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Average Distance in a General Class of Scale-Free Networks

with Underlying Geometry
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Abstract

In Chung-Lu random graphs, a classic model for real-world networks, each vertex is
equipped with a weight drawn from a power-law distribution (for which we fix an exponent
2 < β < 3), and two vertices form an edge independently with probability proportional to
the product of their weights. Modern, more realistic variants of this model also equip each
vertex with a random position in a specific underlying geometry, which is typically Euclidean,
such as the unit square, circle, or torus. The edge probability of two vertices then depends,
say, inversely polynomial on their distance.

We show that specific choices, such as the underlying geometry being Euclidean or the
dependence on the distance being inversely polynomial, do not significantly influence the
average distance, by studying a generic augmented version of Chung-Lu random graphs.
Specifically, we analyze a model where the edge probability of two vertices can depend
arbitrarily on their positions, as long as the marginal probability of forming an edge (for two
vertices with fixed weights, one fixed position, and one random position) is as in Chung-Lu
random graphs, i.e., proportional to the product of their weights. The resulting class contains
Chung-Lu random graphs, hyperbolic random graphs, and geometric inhomogeneous random
graphs as special cases. Our main result is that this general model has the same average
distance as Chung-Lu random graphs, up to a factor 1+ o(1). The proof also yields that our
model has a giant component and polylogarithmic diameter with high probability.
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1 Introduction

Large real-world networks, like social networks or the internet infrastructure, are almost always
scale-free, i.e., their degree distribution follows a power law. Such networks have been studied
in detail since the 60s. One of the key findings is the small-world phenomenon, which is the
observation that two nodes in a network typically have very small graph-theoretic distance.
Theoretical models of random graphs that explain this phenomenon have been proposed since
the 90s. In this line of research, one studies the diameter of a graph, i.e., the largest distance
between any pair of vertices (in the largest component), and its average distance, i.e., the
expected distance between two nodes chosen independently and uniformly at random (from the
largest component). A random graph model is said to be a small world if its diameter is bounded
by (log n)O(1) or even O(log n), and an ultra-small world if its average distance is O(log log n).

Chung-Lu random graphs are a prominent model of scale-free networks [11, 12]. In this
model, every vertex v is equipped with a weight wv, and two vertices u, v are connected in-
dependently with probability min{1,wuwv/W}, where W is the sum over all weights wv. The
weights are typically assumed to follow a power-law distribution. Chung-Lu random graphs have
the ultra-small world property, since the average distance is (2± o(1)) log log(n)

| log(β−2)| , if the power-law

exponent is 2 < β < 3 [11, 12].
However, Chung-Lu random graphs fail to capture other important features of real-world

networks, such as their high clustering coefficient. This is why dozens of papers study more
realistic models, many of which combine Chung-Lu random graphs (or other classic models
such as preferential attachment [3]) with an underlying geometry, see, e.g., hyperbolic random
graphs [5, 24], geometric inhomogeneous random graphs [9], and many others [2, 6, 7, 8, 15, 21].
In these models, each vertex is additionally equipped with a random position in some underlying
geometric space, and the edge probability of two vertices depends on their weights as well as the
geometric distance of their positions. Typical choices for the geometric space are the unit square,
circle, or torus, and for the dependence on the distance are inverse polynomial, exponential, or
threshold functions. Such models can naturally yield a large clustering coefficient, since there are
many edges among geometrically close vertices. For some of these models the average distance
has been studied and shown to be the same as in Chung-Lu graphs, up to a factor 1+ o(1), see,
e.g., [1, 6, 15].

For these results, it is unclear how much they depend on the particular choice of the un-
derlying geometry. In particular, it is not known whether any of the important properties of
Chung-Lu random graphs transfer to versions with a non-metric underlying space. Such spaces
are well-motivated in the context of social networks, where two persons are likely to know each
other if share a feature (e.g., they are in the same sports club) regardless of their differences in
other features, which gives rise to a non-metric distance (see Section 7).

Our contribution In this paper we prove that all geometric variants of Chung-Lu random
graphs have the same average distance (2 ± o(1)) log log(n)

| log(β−2)| for 2 < β < 3, showing universality
of the ultra-small world property. We do this by analyzing a generic augmented version of
Chung-Lu random graphs. Here, each vertex is equipped with a power-law weight wv and a
random position xv in some ground space X . Two vertices u, v form an edge independently with
probability puv that only depends on the positions xu, xv (and u, v and the weight sequence). The
dependence on xu, xv may be arbitrary, as long as the edge probability has the same marginal
probabilities as in Chung-Lu random graphs. Specifically, for fixed xu and random xv we require
that the marginal edge probability Exv [puv|xu] is within constant factors of the Chung-Lu edge
probability min{1,wuwv/W}. This is a natural property for any augmented version of Chung-Lu
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random graphs. Note that our model is stripped off any geometric specifics, in fact, the ground
space is not even required to be metric. We retain only the most important features, namely
power-law weights and the right marginal edge probabilities. See Section 2 for details of our
model.

It it quite surprising that the average distance can be computed so precisely in this generality.
In particular, in another regime (for β > 3) our model is too general to obtain any meaningful
results: There are instantiations that do not have a giant component, but the largest component
is of polynomial size n1−Ω(1) [4]. In such graphs it makes much less sense to analyze diameter and
average distance, so the model is not useful in this regime – which makes it even more surprising
that our model allows to precisely determine the average distance in the regime 2 < β < 3.

Beyond the average distance, we establish that our model is scale-free and has a giant compo-
nent and polylogarithmic diameter. This shows that all instantiations of augmented Chung-Lu
random graphs are reasonable models for real-world networks. We remark that the clustering
coefficient varies drastically between different instantiations of our model, as it encompasses the
classic Chung-Lu random graphs that have clustering coefficient n−Ω(1), as well as geometric
variants that have constant clustering coefficient [9].

From a technical perspective, for our analysis of the average distance we can only borrow
one step from previous proofs for Chung-Lu graphs and its variants, namely the “greedy path”
argument (Lemma 5.2). The remainder of the proof is a delicate analysis of the k-neighborhood
of a vertex restricted to small-weight vertices, and the probability that any node in this k-
neighborhood is connected to a high-weight vertex (Lemma 5.5), from which we can then apply
the “greedy path” argument (Theorem 5.9).

