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Abstract

This work continues the study of the relationship between sample compression
schemes and statistical learning, which has been mostly investigated within the
framework of binary classification. The central theme of this work is establishing
equivalences between learnability and compressibility, and utilizing these equiv-
alences in the study of statistical learning theory. We begin with the setting of
multiclass categorization (zero/one loss). We prove that in this case learnability
is equivalent to compression of logarithmic sample size, and that uniform conver-
gence implies compression of constant size. We then consider Vapnik’s general
learning setting: we show that in order to extend the compressibility-learnability
equivalence to this case, it is necessary to consider an approximate variant of com-
pression. Finally, we provide some applications of the compressibility-learnability
equivalences.

1 Introduction

This work studies statistical learning theory using the point of view of compression. The main theme
in this work is establishing equivalences between learnability and compressibility, and making an
effective use of these equivalences to study statistical learning theory.

In a nutshell, the usefulness of these equivalences stems from that compressibility is a combinatorial
notion, while learnability is a statistical notion. These equivalences, therefore, translate statistical
statements to combinatorial ones and vice versa. This translation helps to reveal properties that are
otherwise difficult to find, and highlights useful guidelines for designing learning algorithms.

We first consider the setting of multiclass categorization, which is used to model supervised learning
problems using the zero/one loss function, and then move to Vapnik’s general learning setting [23],
which models many supervised and unsupervised learning problems.

Zero/one loss function (Section 3) This is the setting in which sample compression schemes were
defined by Littlestone and Warmuth [16], as an abstraction of a common property of many learning
algorithms. For more background on sample compression schemes, see e.g. [16, 8, 9, 22].
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We use an agnostic version of sample compression schemes, and show that learnability is equivalent
to some sort of compression. More formally, that any learning algorithm can be transformed to a
compression algorithm, compressing a sample of size m to a sub-sample of size roughly log(m), and
that such a compression algorithm implies learning. This statement is based on arguments that appear
in [16, 10, 11]. We conclude this part by describing some applications:

(i) Equivalence between PAC and agnostic PAC learning from a statistical perspective (i.e. in terms of
sample complexity). For binary-labelled classes, this equivalence follows from basic arguments in
Vapnik-Chervonenkis (VC) theory, but these arguments do not seem to extend when the number of
labels is large.

(ii) A dichotomy for sample compression - if a non-trivial compression exists (e.g. compressing
a sample of size m to a sub-sample of size m0.99), then a compression to logarithmic size exists
(i.e. to a sub-sample of size roughly logm). This dichotomy is analogous to the known dichotomy
concerning the growth function of binary-labelled classes: the growth function is either polynomial
(when the VC dimension is finite), or exponential (when the VC dimension is infinite).

(iii) Compression to constant size versus uniform convergence - every class with the uniform conver-
gence property has a compression of constant size. The proof has two parts. The first part, which is
based on arguments from [18], shows that finite graph dimension (a generalization of VC dimension
for multiclass categorization [19]) implies compression of constant size. The second part, which uses
ideas from [1, 24, 7], shows that the uniform convergence rate is captured by the graph dimension.
In this part we improve upon the previously known bounds.

(iv) Compactness for learning - if finite sub-classes of a given class are learnable, then the class is
learnable as well. Again, for binary-labelled classes, such compactness easily follows from known
properties of VC dimension. For general multi-labeled classes we derive this statement using a
corresponding compactness property for sample compression schemes, based on the work by [2].

General learning setting (Section 4). We continue with investigating general loss functions. This
part begins with a simple example in the context of linear regression, showing that for general loss
functions, learning is not equivalent to compression. We then consider an approximate variant of
compression schemes, which was used by [13, 12] in the context of classification, and observe that
learnability is equivalent to possessing an approximate compression scheme, whose size is roughly
the statistical sample complexity. This is in contrast to (standard) sample compression schemes, for
which the existence of such an equivalence (under the zero/one loss) is a long standing open problem,
even in the case of binary classification [25]. We conclude the paper by showing that - unlike for
zero/one loss functions - for general loss functions, PAC learnability and agnostic PAC learnability
are not equivalent. In fact, this is derived for a loss function that takes just three values. The proof of
this non-equivalence uses Ramsey theory for hypergraphs. The combinatorial nature of compression
schemes allows to clearly identify the place where Ramsey theory is helpful. More generally, the
study of statistical learning theory via the lens of compression may shed light on additional useful
connections with different fields of mathematics.

