v, t) = dG(s, t) ,

2. v ∈ Ri such that s ∈ Uv
i or t ∈ Uv

i for some 1 ≤ i ≤ blog hc and dHv
i
(s, v) + dHv

i
(v, t) =

dG(s, t), or

3. v ∈ Rdlog he and dG\D(s, v) + dG\D(v, t) = dG(s, t).

Among the nodes in X(s, t) we now want to find the node v whose lexicographic shortest path
from x to v is smallest in G \D and output the first edge on this path. This can be done in
time O(|X(s, t)| logn) using the MITS of s that we have prepared above. By our arguments
from above, the total size of all these sets is bounded by O(|D|hn2 logn+ (n3 logn)/h). Using
h =

√
n/|D| we thus obtain a running time of O(n2.5√|D| logn).

5 Conclusions
In this paper we considered the fully dynamic APSP problem with a worst-case update
time guarantee of O(n2+2/3 log4/3 n). Our algorithm is simple and independent of any other
sophisticated algorithms. Our current knowledge of lower bounds for this problem seems quite
rudimentary. A natural barrier for the current approaches seems to be Ω(n2+1/2). One reason
for this barrier is that the only way we know to deal with insertions is to use the naive approach,
in which for every insertion (since the last time the data structure was reconstructed) in every
update we compute a SSSP tree and recompute all pair-wise distances in these trees. This naive
approach sets a barrier of Ω(n2+1/2). A natural question is on the existence of fully dynamic
APSP algorithm that meet this barrier or prove impossibility results.

For unweighted graphs, our upper bound indeed meets this barrier. Weighted graphs seem
to be inherently harder: for example, extending the algebraic techniques of Sankowski [San05]
to weighted graphs is an open question. Our techniques for weighted graphs incur a cost related
to computing single source h-hop shortest paths: the best known is time Õ(n2h) for weighted
graphs, and time Õ(n2) for unweighted graphs. If h-hop shortest paths could be solved in time

17

Õ(n2) for weighted graphs, then our techniques would immediately provide an improved results
that would meet the natural Ω(n2+1/2) barrier.

We believe that it would be interesting to also explore the potential opposite connection:
could hardness of h-hop shortest paths in weighted graphs imply lower bounds for dynamic
shortest paths in weighted graphs? Another interesting direction is to derandomize our
algorithm or prove an existential gap between randomized and deterministic algorithms.

References
[AC13] Ittai Abraham and Shiri Chechik. “Dynamic Decremental Approximate Distance

Oracles with (1 + ε, 2) stretch”. In: CoRR abs/1307.1516 (2013) (cit. on p. 4).
[ACG12] Ittai Abraham, Shiri Chechik, and Cyril Gavoille. “Fully Dynamic Approximate

Distance Oracles for Planar Graphs via Forbidden-Set Distance Labels”. In:
Symposium on Theory of Computing (STOC). 2012, pp. 1199–1218 (cit. on p. 4).

[ACT14] Ittai Abraham, Shiri Chechik, and Kunal Talwar. “Fully Dynamic All-Pairs
Shortest Paths: Breaking the O(n) Barrier”. In: International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems (APPROX).
2014, pp. 1–16 (cit. on p. 4).

[AIMS+91] Giorgio Ausiello, Giuseppe F. Italiano, Alberto Marchetti-Spaccamela, and Um-
berto Nanni. “Incremental Algorithms for Minimal Length Paths”. In: Journal of
Algorithms 12.4 (1991). Announced at SODA’90, pp. 615–638 (cit. on p. 4).

[BBK+94] Shai Ben-David, Allan Borodin, Richard M. Karp, Gábor Tardos, and Avi Wigder-
son. “On the Power of Randomization in On-Line Algorithms”. In: Algorithmica
11.1 (1994). Announced at STOC’90, pp. 2–14 (cit. on p. 2).

[BC16] Aaron Bernstein and Shiri Chechik. “Deterministic decremental single source
shortest paths: beyond theO(mn) bound”. In: Symposium on Theory of Computing
(STOC). 2016, pp. 389–397 (cit. on p. 4).

[Ber09] Aaron Bernstein. “Fully Dynamic (2 + ε) Approximate All-Pairs Shortest Paths
with Fast Query and Close to Linear Update Time”. In: Symposium on Foundations
of Computer Science (FOCS). 2009, pp. 693–702 (cit. on p. 4).