In Section 2 we present the details of our model and results. After preliminary and basic
results (Sections 3 and 4), we determine the connectivity properties in Section 5 and the degree
distribution in Section 6. We discuss special cases of our model in Section 7 and close in Section 8.

2 Model and Results

2.1 Definition of the Model

Power law weights For n ∈ N let w = (w1, . . . ,wn) be a non-increasing sequence of positive
weights. We call W :=

∑n
v=1 wv the total weight. Throughout this paper we will assume that the

weights follow a power law. More precisely, we assume that for some 2 < β < 3 (the power-law
exponent of w) and some w = w(n) with nω(1/ log logn) ≤ w ≤ n(1−Ω(1))/(β−1), the sequence w

satisfies the following conditions:

(PL1) wmin := min{wv | 1 ≤ v ≤ n} = Ω(1),

(PL2) for all η > 0 there are c1, c2 > 0 with

c1
n

wβ−1+η
≤ #{1 ≤ v ≤ n | wv ≥ w} ≤ c2

n

wβ−1−η
,

where the first inequality holds for all wmin ≤ w ≤ w and the second for all w ≥ wmin.

We remark that these are standard assumptions for power-law graphs with average degree Θ(1).
Note that since w ≤ n(1−Ω(1))/(β−1), there are nΩ(1) vertices with weight at least w. On the
other hand, no vertex has weight larger than (c2n)

1/(β−1−η).
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Random graph model Let X be a non-empty set, and assume we have a measure µ on
X that allows to sample elements from X . We call X the ground space of the model and the
elements in X positions. The random graph G(n,X ,w, p) has vertex set V = [n] = {1, . . . , n}.
For any vertex v we independently draw a position xv ∈ X according to measure µ. We connect
any two vertices u 6= v independently with probability puv := puv(xu, xv) := puv(xu, xv;n,X ,w),
where p is a (symmetric in u, v and measurable) function mapping to [0, 1] and satisfying the
following condition:

(EP1) there are constants 0 < c1 ≤ c2 such that for any u, v, if we fix position xu ∈ X and draw
position xv from X according to µ, then the marginal edge probability is

Exv [puv(xu, xv) | xu] = Θ
(
min

{
1,

wuwv

W

})
.

For most results we also need the following condition, to ensure a unique giant component:

(EP2) for all η > 0, any u, v with wu,wv ≥ w, and any fixed positions xu, xv ∈ X we have

puv(xu, xv) ≥
( n

wβ−1−η

)−1+ω(1/ log logn)
.

Discussion of the model Let us first argue why condition (EP2) is necessary to obtain a
unique giant component. Suppose we have an instantiation of our model G on a space X . We
will see in this paper that with high probability G has a giant component that contains all
high-degree vertices. Now make a copy X ′ of X , and consider a graph where all vertices draw
geometric positions from X ∪X ′. Vertices in X are never connected to vertices in X ′, but within
X and X ′ we use the same connection probabilities as for G. Then the resulting graph will
satisfy all properties of our model except for (EP2), but it will have two giant components, one
in X and one in X ′. As we will see, (EP2) ensures that the high-weight vertices form a single
dense network, and that the graph has a unique giant component. However, for our results on
the degree sequence (EP2) is not necessary.

Since the right hand side of (EP1) is the edge probability of Chung-Lu graphs, this is
a natural condition for any augmented version of Chung-Lu graphs. For similar reasons as
discussed for (EP2), we cannot further relax (EP1) to a condition on the marginal probability
over random positions xu and xv, i.e, a condition like Exu,xv [puv(xu, xv)] = Θ

(
min

{
1, wuwv

W

})
.

Indeed, consider the same setup as above, with G, X , and copy X ′. For two vertices of weight at
most w̄, connect them only if they are in the same copy of X . For two vertices of weight larger
than w̄, always treat them as if they would come from the same copy (then condition (EP2) is
satisfied). For a vertex u of weight at most w̄ and v of weight larger than w̄, connect them only
if u is in X ′. Then the high-weight vertices form a unique component, but it is only connected
to vertices in X ′, while the low-weight vertices in X may form a second giant component. Thus,
in (EP1) it is necessary to allow any fixed xu.

Sampling the weights In our definition we assume that the weight sequence w is fixed.
However, if we sample the weights according to an appropriate distribution, then the sampled
weights will follow a power law with probability 1−n−o(1), so that a model with sampled weights
is almost surely included in our model. For the precise statement, see Lemma 4.6.
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Examples We regain the Chung-Lu model by setting X = {x} (the trivial ground space) and
puv = min

{
1, wuwv

W

}
, since then (EP1) is trivially satisfied and (EP2) is satisfied for 2 < β < 3.

We discuss more special cases in Sections 7. Among our examples are geometric inhomoge-
neous random graphs (GIRGs) that where introduced in [9]. Consider the d-dimensional ground
space X = [0, 1]d with the standard (Lebesgue) measure, where d ≥ 1 is a (constant) parameter
of the model. Let α 6= 1 be a second parameter that determines how strongly the geometry influ-
ences edge probabilities. Finally, let ‖ · ‖ be the Euclidean distance on [0, 1]d, where we identify
0 and 1 in each coordinate (i.e., we take the distance on the torus). We show in Theorem 7.3
that every edge probability function p satisfying

puv = Θ

(
min

{
1, (||xu − xv||)

−dα ·
(
wuwv

W

)max{α,1}
})

(1)

follows (EP1) and (EP2), so it is a special case of our model. As was shown in [9], an instance of
hyperbolic random graphs [5, 26, 22] satisfies (1) asymptotically almost surely (over the choice
of random weights w), so this class also is a special case of our model.

In Section 7 we will see that GIRGs can be varied as follows. As before, let X = [0, 1]d.
For x = (x1, . . . , xd) and y = (y1, . . . , yd) ∈ X , we define the minimum component distance
‖x − y‖min := min{|xi − yi| | 1 ≤ i ≤ d}, where the differences xi − yi ∈ [−1/2, 1/2) are
computed modulo 1, or, equivalently, on the circle. This distance reflects the property of social
networks that two individuals may know each other because they are similar in only one feature
(e.g., they share a hobby), regardless of the differences in other features. Note that the minimum
component distance is not a metric, since there are x, y, z ∈ X such that x and y are close in
one component, y and z are close in one (different) component, but x and z are not close in any
component. Let V (r) be the volume of the ball Br(0) := {x ∈ X | ‖x‖min ≤ r}. Then any p
satisfying

puv = Θ

(
min

{
1, V (‖xu − xv‖)

−α ·
(
wuwv

W

)max{α,1}
})

satisfies conditions (EP1) and (EP2), so it is a special case of our model.1

2.2 Our Results

Our results generalize and improve the understanding of Chung-Lu random graphs, hyperbolic
random graphs, and other models, as they are special cases of our fairly general model. We
study the following fundamental structural questions.