We begin our investigation by breaking the definition of sample compression schemes into two parts.
The first part (which may seem useless at first sight) is about selection schemes. These are learning
algorithms whose output hypothesis depends on a selected small sub-sample of the input sample. The
second part of the definition is the sample-consistency guarantee; so, sample compression schemes
are selection schemes whose output hypothesis is consistent with the input sample. We then show
that selection schemes of small size do not overfit in that their empirical risk is close to their true
risk. Roughly speaking, this shows that for selection schemes there are no surprises: “what you see is
what you get”.

2 Preliminaries

The definitions we use are based on the textbook [22].

Learnability and uniform convergence

A learning problem is specified by a setH of hypotheses, a domainZ of examples, and a loss function
` : H× Z → R+. To ease the presentation, we shall only discuss loss functions that are bounded
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from above by 1, although the results presented here can be extended to more general loss functions.
A sample S is a finite sequence S = (z1, . . . , zm) ∈ Zm. A learning algorithm is a mapping that
gets as an input a sample and outputs an hypothesis h.

In the context of supervised learning, hypotheses are functions from a domain X to a label set
Y , and the examples domain is the cartesian product Z := X × Y . In this context, the loss
`(h, (x, y)) depends only on h(x) and y, and therefore in this case we it is modelled as a function
` : Y × Y → R+.

Given a distribution D on Z , the risk of an hypothesis h : X → Y is its expected loss: LD(h) =
Ez∼D [`(h, z)] . Given a sample S = (z1, . . . , zm), the empirical risk of an hypothesis h is LS(h) =
1
m

∑m
i=1 `(h, z).

An hypothesis classH is a set of hypotheses. A distributionD is realizable byH if there exists h ∈ H
such that LD(h) = 0. A sample S is realizable byH if there exists h ∈ H such that LS(h) = 0.

A hypothesis class H has the uniform convergence property1 if there exists a rate function d :
(0, 1)2 → N such that for every ε, δ > 0 and distribution D over Z , if S is a sample of m ≥ d(ε, δ)
i.i.d. pairs generated byD, then with probability at least 1−δ we have: ∀h ∈ H |LD(h)−LS(h)| ≤ ε.
The classH is agnostic PAC learnable if there exists a learner A and a rate function d : (0, 1)2 → N
such that for every ε, δ > 0 and distribution D over Z , if S is a sample of m ≥ d(ε, δ) i.i.d. pairs
generated by D, then with probability at least 1− δ we have LD(A(S)) ≤ infh∈H LD(h) + ε. The
classH is PAC learnable if this condition holds for every realizable distribution D. The parameter ε
is referred to as the error parameter and δ as the confidence parameter.

Note that the uniform convergence property implies agnostic PAC learnability with the same rate
via any learning algorithm which outputs h ∈ H that minimizes the empirical risk, and that agnostic
PAC learnability implies PAC learnability with the same rate.

Selection and compression schemes

The variants of sample compression schemes that are discussed in this paper, are based on the
following object, which we term selection scheme. We stress here that unlike sample compression
schemes, selection schemes are not associated with any hypothesis class.

A selection scheme is a pair (κ, ρ) of maps for which the following holds:

• κ is called the selection map. It gets as an input a sample S and outputs a pair (S′, b) where
S′ is a sub-sample2 of S and b is a finite binary string, which we think of as side information.

• ρ is called the reconstruction map. It gets as an input a pair (S′, b) of the same type as the
output of κ and outputs an hypothesis h.

The size of (κ, ρ) on a given input sample S is defined to be |S′|+ |b| where κ(S) = (S′, b). For an
input size m, we denote by k(m) the maximum size of the selection scheme on all inputs S of size at
most m. The function k(m) is called the size of the selection scheme. If k(m) is uniformly bounded
by a constant, which does not depend on m, then we say that the selection scheme has a constant
size; otherwise, we say that it has a variable size.