[Ber16] Aaron Bernstein. “Maintaining Shortest Paths Under Deletions in Weighted
Directed Graphs”. In: SIAM Journal on Computing 45.2 (2016). Announced at
STOC’13, pp. 548–574 (cit. on p. 4).

[BHS03] Surender Baswana, Ramesh Hariharan, and Sandeep Sen. “Maintaining All-Pairs
Approximate Shortest Paths Under Deletion of Edges”. In: Symposium on Discrete
Algorithms (SODA). 2003, pp. 394–403 (cit. on p. 4).

[BHS07] Surender Baswana, Ramesh Hariharan, and Sandeep Sen. “Improved decremental
algorithms for maintaining transitive closure and all-pairs shortest paths”. In:
Journal of Algorithms 62.2 (2007). Announced at STOC’02, pp. 74–92 (cit. on
p. 4).

18

http://arxiv.org/abs/1307.1516
http://arxiv.org/abs/1307.1516
http://dx.doi.org/10.1145/2213977.2214084
http://dx.doi.org/10.1145/2213977.2214084
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.1
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.1
http://dx.doi.org/10.1016/0196-6774(91)90036-X
http://dx.doi.org/10.1007/BF01294260
http://dx.doi.org/10.1145/2897518.2897521
http://dx.doi.org/10.1145/2897518.2897521
http://dx.doi.org/10.1109/FOCS.2009.16
http://dx.doi.org/10.1109/FOCS.2009.16
http://dx.doi.org/10.1137/130938670
http://dx.doi.org/10.1137/130938670
http://dl.acm.org/citation.cfm?id=644108.644171
http://dl.acm.org/citation.cfm?id=644108.644171
http://dx.doi.org/10.1016/j.jalgor.2004.08.004
http://dx.doi.org/10.1016/j.jalgor.2004.08.004

[BR11] Aaron Bernstein and Liam Roditty. “Improved Dynamic Algorithms for Maintain-
ing Approximate Shortest Paths Under Deletions”. In: Symposium on Discrete
Algorithms (SODA). 2011, pp. 1355–1365 (cit. on p. 4).

[CCE13] Sergio Cabello, Erin W. Chambers, and Jeff Erickson. “Multiple-Source Shortest
Paths in Embedded Graphs”. In: SIAM Journal on Computing 42.4 (2013),
pp. 1542–1571 (cit. on p. 16).

[CW16] Timothy M. Chan and Ryan Williams. “Deterministic APSP, Orthogonal Vectors,
and More: Quickly Derandomizing Razborov-Smolensky”. In: Symposium on
Discrete Algorithms (SODA). 2016 (cit. on p. 3).

[DI04] Camil Demetrescu and Giuseppe F. Italiano. “A New Approach to Dynamic
All Pairs Shortest Paths”. In: Journal of the ACM 51.6 (2004). Announced at
STOC’03, pp. 968–992 (cit. on pp. 2, 4).

[DI06] Camil Demetrescu and Giuseppe F. Italiano. “Fully dynamic all pairs shortest
paths with real edge weights”. In: Journal of Computer and System Sciences 72.5
(2006). Announced at FOCS’01, pp. 813–837 (cit. on p. 4).

[ES81] Shimon Even and Yossi Shiloach. “An On-Line Edge-Deletion Problem”. In:
Journal of the ACM 28.1 (1981), pp. 1–4 (cit. on p. 4).

[FR06] Jittat Fakcharoenphol and Satish Rao. “Planar graphs, negative weight edges,
shortest paths, and near linear time”. In: Journal of Computer and System Sciences
72.5 (2006). Announced at FOCS’01, pp. 868–889 (cit. on p. 4).

[Gal12] François Le Gall. “Faster Algorithms for Rectangular Matrix Multiplication”.
In: Symposium on Foundations of Computer Science (FOCS). 2012, pp. 514–523
(cit. on p. 3).

[HK01] Monika Rauch Henzinger and Valerie King. “Maintaining Minimum Spanning
Forests in Dynamic Graphs”. In: SIAM Journal on Computing 31.2 (2001). An-
nounced at ICALP’97, pp. 364–374 (cit. on pp. 5, 6).