Scale-free Since we plug in power-law weights w, we expect our model to be scale-free.

Theorem 2.1 (Section 6). Whp2 the degree sequence of our random graphs, not necessarily
fulfilling (EP2), follows a power law with exponent β and average degree Θ(1).

Giant component and diameter The connectivity properties of our model for β > 3 are
not very well-behaved, in particular since in this case even threshold hyperbolic random graphs
do not possess a giant component of linear size [4]. Hence, for connectivity properties we restrict
our attention to the regime 2 < β < 3, which holds for most real-world networks [17].

1These examples also show that our model is incomparable to the (also very general) model of inhomogeneous
random graphs studied by Bollobás, Janson, and Riordan [6]. Their model requires sufficiently many long-range
edges, so that setting α > 1 in (1) yields an edge probability that is not supported by their model, and it requires
metric distances, so that the minimum component distance is also not supported by their model.

2We say that an event holds with high probability (whp) if it holds with probability 1 − n
−ω(1).
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Theorem 2.2 (Section 5). Let 2 < β < 3. Whp the largest component of our random graph
model has linear size, while all other components have size at most logO(1) n. Moreover, whp the
diameter is at most logO(1) n.

A better bound of Θ(log n) holds for the diameter of Chung-Lu graphs [13]. It remains an open
problem whether the upper bound O(log n) holds in general for our model.

Average distance As our main result, we determine the average distance between two ran-
domly chosen nodes in the giant component to be the same as in Chung-Lu random graphs up
to a factor 1+o(1), showing that the underlying geometry is negligible for this graph parameter.

Theorem 2.3 (Section 5). The average distance of our random graph model is (2±o(1)) log logn
| log(β−2)|

in expectation and with probability 1− o(1) for any 2 < β < 3.

3 Preliminaries and Notation

3.1 Notation

For w ∈ R≥0, we use the notation V≥w := {v ∈ V | wv ≥ w} and V≤w := {v ∈ V | wv ≤ w}, as
well as W≥w :=

∑
v∈V≥w

wv and W≤w :=
∑

v∈V≥w
wv. For u, v ∈ V we write u ∼ v if u and v are

adjacent, and for A,B ⊆ V we write A ∼ v if there exists u ∈ A such that u ∼ v, and we write
A ∼ B if there exists v ∈ B such that A ∼ v. For a vertex v ∈ V , we denote its neighborhood
by Γ(v), i.e. Γ(v) := {u ∈ V | u ∼ v}. We say that an event holds with high probability (whp) if
it holds with probability 1− n−ω(1).

3.2 Tools

In the proofs we will use the following concentration inequalities.

Theorem 3.1 (Chernoff-Hoeffding bound, Theorem 1.1 in [19]). Let X :=
∑

i∈[n]Xi where for
all i ∈ [n], the random variables Xi are independently distributed in [0, 1]. Then

(i) Pr[X > (1 + ε)E[X]] ≤ exp
(
− ε2

3 E[X]
)
for all 0 < ε < 1,

(ii) Pr[X < (1− ε)E[X]] ≤ exp
(
− ε2

2 E[X]
)
for all 0 < ε < 1, and

(iii) Pr[X > t] ≤ 2−t for all t > 2eE[X].

We will need a concentration inequality which bounds large deviations taking into account
some bad event B. We start with the following variant of McDiarmid’s inequality as given in [23]
(slightly simplified).

Theorem 3.2 (Theorem 3.6 in [23]). Let X1, . . . ,Xm be independent random variables over
Ω1, . . . ,Ωm. Let X = (X1, . . . ,Xm), Ω =

∏m
k=1Ωk and let f : Ω → R be measurable with

0 ≤ f(ω) ≤ M for all ω ∈ Ω. Let B ⊆ Ω such that for some c > 0 and for all ω ∈ B, ω′ ∈ Ω that
differ in only one component we have

|f(ω)− f(ω′)| ≤ c.

Then for all t > 0

Pr[|f(X)− E[f(X)]| ≥ t] ≤ 2e−
t2

8mc2 + 2mM
c Pr[B]. (2)
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Our improved version of this theorem is the following, where in the Lipschitz condition both
ω and ω′ come from the good set B, but we have to consider changes of two components at once.
Recently, a similar inequality has been proven by Combes [14].

Theorem 3.3. Let X1, . . . ,Xm be independent random variables over Ω1, . . . ,Ωm. Let X =
(X1, . . . ,Xm), Ω =

∏m
k=1Ωk and let f : Ω → R be measurable with 0 ≤ f(ω) ≤ M for all ω ∈ Ω.

Let B ⊆ Ω such that for some c > 0 and for all ω ∈ B, ω′ ∈ B that differ in at most two
components we have

|f(ω)− f(ω′)| ≤ c. (3)

Then for all t ≥ 2M Pr[B]

Pr
[
|f(X)− E[f(X)]| ≥ t

]
≤ 2e−

t2

32mc2 + (2mM
c + 1)Pr[B].

Proof. We say that ω, ω′ ∈ Ω are neighbors if they differ in exactly one component. Given a
function f as in the statement, we define a function f ′ as follows. On B the functions f and f ′

coincide. Let ω ∈ B. If ω has a neighbor ω′ ∈ B, then choose any such ω′ and set f ′(ω) := f(ω′).
Otherwise set f ′(ω) := f(ω).

The constructed function f ′ satisfies the precondition of Theorem 3.2. Indeed, let ω ∈ B and
ω′ ∈ Ω differ in only one position. If ω′ ∈ B, then since f ′(ω) = f(ω) and f ′(ω′) = f(ω′), and
by the assumption on f , we obtain |f ′(ω) − f ′(ω′)| ≤ c. Otherwise we have ω′ ∈ B, and since
ω′ has at least one neighbor in B, namely ω, we have f ′(ω′) = f(ω′′) for some neighbor ω′′ ∈ B
of ω′. Note that both ω and ω′′ are in B, and as they are both neighbors of ω′ they differ in at
most two components. Thus, by the assumption on f we have

|f ′(ω)− f ′(ω′)| = |f(ω)− f(ω′′)| ≤ c.