The definition of selection schemes is very similar to that of sample compression schemes. The
difference is that sample compression schemes are defined relative to a fixed hypothesis class with
respect to which they are required to have “correct” reconstructions whereas selection schemes do not
provide any correctness guarantee. The distinction between the ‘selection’ part and the ‘correctness’
part is helpful for our presentation, and also provides some more insight into these notions.

A selection scheme (κ, ρ) is a sample compression scheme for H if for every sample S that is
realizable byH, LS (ρ (κ (S))) = 0. A selection scheme (κ, ρ) is an agnostic sample compression
scheme forH if for every sample S, LS (ρ (κ (S))) ≤ infh∈H LS(h).

In the following sections, we will see different manifestations of the statement “compression ⇒
learning”. An essential part of these statements boils down to a basic property of selection schemes,

1We omit the dependence on the loss function ` from this and similar definitions, since ` is clear from the
context.

2That is, if S = (z1, . . . , zm) then S′ is of the form (zi1 , . . . , zi`) for 1 ≤ i1 < . . . < i` ≤ m.
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that as long as k(m) is sufficiently smaller than m, a selection scheme based learner does not overfit
its training data (the proof appears in the full version of this paper).

Theorem 2.1 ([22, Theorem 30.2]). Let (κ, ρ) be a selection scheme of size k = k(m), and let
A(S) = ρ (κ (S)). Then, for every distribution D on Z , integer m such that k ≤ m/2, and δ > 0,
we have

Pr
S∼Dm

[
|LD (A (S))− LS (A (S))| ≥

√
ε · LS (A (S)) + ε

]
≤ δ,

where ε = 50k log(m/k)+log(1/δ)
m .

3 Zero/one loss functions

In this section we consider the zero/one loss function, which models categorization problems. We
study the relationships between uniform convergence, learnability, and sample compression schemes
under this loss. Subsection 3.1 establishes equivalence between learnability and compressibility of
a sublinear size. In Subsection 3.2 we use this equivalence to study the relationships between the
properties of uniform convergence, PAC, and agnostic learnability. In Subsection 3.2.1 we show that
agnostic learnability is equivalent to PAC learnability, In Subsection 3.2.2 we observe a dichotomy
concerning the size of sample compression schemes, and use it to establish a compactness property
of learnability. Finally, in Subsection 3.2.3 we study an extension of the Littlestone-Floyd-Warmuth
conjecture concerning an equivalence between learnability and sample compression schemes of fixed
size.

3.1 Learning is equivalent to sublinear compressing

The following theorem shows that ifH has a sample compression scheme of size k = o(m), then it
is learnable. Its proof appears in the full version of this paper.

Theorem 3.1 (Compressing implies learning [16]). Let (κ, ρ) be a selection scheme of size k, letH
be a hypothesis class, and let D be a distribution on Z .

1. If (κ, ρ) is a sample compression scheme forH, and m is such that k(m) ≤ m/2, then

Pr
S∼Dm

(
LD (ρ (κ (S))) > 50

k log m
k + k + log 1

δ

m

)
< δ.

2. If (κ, ρ) is an agnostic sample compression scheme forH, and m is such that k(m) ≤ m/2,
then

Pr
S∼Dm

LD (ρ (κ (S))) > inf
h∈H

LD(h) + 100

√
k log m

k + k + log 1
δ

m

 < δ.

The following theorem shows that learning implies compression. We present its proof in the full
version of this paper.

Theorem 3.2 (Learning implies compressing). LetH be an hypothesis class.

1. IfH is agnostic PAC learnable with learning rate d(ε, δ), then it is PAC learnable with the
same learning rate.

2. IfH is PAC learnable with learning rate d(ε, δ), then it has a sample compression scheme
of size k(m) = O(d0 log(m) log log(m) + d0 log(m) log(d0)), where d0 = d(1/3, 1/3).

3. If H has a sample compression scheme of size k(m), then it has an agnostic sample
compression scheme of the same size.