[HKN13] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Sublinear-
Time Maintenance of Breadth-First Spanning Tree in Partially Dynamic Net-
works”. In: International Colloquium on Automata, Languages and Programming
(ICALP). 2013, pp. 607–619 (cit. on p. 4).

[HKN14a] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “A Subquadratic-
Time Algorithm for Dynamic Single-Source Shortest Paths”. In: Symposium on
Discrete Algorithms (SODA). 2014, pp. 1053–1072 (cit. on p. 4).

[HKN14b] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Sublinear-
Time Decremental Algorithms for Single-Source Reachability and Shortest Paths
on Directed Graphs”. In: Symposium on Theory of Computing (STOC). 2014,
pp. 674–683 (cit. on p. 4).

19

http://dx.doi.org/10.1137/1.9781611973082.104
http://dx.doi.org/10.1137/1.9781611973082.104
http://dx.doi.org/10.1137/120864271
http://dx.doi.org/10.1137/120864271
http://web.stanford.edu/~rrwill/derand-apsp-ov-cr.pdf
http://web.stanford.edu/~rrwill/derand-apsp-ov-cr.pdf
http://dx.doi.org/10.1145/1039488.1039492
http://dx.doi.org/10.1145/1039488.1039492
http://dx.doi.org/10.1016/j.jcss.2005.05.005
http://dx.doi.org/10.1016/j.jcss.2005.05.005
http://dx.doi.org/10.1145/322234.322235
http://dx.doi.org/10.1016/j.jcss.2005.05.007
http://dx.doi.org/10.1016/j.jcss.2005.05.007
http://dx.doi.org/10.1109/FOCS.2012.80
http://dx.doi.org/10.1137/S0097539797327209
http://dx.doi.org/10.1137/S0097539797327209
http://dx.doi.org/10.1007/978-3-642-39212-2_53
http://dx.doi.org/10.1007/978-3-642-39212-2_53
http://dx.doi.org/10.1007/978-3-642-39212-2_53
http://dx.doi.org/10.1137/1.9781611973402.79
http://dx.doi.org/10.1137/1.9781611973402.79
http://dx.doi.org/10.1145/2591796.2591869
http://dx.doi.org/10.1145/2591796.2591869
http://dx.doi.org/10.1145/2591796.2591869

[HKN16] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Dynamic
Approximate All-Pairs Shortest Paths: Breaking the O(mn) Barrier and De-
randomization”. In: SIAM Journal on Computing 45.3 (2016). Announced at
FOCS’13, pp. 947–1006 (cit. on p. 4).

[HKR+97] Monika Rauch Henzinger, Philip N. Klein, Satish Rao, and Sairam Subramanian.
“Faster Shortest-Path Algorithms for Planar Graphs”. In: Journal of Computer
and System Sciences 55.1 (1997). Announced at STOC’94, pp. 3–23 (cit. on p. 4).

[Joh77] Donald B. Johnson. “Efficient Algorithms for Shortest Paths in Sparse Networks”.
In: Journal of the ACM 24.1 (1977), pp. 1–13 (cit. on p. 13).

[Kin99] Valerie King. “Fully Dynamic Algorithms for Maintaining All-Pairs Shortest Paths
and Transitive Closure in Digraphs”. In: Symposium on Foundations of Computer
Science (FOCS). 1999, pp. 81–91 (cit. on p. 3).

[KS98] Philip N. Klein and Sairam Subramanian. “A Fully Dynamic Approximation
Scheme for Shortest Paths in Planar Graphs”. In: Algorithmica 22.3 (1998).
Announced at WADS’93, pp. 235–249 (cit. on p. 4).

[LO88] Christos Levcopoulos and Mark H. Overmars. “A Balanced Search Tree with O(1)
Worst-case Update Time”. In: Acta Informatica 26.3 (1988), pp. 269–277 (cit. on
p. 5).

[RHK99] Monika Rauch Henzinger and Valerie King. “Randomized Fully Dynamic Graph
Algorithms with Polylogarithmic Time per Operation”. In: Journal of the ACM
46.4 (1999). Announced at STOC’95, pp. 502–516 (cit. on p. 16).

[RZ12] Liam Roditty and Uri Zwick. “Dynamic Approximate All-Pairs Shortest Paths in
Undirected Graphs”. In: SIAM Journal on Computing 41.3 (2012). Announced at
FOCS’04, pp. 670–683 (cit. on p. 4).