Hence, we can use Theorem 3.2 on f ′ and obtain concentration of f ′(X). Specifically, since
Pr[X 6= X ′] ≤ Pr[B], and thus |E[f(X)]− E[f ′(X)]| ≤ M Pr[B], we obtain

Pr[|f(X)− E[f(X)]| ≥ t] ≤ Pr[B] + Pr[|f ′(X) − E[f ′(X)]| ≥ t−M Pr[B]]

≤ Pr[B] + Pr[|f ′(X) − E[f ′(X)]| ≥ t/2],

since t ≥ 2M Pr[B], which together with Theorem 3.2 proves the claim.

4 Basic Properties

In this section, we prove some basic properties which repeatedly occur in our proofs. In particular
we calculate the expected degree of a vertex and the marginal probability that an edge between
two vertices with given weights is present. Let us start with the following abstract statement.

Lemma 4.1. Let f : R → R be a continuously differentiable function. Then for any weights
0 ≤ w0 ≤ w1,

∑

v∈V,w0≤wv≤w1

f(wv) = f(w0) · |V≥w0 | − f(w1) · |V>w1 | +

∫ w1

w0

f ′(w) · |V≥w|dw.

Note in particular that if f(0) = 0, then, by using w0 = 0 and w1 > wmax, we have

∑

v∈V
f(wv) =

∫ w1

0
|V≥w|f

′(w)dw =

∫ ∞

0
|V≥w|f

′(w)dw.
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Proof. We start by defining a measure ν on R as follows: For every set A ⊆ R we set ν(A) =
|{v ∈ V : wv ∈ A,w0 ≤ wv ≤ w1}|. In other words, ν is the sum of all Dirac measures given by
the vertex weights between w0 and w1. Then

∑

v∈V,w0≤wv≤w1

f(wv) =

∫
wmax

0
f(w)dν(w) =

∫
wmax

0

∫ w

0
f ′(x)dxdν(w) +

∫
wmax

0
f(0)dν(w)

=

∫
wmax

0

∫ ∞

0
f ′(x) · 1{x≤w}dxdν(w) + f(0) · |V≥w0 \ V>w1 |.

Notice that [0,wmax] is a compact set and f ′(x) is continuous by assumption. Hence |f ′(x) ·
1{x≤w}| is globally bounded on [0,wmax] and always zero for x > wmax. Thus, f ′(x) · 1{x≤w} is
integrable and we can apply Fubini’s theorem (see, e.g., [20]), which yields

∑

v∈V,w0≤wv≤w1

f(wv) =

∫ ∞

0
f ′(x)

∫
wmax

0
1{w≥x}dν(w)dx + f(0) · |V≥w0 \ V>w1 |

=

∫ ∞

0
f ′(x) · |V≥max{x,w0} \ V>w1 |dx + f(0) · |V≥w0 \ V>w1 |

=

∫ w0

0
f ′(x) · |V≥w0 \ V>w1 |dx

+

∫ w1

w0

f ′(x) · |V≥x \ V>w1 |dx + f(0) · |V≥w0 \ V>w1 |

= f(w0) · |V≥w0 | − f(w1) · |V>w1 | +

∫ w1

w0

f ′(w) · |V≥w|dw.

Recall the assumptions on power-law weights in Section 2.1. In the next lemma we calculate
the partial weight sums W≤w and W≥w.

Lemma 4.2. The total weight satisfies W = Θ(n). Moreover, for all sufficiently small η > 0,

(i) W≥w = O(nw2−β+η) for all w ≥ wmin,

(ii) W≥w = Ω(nw2−β−η) for all wmin ≤ w ≤ w,

(iii) W≤w = O(n) for all w, and

(iv) W≤w = Ω(n) for all w = ω(1).

Proof. We start with (i) and use Lemma 4.1 with w0 = w, w1 = ∞ and f(w) = w. Our
assumption (PL2) on the weights implies

W≥w = |V≥w| · w +

∫ ∞

w
|V≥x|dx = O

(
nw2−β+η +

∫ ∞

w
nx1−β+ηdx

)
= O

(
nw2−β+η

)
.

For (ii) we similarly obtain

W≥w = Ω

(
nw2−β−η +

∫
wmax

w
nx1−β−ηdx

)
= Ω

(
nw2−β−η

)
.
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For (iii), we see that if w < wmin, then clearly W≤w = 0. Otherwise, Lemma 4.1 with w0 = wmin

and w1 = w implies

W≤w = |V≥wmin
| · wmin − |V>w| · w +

∫ w

wmin

|V≥x|dx ≤ nwmin +O

(∫ w

wmin

nx1−β+ηdx

)
= O(n),

and for (iv) we obtain

W≤w ≥

∫ w

wmin

|V≥x|dx−|V>w|·w = Ω

(∫ w

wmin

nx1−β−ηdx

)
−O

(
nw2−β+η

)
= Ω(n)−o(n) = Ω(n).

Next we consider the marginal edge probability of two vertices u, v with weights wu, wv. For
a fixed position xu ∈ X , we already know this probability by Equation (EP1) of our definition.

Lemma 4.3. Fix u ∈ [n] and xu ∈ X . All edges {u, v}, u 6= v, are independently present with
probability

Pr[u ∼ v | xu] = Θ(Pr[u ∼ v]) = Θ
(
min

{
1,

wuwv

W

})
.

Proof. Let u, v ∈ [n]. Then by (EP1), it follows directly

Pr[u ∼ v] = Exu

[
Pr
xv

[u ∼ v | xu]

]
= Exu

[
Θ
(
min

{
1,

wuwv

W

})]
= Θ

(
min

{
1,

wuwv

W

})
.

Furthermore, for every fixed xu ∈ X the edges incident to u are independently present with
probability Prxv [u ∼ v | xu], as the event “u ∼ v” only depends on xv, and an independent
random choice for the edge {u, v} (after fixing xu).

The following lemma shows that the expected degree of a vertex is of the same order as the
weight of the vertex, thus we can interpret a given weight sequence w as a sequence of expected
degrees.

Lemma 4.4. For any v ∈ [n] we have E[deg(v)] = Θ(wv).