Remark. The third part in Theorem 3.2 does not hold when the loss function is general. In Section 4
we show that even if the loss function takes three possible values, then there are instances where a
class has a sample compression scheme but not an agnostic sample compression scheme.
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3.2 Applications

3.2.1 Agnostic and PAC learnability are equivalent

Theorems 3.1 and 3.2 imply that ifH is PAC learnable, then it is agnostic PAC learnable. Indeed, a
summary of the implications between learnability and compression given by Theorems 3.1 and 3.2
gives:

• An agnostic learner with rate d (ε, δ) implies a PAC learner with rate d (ε, δ).
• A PAC learner with rate d (ε, δ) implies a sample compression scheme of size k (m) =
O (d0 · log (m) log (d0 · log (m))) where d0 = d(1/3, 1/3).
• A sample compression scheme of size k (m) implies an agnostic sample compression

scheme of size k (m).
• An agnostic sample compression scheme of size k (m) implies an agnostic learner with

error ε (d, δ) = 100

√
k(d) log d

k(d)
+k(d)+log 1

δ

d .

Thus, for multiclass categorization problems, agnostic learnability and PAC learnability are equivalent.
When the size of the label set Y is O(1), this equivalence follows from previous works that studied
extensions of the VC dimension to multiclass categorization problems [24, 3, 19, 1]. These works
show that PAC learnability and agnostic PAC learnability are equivalent to the uniform convergence
property, and therefore any ERM algorithm learns the class. Recently, [7] separated PAC learnability
and uniform convergence for large label sets by exhibiting PAC learnable hypothesis classes that do
not satisfy the uniform convergence property. In contrast, this shows that the equivalence between
PAC and agnostic learnability remains valid even when Y is large.

3.2.2 A dichotomy and compactness

LetH be an hypothesis class. Assume thatH has a sample compression scheme of size, say, m/500
for some large m. Therefore, by Theorem 3.1,H is weakly PAC learnable with confidence 2/3, error
1/3, and O(1) examples. Now, Theorem 3.2 implies thatH has a sample compression scheme of size
k(m) ≤ O(log(m) log log(m)). In other words, the following dichotomy holds: every hypothesis
class H either has a sample compression scheme of size k(m) = O(log(m) log log(m)), or any
sample compression scheme for it has size Ω(m).

This dichotomy implies the following compactness property for learnability under the zero/one loss.
Theorem 3.3. Let d ∈ N, and let H be an hypothesis class such that each finite subclass of H
is learnable with error 1/3, confidence 2/3 and d examples. Then H is learnable with error 1/3,
confidence 2/3 and O(d log2(d) log log(d)) examples.

When Y = {0, 1}, the theorem follows by the observing that if every subclass of H has VC
dimension at most d, then the VC dimension of H is at most d. We are not aware of a similar
argument that applies for a general label set. A related challenge, which was posed by [6], is to find a
“combinatorial” parameter, which captures multiclass learnability like the VC dimension captures it
in the binary-labeled case.

A proof of Theorem 3.3 appears in the full version of this paper. It uses an analogous3 compactness
property for sample compression schemes proven by [2].

3.2.3 Uniform convergence versus compression to constant size

Since the introduction of sample compression schemes by [16], they were mostly studied in the
context of binary-labeled hypothesis classes (the case Y = {0, 1}). In this context, a significant
number of works were dedicated to studying the relationship between VC dimension and the minimal
size of a compression scheme (e.g. [8, 14, 9, 2, 15, 4, 21, 20, 17]). Recently, [18] proved that any class
of VC dimension d has a compression scheme of size exponential in the VC dimension. Establishing
whether a compression scheme of size linear (or even polynomial) in the VC dimension remains
open [9, 25].

3Ben-David and Litman proved a compactness result for sample compression schemes when Y = {0, 1},
but their argument generalizes for a general Y .

5



This question has a natural extension to multiclass categorization: Does every hypothesis class H
have a sample compression scheme of size O(d), where d = dPAC(1/3, 1/3) is the minimal sample
complexity of a weak learner forH? In fact, in the case of multiclass categorization it is open whether
there is a sample compression scheme of size depending only on d.

We show here that the arguments from [18] generalize to uniform convergence.

Theorem 3.4. LetH be an hypothesis class with uniform convergence rate dUC(ε, δ). ThenH has a
sample compression scheme of size exp(d), where d = dUC(1/3, 1/3).

The proof of this theorem uses the notion of the graph dimension, which was defined by [19].

Theorem 3.4 is proved using the following two ingredients. First, the construction in [18] yields a
sample compression scheme of size exp(dimG(H)). Second, the graph dimension determines the
uniform convergence rate, similarly to that the VC dimension does it in the binary-labeled case.