[San04] Piotr Sankowski. “Dynamic Transitive Closure via Dynamic Matrix Inverse”. In:
Symposium on Foundations of Computer Science (FOCS). 2004, pp. 509–517
(cit. on p. 3).

[San05] Piotr Sankowski. “Subquadratic Algorithm for Dynamic Shortest Distances”.
In: International Computing and Combinatorics Conference (COCOON). 2005,
pp. 461–470 (cit. on pp. 3, 4, 17).

[Tar97] Robert E. Tarjan. “Dynamic trees as search trees via Euler tours, applied to the
network simplex algorithm”. In: Mathematical Programming 77 (1997), pp. 169–
177 (cit. on p. 16).

[Tho04] Mikkel Thorup. “Fully-Dynamic All-Pairs Shortest Paths: Faster and Allowing
Negative Cycles”. In: Scandinavian Workshop on Algorithm Theory (SWAT). 2004,
pp. 384–396 (cit. on p. 4).

[Tho05] Mikkel Thorup. “Worst-Case Update Times for Fully-Dynamic All-Pairs Shortest
Paths”. In: Symposium on Theory of Computing (STOC). 2005, pp. 112–119
(cit. on pp. 1, 2, 4–6).

20

http://dx.doi.org/10.1137/140957299
http://dx.doi.org/10.1137/140957299
http://dx.doi.org/10.1137/140957299
http://dx.doi.org/10.1006/jcss.1997.1493
http://dx.doi.org/10.1145/321992.321993
http://dx.doi.org/10.1109/SFFCS.1999.814580
http://dx.doi.org/10.1109/SFFCS.1999.814580
http://dx.doi.org/10.1007/PL00009223
http://dx.doi.org/10.1007/PL00009223
http://dx.doi.org/10.1007/BF00299635
http://dx.doi.org/10.1007/BF00299635
http://dx.doi.org/10.1145/320211.320215
http://dx.doi.org/10.1145/320211.320215
http://dx.doi.org/10.1137/090776573
http://dx.doi.org/10.1137/090776573
http://dx.doi.org/10.1109/FOCS.2004.25
http://dx.doi.org/10.1007/11533719_47
http://dx.doi.org/10.1007/BF02614369
http://dx.doi.org/10.1007/BF02614369
http://dx.doi.org/10.1007/978-3-540-27810-8_33
http://dx.doi.org/10.1007/978-3-540-27810-8_33
http://dx.doi.org/10.1145/1060590.1060607
http://dx.doi.org/10.1145/1060590.1060607

[TW05] Robert E. Tarjan and Renato F. Werneck. “Self-adjusting top trees”. In: Sympo-
sium on Discrete Algorithms (SODA). 2005, pp. 813–822 (cit. on p. 16).

[UY91] Jeffrey D. Ullman and Mihalis Yannakakis. “High-Probability Parallel Transitive-
Closure Algorithms”. In: SIAM Journal on Computing 20.1 (1991). Announced
at SPAA’90, pp. 100–125 (cit. on p. 5).

[Wil14] Ryan Williams. “Faster all-pairs shortest paths via circuit complexity”. In: Sym-
posium on Theory of Computing (STOC). 2014, pp. 664–673 (cit. on p. 3).

[Zwi02] Uri Zwick. “All Pairs Shortest Paths using Bridging Sets and Rectangular Matrix
Multiplication”. In: Journal of the ACM 49.3 (2002). Announced at FOCS’98,
pp. 289–317 (cit. on pp. 3, 15).

21

http://dl.acm.org/citation.cfm?id=1070432.1070547
http://dx.doi.org/10.1137/0220006
http://dx.doi.org/10.1137/0220006
http://dx.doi.org/10.1145/2591796.2591811
http://dx.doi.org/10.1145/567112.567114
http://dx.doi.org/10.1145/567112.567114

	1 Introduction
	1.1 Additional results
	1.2 Recomputing from scratch
	1.3 Related work

	2 Preliminaries
	3 Decremental shortest paths for a batch of deletions
	3.1 Algorithm description
	3.2 Correctness
	3.3 Running time

	4 Extensions and Additional Results
	4.1 Negative edge weights
	4.2 Unweighted graphs
	4.3 Deterministic algorithm
	4.4 Returning shortest paths

	5 Conclusions
	References