Proof. Let v be any vertex. We estimate the expected degree both from below and above. By
Lemma 4.3, the expected degree of v is at most

∑

u 6=v

Pr[u ∼ v] = Θ



∑

u 6=v

min
{
1,

wuwv

W

}

 = O

(
∑

u∈V

wuwv

W

)
= O

(
wv

W

∑

u∈V
wu

)
= O(wv).

For the lower bound, Pr[u ∼ v] = Θ(wuwv

W
) holds for all wu ≤ W

wv
. We set w′ := W

wv
and observe

that w′ = ω(1). Using Lemma 4.2, we obtain

E[deg(v)] ≥
∑

u 6=v,u∈V≤w′

Pr[u ∼ v] = Ω
(
wv

W
W≤w′

)
= Ω(wv).

As the expected degree of a vertex is roughly the same as its weight, it is no surprise that whp
the degrees of all vertices with weight sufficiently large are concentrated around the expected
value. The following lemma gives a precise statement.
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Lemma 4.5. The following properties hold whp for all v ∈ [n].

(i) deg(v) = O(wv + log2 n).

(ii) If wv = ω(log2 n), then deg(v) = (1 + o(1))E[deg(v)] = Θ(wv).

(iii)
∑

v∈V≥w
deg(v) = Θ(W≥w) for all w = ω(log2 n).

Proof. Let v ∈ V with fixed position xv ∈ X and let µ := E[deg(v) | xv] = Θ(wv). By definition
of the model, conditioned on the position xv the degree of v is a sum of independent Bernoulli
random variables. By Lemma 4.4 there exists a constant c such that 2eµ < c log2 n holds for all
vertices v ∈ V≤log2 n and all positions xv ∈ X . Thus, if v ∈ V≤log2 n, we apply a Chernoff bound

(Theorem 3.1.(iii)), and obtain Pr[deg(v) > c log2 n] ≤ 2−c log2 n = n−ω(1). If v ∈ V≥log2 n, we

similarly obtain Pr[deg(v) > 3µ/2] ≤ e−Θ(µ) = n−ω(1) and µ = Θ(wv) by Lemma 4.4. Then (i)
follows by applying a union bound over all vertices.

For (ii), let v ∈ V such that wv = ω(log2 n), let µ be as defined above and put ε = logn√
µ = o(1).

Thus by the Chernoff bound,

Pr [|deg(v)− µ| > ε · µ] ≤ e−Θ(ε2·µ) = n−ω(1),

and we obtain (ii) by applying Lemma 4.4 and a union bound over all such vertices. Finally,
from (ii) we infer

∑
v∈V≥w

deg(v) =
∑

v∈V≥w
Θ(wv) = Θ(W≥w) for all w = ω(log2 n), which

shows (iii).

We conclude this section by proving that if we sample the weights randomly from an appro-
priate distribution, then almost surely the resulting weights satisfy our conditions on power-law
weights.

Lemma 4.6. Let wmin = Θ(1) and F = Fn : R → [0, 1] be non-decreasing such that F (z) = 0
for all z ≤ wmin, and F (z) = 1 − Θ(z1−β) for all z ∈ [wmin, n

1/(β−1−ε)], where ε > 0. Suppose
that for every vertex v ∈ [n], we choose the weight wv independently according to the cumulative
probability distribution F . Then asymptotically almost surely the resulting weight vector w sat-
isfies the power-law conditions (PL1) and (PL2) with w = (n/ log2 n)1/(β−1). Moreover, for any
fixed function 1 ≥ λ(n) ≥ n−o(1) the error probability is bounded by λ(n) for sufficiently large n.

Thus, any property that holds with probability 1− q for weights satisfying (PL1) and (PL2)
also holds for weights sampled according to F (.) with probability at least 1 − q − λ(n) =
1− q − no(1).

Proof. Condition (PL1) is fulfilled by definition of F . Now consider (PL2). Denote by Yz the
number of vertices with weight at least z. For all z ∈ [wmin, n

1/(β−1−ε)] the expected number of
vertices with weight at least z is

E[Yz] = n(1− F (z)) = Θ(nz1−β), (4)

i.e., we have c3nz
1−β ≤ E[Yz] ≤ c4nz

1−β for some 0 < c3 ≤ c4.
For the lower bound of (PL2) we show that whp for all wmin ≤ z ≤ w we have Yz >

0.5c3nz
1−β. Hence, the lower bound of (PL2) even holds for η = 0 und thus also for all η > 0.

To this end, we note that for z ≤ w we have E[Yz] = Ω(log2 n), so for any wmin ≤ z ≤ w the
Chernoff bound (Theorem 3.1.(ii)) yields

Pr[Yz ≤ 0.5c3nz
1−β] ≤ Pr[Yz ≤ 0.5E[Yz]] ≤ exp(−Ω(E[Yz])) = n−ω(1).
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Note that Yz is always an integer. Hence we can assume without loss of generality that either
z ∈ {wmin, w} or 0.5c3nz

1−β is an integer, because if Yz > 0.5c3nz
1−β holds for these values of z,

then it holds for all other values z as well. Thus, we can restrict z to a set of size O(n), which
allows to take a union bound, and the lower bound of (PL2) holds whp.

For the upper bound of (PL2), let 0 < η < ε/2. We show that whp for all z ≥ wmin

we have Yz < c2nz
1−β+η, where c2 ≥ 6c4 max{1,w−ε

min}. We first consider wmin ≤ z ≤ zη :=
(n/ log2 n)1/(β−1−η). In this range, the intended bound is c2nz

1−β+η = Ω(log2 n). The Chernoff
bound (Theorem 3.1.(iii)) applies (since 6zη max{1,w−ε

min} > 2e) and yields

Pr[Yz ≥ c2nz
1−β+η] ≤ 2−c2nz1−β+η

= n−ω(1).

By the same argument as above, we can restrict z to {wmin, zη} and values where c2nz
1−β+η is

integral, and thus we may use the union bound.
In the remaining case z > zη we use Markov’s inequality to bound

Pr[Yz ≥ c2nz
1−β+η] = Pr[Yz ≥ Ω(zη)E[Yz]] ≤ O(z−η) ≤ O(z−η

η ) ≤ n−Ω(η). (5)

By the same argument as above, we can restrict z to values where c2nz
1−β+η is integral, which

happens for O(log2 n) values above zη. Note in particular that any such value satisfies z ≤
n1/(β−1−η), so that in (5) we only use values for z in the valid range [wmin, n

1/(β−1−ε)]. Hence,
we can use the union bound to obtain error probability O(n−Ω(η) log2 n). For later reference we
note that by the same argument for ẑ := n1/(β−1−ε), whp Yẑ < 1.