Theorem 3.5. LetH be an hypothesis class, let d = dimG(H), and let dUC(ε, δ) denote the uniform
convergence rate ofH. Then, there exist constants C1, C2 such that

C1 ·
d+ log(1/δ)− C1

ε2
≤ dUC(ε, δ) ≤ C2 ·

d log(1/ε) + log(1/δ)

ε2
.

Parts of this result are well-known and appear in the literature: The upper bound follows from
Theorem 5 of [7], and the core idea of the argument dates back to the articles of [1] and of [24]. A
lower bound with a worse dependence on ε follows from Theorem 9 of [7]. A proof of Theorem 3.5
appears in the full version of this paper.

4 General loss functions

We have seen that in the case of the zero/one loss function, an existence of a sublinear sample
compression scheme is equivalent to learnability. It is natural to ask whether this phenomenon
extends to other loss functions. The direction “compression =⇒ learning” remains valid for general
loss functions. In contrast, as will be discussed in this section, the other direction fails for general
loss functions.

However, a natural adaptation of sample compression schemes, which we term approximate sample
compression schemes, allows the extension of the equivalence to arbitrary loss functions. Approximate
compression schemes were previously studied in the context of classification (e.g. [13, 12]). In
Subsection 4.1 we argue that in general sample compression schemes are not equivalent to learnability;
specifically, there is no agnostic sample compression scheme for linear regression. In Subsection 4.2
we define approximate sample compression schemes and establish their equivalence with learnability.

Finally, in Subsection 4.3 we use this equivalence to demonstrate classes that are PAC learnable but
not agnostic PAC learnable. This manifests a difference with the zero/one loss under which agnostic
and PAC learning are equivalent (see 3.2.1). It is worth noting that the loss function we use to break
the equivalence takes only three values (compared to the two values of the zero/one loss function).

4.1 No agnostic compression for linear regression

We next show that in the setup of linear regression, which is known to be agnostic PAC learnable,
there is no agnostic sample compression scheme. For convenience, we shall restrict the discussion
to zero-dimensional linear regression. In this setup4, the sample consists of m examples S =
(z1, z2, . . . , zm) ∈ [0, 1]m, and the loss function is defined by `(h, z) = (h − z)2. The goal is to
find h ∈ R which minimizes LS(h). The empirical risk minimizer (ERM) is exactly the average
h∗ = 1

m

∑
i zi, and for every h 6= h∗ we have LS(h) > LS(h∗). Thus, an agnostic sample

compression scheme in this setup should compress S to a subsequence and a binary string of side
information, from which the average of S can be reconstructed. We prove that there is no such
compression.

Theorem 4.1. There is no agnostic sample compression scheme for zero-dimensional linear regres-
sion with size k(m) ≤ m/2.

4One may think of X as a singleton.
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The proof appears in the full version of this paper. The idea is to restrict our attention to sets Ω ⊆ [0, 1]
for which every subset of Ω has a distinct average. It follows that any sample compression scheme
for samples from Ω must perform a compression that is information theoretically impossible.

4.2 Approximate sample compression schemes

The previous example suggests the question of whether one can generalize the definition of com-
pression to fit problems where the loss function is not zero/one. Taking cues from PAC and agnostic
PAC learning, we consider the following definition. We say that the selection scheme (κ, ρ) is an
ε-approximate sample compression scheme for H if for every sample S that is realizable by H,
LS (ρ (κ (S))) ≤ ε. It is called an ε-approximate agnostic sample compression scheme forH if for
every sample S, LS (ρ (κ (S))) ≤ infh∈H LS(h) + ε.

Let us start by revisiting the case of zero-dimensional linear regression. Even though it does not have
an agnostic compression scheme of sublinear size, it does have an ε-approximate agnostic sample
compression scheme of size k = O(log(1/ε)/ε) which we now describe.

Given a sample S = (z1, . . . , zm) ∈ [0, 1], the average h∗ =
∑m
i=1 zi/m is the ERM of S. Let

L∗ = L(h∗) =

m∑
i=1

z2i /m−

(
m∑
i=1

zi/m

)2

.