So far we have shown that the lower bound of (PL2) holds whp for all η ≥ 0, while the upper
bound holds for any η > 0 with probability 1 − O(n−Ω(η) log2 n). From this we can conclude
that for any η′ = η′(n) ≥ ω(log log n/ log n), with probability 1 − O(n−Ω(η′)), (PL2) holds for
all η ≥ η′. Indeed, (1) if (PL2) holds for every η ≥ η′ that is a power of 2 then it holds for all
η ≥ η′, and (2) by a union bound over all O(log(1/η′)) powers of 2 between 1 and η′, (PL2)
holds for all such powers of 2 with probability 1 − O(n−Ω(η′) log2(n) · log(1/η′)) ≥ 1 − n−Ω(η′),
since η′ ≥ ω(log log n/ log n).

In order to also cover all η < η′, we fix a continuous, strictly decreasing function η′(n) with
o(1) ≥ η′(n) ≥ ω(log log n/ log n) and inverse function g(η). If η < η′, then η is a non-trivial
function in n, so we may also choose c2 = c2(η(n)) as a function in n in (PL2). Formally, we
may set c2 := (g(η))2, which implies c2 ≥ n2 for η < η′. With this choice, the upper bound of
(PL2) holds trivially for all z < ẑ = n1/(β−1−ε), where we may assume ε < β − 2. On the other
hand, we have seen before that whp Yẑ < 1. Since Yn only takes integral values, this implies
the upper bound of (PL2) for all z ≥ ẑ. Altogether, for any fixed continuous, strictly decreasing
function o(1) ≥ η′(n) ≥ ω(log log n/ log n) with probability 1 − n−Ω(η′) condition (PL2) holds
for all η > 0. In particular, (PL2) holds with probability 1− λ(n).

5 Giant Component, Diameter, and Average Distance

Throughout this section we assume 2 < β < 3. Under this assumption we prove that whp our
model has a giant component with diameter at most (log n)O(1), and that all other components
are only of polylogarithmic size. We will further show that the expected average distance of any
two vertices in the giant is (2 ± o(1)) log log n/| log(β − 2)|. The same formula has been known
to hold for various graph models, including Chung-Lu [13] and hyperbolic random graphs [1].
The lower bound follows from the first moment method on the number of paths of different
types. Note that the probability that a fixed path P = (v1, . . . , vk) exists in our model is the
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same as in Chung-Lu random graphs, since the marginal probability of vi ∼ vi+1 conditioned on
the positions of v1, . . . vi is Θ(min{1,wviwvi+1/W}), as in the Chung-Lu model. In particular,
the expected number of paths coincides for both models (save the factors coming from the Θ(.)-
notation). Not surprisingly, the lower bound for the expected average distance follows from
general statements on power-law graphs, bounding the expected number of too short paths by
o(1), cf. [16, Theorem 2]. The main contribution of this section is to prove a matching upper
bound for the average distance.

In the whole section let G be a graph sampled from our model. We start by considering the
subgraph induced by the heavy vertices V̄ := V≥w, where w is given by the definition of power
law weights, see condition (PL2). We call the induced subgraph Ḡ := G[V̄ ] the heavy core.

Lemma 5.1 (Heavy core). Whp Ḡ is connected and has diameter o(log log n).

Proof. Let n̄ be the number of vertices in the heavy core, and fix 0 < η < 3 − β. Since
w ≤ n(1−Ω(1))/(β−1) , we may bound n̄ = Ω(nw1−β−η) = nΩ(1). By (EP2), the connection
probability for any heavy vertices u, v, regardless of their position, is at least

puv(xu, xv) ≥
( n

wβ−1−η

)−1+ω(1/ log logn)
≥ n̄−1+ω(1/ log logn).

Therefore, the diameter of the heavy core is at most the diameter of an Erdős-Rényi ran-
dom graph Gn̄,p, with p = n̄−1+ω(1/ log logn). With probability 1 − n̄−ω(1), this diameter is
Θ(log n̄/ log(pn̄)) = o(log log n) [18]. Since n̄ = nΩ(1), this proves the lemma.

Next we show that if we start at a vertex of weight w, going greedily to neighbors of largest
weight yields a short path to the heavy core with a probability that approaches 1 as w increases.

Lemma 5.2 (Greedy path). Let 0 < ε < 1, and let v be a vertex of weight 2 ≤ w ≤ w. Then
with probability at least 1−O

(
exp

{
−wΩ(ε)

})
there exists a path of length at most (1+ε) log logn

| log(β−2)|
from v to the heavy core. In particular, for every ε > 0 there is a C > 0 such that whp for all
v ∈ V≥(logn)C there exists a path of length at most (1 + ε) log logn

| log(β−2)| from v to the heavy core.

Moreover, whp there are Ω(n) vertices in the same component as the heavy core.

Proof. Recall from the proof of Lemma 5.1 that there are n̄ = nΩ(1) heavy vertices. Let τ :=
(β − 2)−1/(1+ε/2). Note that 1 < τ < 1/(β − 2), and that 1/ log τ = (1 + ε/2)/| log(β − 2)|.
Set v0 := v, and define recursively vi+1 to be the neighbor of vi of highest weight. Moreover,
let wi := min{wτ i , w} for all i ≥ 0. We will show that with sufficiently high probability
wvi ≥ wi for all 0 ≤ i ≤ imax, where imax := ⌈logτ (logw/ logw)⌉ is the smallest integer such

that wτ i ≥ w. Note that this implies that there is a path from v to the heavy core of length at
most imax ≤ (1 + ε/2) log log n/| log(β − 2)| + 1 ≤ (1 + ε) log log n/| log(β − 2)|, for sufficiently
large n.