It is enough to show that there exists a sub-sample S′ = (zi1 , . . . , zi`) of size ` = d1/εe such that
LS

(∑`
j=1 zij/`

)
≤ L∗ + ε. It turns out that picking S′ at random suffices. Let Z1, . . . , Z` be

independent random variables that are uniformly distributed over S and let H = 1
`

∑`
i=1 Zi be their

average. Thus, E[H] = h∗ and E
[
LS(H)

]
= L∗ + Var[H] ≤ L∗ + ε. In particular, this means that

there exists some sub-sample of size ` whose average has loss at most L∗ + ε. Encoding such a
sub-sample requires O(log(1/ε)/ε) additional bits of side information.

We now establish the equivalence between approximate compression and learning (the proof is similar
to the proof of Theorem 3.1).
Theorem 4.2 (Approximate compressing implies learning). Let (κ, ρ) be a selection scheme of size
k, letH be an hypothesis class, and let D be a distribution on Z .

1. If (κ, ρ) is an ε-approximate sample compression scheme forH, and m is such that k(m) ≤
m/2, then

Pr
S∼Dm

LD (ρ (κ (S))) > ε+ 100

√
k log m

k + log 1
δ

m

 < δ.

2. If (κ, ρ) is an ε-approximate agnostic sample compression scheme forH, and m is such that
k(m) ≤ m/2, then

Pr
S∼Dm

LD (ρ (κ (S))) > inf
h∈H

LD(h) + ε+ 100

√
k log m

k + log 1
δ

m

 < δ.

The following Theorem shows that every learnable class has an approximate sample compression
scheme. The proof of this theorem is straightforward - in contrast with the proof of the analog
statement in the case of zero/one loss functions and compression schemes without error.
Theorem 4.3 (Learning implies approximate compressing). LetH be an hypothesis class.

1. IfH is PAC learnable with rate d(ε, δ), then it has an ε-approximate sample compression
scheme of size k ≤ O(d log(d)) with d = minδ<1 d(ε, δ).

2. If H is agnostic PAC learnable with rate d(ε, δ), then it has an ε-approximate agnostic
sample compression scheme of size k ≤ O(d log(d)) with d = minδ<1 d(ε, δ).

The proof appears in the full version of this paper.
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4.3 A separation between PAC and agnostic learnability

Here we establish a separation between PAC and agnostic PAC learning under loss functions which
take more than two values:
Theorem 4.4. There exist hypothesis classesH ⊆ YX and loss function l : Y ×Y → {0, 12 , 1} such
thatH is PAC learnable and not agnostic PAC learnable.

The main challenge in proving this theorem is showing that H is not agnostic PAC learnable. We
do this by showing thatH does not have an approximate sample compression scheme. The crux of
the argument is an application of Ramsey theory; the combinatorial nature of compression allows to
identify the place where Ramsey theory is helpful. The proof appears in the full version of this paper.

5 Discussion and further research

The compressibility-learnability equivalence is a fundamental link in statistical learning theory. From
a theoretical perspective this link can serve as a guideline for proving both negative/impossibility
results, and positive/possibility results.

From the perspective of positive results, just recently, [5] relied on this paper in showing that
every learnable problem is learnable with robust generalization guarantees. Another important
example appears in the work of boosting weak learners [11] (see Chapter 4.2). These works follow a
similar approach, that may be useful in other scenarios: (i) transform the given learner to a sample
compression scheme, and (ii) utilize properties of compression schemes to derive the desired result.
The same approach is also used in this paper in Section 3.2.1, where it is shown that PAC learning
implies agnostic PAC learning under 0/1 loss; we first transform the PAC learner to a realizable
compression scheme, and then use the realizable compression scheme to get an agnostic compression
scheme that is also an agnostic learner. We note that we are not aware of a proof that directly
transforms the PAC learner to an agnostic learner without using compression.

From the perspective of impossibility/hardness results, this link implies that to show that a problem is
not learnable, it suffices to show that it is not compressible. In Section 4.3, we follow this approach
when showing that PAC and agnostic PAC learnability are not equivalent for general loss functions.

This link may also have a practical impact, since it offers a thumb rule for algorithm designers; if a
problem is learnable then it can be learned by a compression algorithm, whose design boils down to
an intuitive principle “find a small insightful subset of the input data.” For example, in geometrical
problems, this insightful subset often appears on the boundary of the data points (see e.g. [12]).
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