Let 0 ≤ i ≤ imax − 1, and assume that vi has weight at least wi. We need to show that
vi connects to a vertex of weight at least wi+1. By condition (EP1), the edges from vi to v,
v ∈ V≥wi+1 , are independently present with probability Ω(min{wvwi/W, 1}), respectively. If

wiwi+1 ≥ W, this probability is Ω(1). Since there are at least |V≥wi+1 | ≥ n̄ = nΩ(1) vertices
of weight at least wi+1, the probability that vi will connect to at least one of them is 1 −

exp{−nΩ(1)} = 1 − exp{−w
Ω(ε)
i }. So assume wiwi+1 < W. Then we can bound the edge

probability from below by Ω(wiwi+1/W). Thus, for any η > 0 the probability that vi does not
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connect to a vertex of weight at least wi+1 is at most

pi :=
∏

v∈V,wv≥wi+1

(
1− Ω

(wiwi+1

W

))
≤ exp

{
− Ω

(wiwi+1

W
· |V≥wi+1 |

)}

(PL2)

≤ exp
{
−Ω

(
wiw

2−β−η
i+1

)}
.

Since wi+1 ≤ wτ
i , we obtain

pi ≤ exp
{
−Ω

(
w

1−τ(β−2+η)
i

)}

Note that since τ < 1/(β − 2), the exponent of wi in this expression is positive for sufficiently
small η > 0. More precisely, we have

1− τ(β − 2) = 1− (β − 2)ε/(2+ε) = Ω(ε),

and thus for sufficiently small η > 0 we have

pi ≤ exp
{
−w

Ω(ε)
i

}
. (6)

By the union bound, the probability that for every 0 ≤ i ≤ imax−1 the vertex vi has a neighbor

of weight at least wi+1 is at least 1 −
∑

i exp
{
−w

Ω(ε)
i

}
= 1 − exp

{
−wΩ(ε)

}
, which proves the

first claim.
For the second claim, let C = Ω(1/ε) with sufficiently large hidden constant. If a vertex v

has weight at least (log n)C then the probability estimated above is at least 1− e−Ω((log n)C
′
) =

1−nω(1). The claim now follows from a union bound over all vertices of weight at least (log n)C .
For the size of the giant component, we apply the same arguments as before for w = 2. Fix

η > 0 sufficiently small, and let Vi := {v ∈ V | wi ≤ wv ≤ w1+η
i }. For every η > 0, Vi contains

at least Ω(nw1−β−η
i ) and at most O(nw1−β+η

i ) vertices by condition (PL2). For every v ∈ Vi, let
Γi(v) := {u ∈ Vi+1 | v ∼ u}, and let Ei(v) := E[|Γi(v)|]. Moreover, let γ := τ(2−β− η) + 1 > 0.
Then for every η > 0 and for every v ∈ Vi,

Ei(v) ≥ Ω
(
nw1−β−η

i+1 ·
wiwi+1

W

)
≥ Ω(w2−β−η

i+1 wi) = Ω(w
τ(2−β−η)+1
i ) ≥ Ω(wγ

i ).

As this lower bound is independent of v, we also have Ei := minv∈Vi
Ei(v) = Ω(wγ

i ). Let
µ := min{γ, 1

2C } and Bi := {v ∈ Vi | |Γi(v)| ≤ Ei/2}. This set will play the role of “bad”
vertices.

Claim 5.3. There is a constant c > 0 such that |Bi| ≤ 2 exp{−cwµ
i } · |Vi| holds whp for all i ≥ 0

with wi ≤ (log n)C .

We postpone the proof of Claim 5.3 (and Claim 5.4 below) until we have finished the main
argument. We uncover the sets Vi one by one, starting with the largest weights. Let δ > 0 be so
small that τ(µ− δ) > µ. Note that we may replace the factor 2 in Claim 5.3 by any other factor
D1 ≥ 2 without violating the claim. We will show by induction that if D1 = O(1) is sufficiently
large, then whp the fraction of vertices in Vi with a weight-increasing path to the inner core is
at least 1 −D1 exp{−cwµ−δ

i }. Note that for any i0 = i0(c) = O(1) the statement is trivial for
all i ≤ i0, if we choose D1 = D1(i0, c) sufficiently large. Also, if wi ≥ (log n)C then we already
know that whp all vertices in Vi are connected to the inner core with weight-increasing paths.
So consider some i0 < i ≤ imax such that wi ≤ (log n)C , and assume the claim is shown for i+1.
Let V ′

i+1 be the set of vertices in Vi+1 for which there is no weight-increasing path to the inner

core, so by induction hypothesis |V ′
i+1| ≤ D1 exp{−cwµ−δ

i+1 } · |Vi+1|. Now we uncover Vi.
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Claim 5.4. There exists D2 > 0 such that whp |E(Vi, V
′
i+1)| ≤ D1 exp{cw

µ−δ
i+1 } · |Vi| · Ei · w

D2
i .

Let B′
i := {v ∈ Vi | |E({v}, V ′

i+1)| ≥ Ei/2}. If the low-probability event of Claim 5.4 does

not occur, it follows in particular with wµ−δ
i+1 = w

µ+Ω(1)
i that

|B′
i| ≤

2|E(Vi, V
′
i+1)|

Ei
≤ 2D1 exp{−cwµ−δ

i+1 } · |Vi| · w
D2
i ≤ D1 exp{−cwµ

i } · |Vi| (7)

for all i ≥ i0, provided that i0 = i0(c) (and thus, wi0) is a sufficiently large constant. It remains
to observe that every vertex in Vi \ (Bi ∪ B′

i) has at least one edge into Vi+1 \ V
′
i+1. Since the

latter vertices are all connected to the inner core, we have at least |Vi| − |Bi| − |B′
i| vertices in

Vi that are connected to the inner core. By Claim 5.3 and Equation (7), whp both Bi and B′
i

have size at most D1 exp{−cwµ
i }|Vi|, so together they have size at most D1 exp{−cwµ−δ

i }|Vi|,
for all i ≥ i0 where i0 is sufficiently large. This concludes the induction modulo Claims 5.3
and 5.4. The existence of the giant component now follows because whp a constant fraction of
Vi0 is connected to the inner core, and Vi0 has linear size by (PL2).

Proof of Claim 5.3. For fixed v ∈ Vi, the events “v ∼ u” are independent for all u ∈ Vi+1.
So by the Chernoff bound, there is a constant c > 0 such that Pr[v ∈ Bi] ≤ exp{−cwγ

i }
and E[|Bi|] ≤ exp{−cwγ

i }|Vi|. In order to prove concentration we will use Theorem 3.3. For
this, we need to argue that the probability space of our random graph model is a product
of independent random variables. Recall that we apply two different randomized processes to
create the geometric graph. First, for every vertex v we choose xv ∈ X independently at random.
Afterwards, every edge is present with some probability puv. So far, these random variables are
not independent.

The n random variables x1, . . . , xn define the vertex set and the edge probabilities puv. We
introduce a second set of n− 1 independent random variables. For every u ∈ {2, . . . , n} we let
Yu := (Y 1

u , . . . , Y
u−1
u ), where every Y v

u is independently and uniformly at random from [0, 1].
Then for v < u, we include the edge {u, v} in the graph if and only if

puv > Y v
u .

We observe that indeed this implies Pr[u ∼ v | xu, xv] = puv(xu, xv) as desired. Furthermore, the
2n − 1 random variables x1, . . . , xn, Y2, . . . Yn are independent and define a product probability
space Ω which is equivalent to our random graph model. Formally, every ω ∈ Ω defines a graph
G(ω). Now we consider the bad event

B = {ω ∈ Ω : in G(ω) there exists v ∈ Vi ∪ Vi+1 such that deg(v) ≥ (log n)O(1)}.

By Lemma 4.5 and the assumption wi ≤ (log n)C , indeed we have Pr[B] = n−ω(1). Moreover
for all ω, ω′ ∈ B that differ in two coordinates we have ||Bi(ω)| − |Bi(ω

′)|| ≤ (log n)O(1). Fur-
thermore, choose t = exp{−cwµ

i } · |Vi|, and observe that wµ
i ≤ (log n)1/2. Then Theorem 3.3

implies

Pr[|Bi| − E[|Bi|] ≥ t] ≤ 2 exp

(
−

t2

64|Vi|(log n)O(1)

)
+ nO(1) Pr[B]

≤ 2 exp

(
−

e−2cwµ
i |Vi|

64(log n)O(1)

)
+ nO(1) Pr[B] = n−ω(1).

Hence, whp we have |Bi| ≤ E[|Bi|]+ t ≤ (exp{−cwγ
i }+exp{−cwµ

i }) · |Vi|. The claim now follows
since µ < γ and wi > 1.
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Proof of Claim 5.4. Let Zi = |E(Vi, V
′
i+1)| be the random variable counting the edges between

Vi and V ′
i+1. By (EP1) the expectation of Zi is at most

E[Zi] ≤ |V ′
i+1| · |Vi| ·O

(
w1+η
i+1 w

1+η
i

W

)
≤ O

(
D1 exp{−cwµ−δ

i+1 }nw
1−β+η
i+1 · |Vi| ·

w1+η
i+1 w

1+η
i

W

)

≤ D1 exp{−cwµ−δ
i+1 } · |Vi| · O

(
w2−β+2η
i+1 w1+η

i

)

≤ D1 exp{−cwµ−δ
i+1 } · |Vi| · O

(
w

τ(2−β)+1+η(2τ+1)
i

)

≤ D1 exp{−cwµ−δ
i+1 } · |Vi| · Ei · O

(
w

η(3τ+1)
i

)
.

Since we assumed wi ≥ 2, we may upper bound the O(·)-term by 0.5wD2
i for a sufficiently large

D2 > 0.
We use the same bad event B as above in the proof of Claim 5.3 and observe that for all

ω, ω′ ∈ B that differ in two coordinates we have again |Zi(ω) − Zi(ω
′)| ≤ (log n)O(1). Then for

t = 0.5D1 exp{−cwµ−δ
i+1 } · |Vi| · Ei · w

D2
i it follows similarly as in Claim 5.3 that

Pr[Zi − E[Zi] ≥ t] = n−ω(1).

By Lemma 5.2, whp every vertex of weight at least (log n)C has small distance from the
heavy core. It remains to show that every vertex in the giant component has a large probability
to connect to such a high-weight vertex in a small number of steps. The next lemma shows that
the more vertices of small weight we have in the neighborhood of a vertex, the more likely it is
that there is an edge from the neighborhood to a vertex of large weight.

Lemma 5.5 (Bulk lemma). Let ε > 0. Let wmin ≤ w ≤ w be a weight, and let k ≥ max{2, wβ+ε}
be an integer. For a vertex v ∈ V<w, let Nv be the set of all vertices in distance at most k of v
in the graph G<w. Then for a random vertex v ∈ V<w,

Pr[dist(v, V≥w) > k and |Nv| ≥ k] ≤ O
(
e−wΩ(1)

)
.

Proof. We may assume w ≤ n1/2, since otherwise k > n, and the statement is trivial. Let c > 0
be such that for all vertices u of weight at least w, all vertices u′ ∈ V , and every fixed position
xu′ ∈ X we have Pr[u ∼ u′ | xu′ ] ≥ cw/n, i.e., c is the hidden constant of condition (EP1).
Finally by the power-law assumption (PL2), for any sufficiently small 0 < η < 1 we may choose
w̃ = O(w1+η) such that there are at least Ω(n/wβ−1+η) vertices with weights between w and w̃.

We first uncover the graphG<w induced by vertices of weight less than w. LetNv := Nv(k,w)
be the k-neighborhood of v in G<w. Once G<w is fixed, consider a random vertex u with weight
in [w, w̃]. Let R := R(v) := Pru[u ∼ Nv | G<w].

Claim 5.6. Q := Pru
[
|Nv ∩ Γ(u)| ≥ cw|Nv |/(2nR)

∣∣ G<w

]
≥ cw

2n .

Proof. Let x := cw|Nv |/(2nR). We first use |Nv ∩ Γ(u)| ≤ |Nv| to bound

E
[
|Nv ∩ Γ(u)|

∣∣ G<w

]
≤ Q|Nv|+ (R−Q)x ≤ Q|Nv|+Rx.

On the other hand, the left hand side is at least cw|Nv |/n by our choice of c. Together, Q ≥
cw/n −Rx/|Nv| = cw/(2n), proving the claim.
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Now we distinguish three cases. (1) If |Nv| < k then there is nothing to show. (2) If
R ≥ wβ/n, then

E[#u with wu ∈ [w, w̃] and u ∼ Nv

∣∣ G<w, R ≥ wβ/n] ≥ Ω

(
wβ

n
·

n

wβ−1+η

)
= Ω(wΩ(1)),

since the number of vertices of weight in [w, w̃] is at least Ω(n/wβ−1+η) by (PL2). Since every u
draws its position and its neighbors independently from each other, we may apply the Chernoff
bounds and obtain

Pr[∃u with wu ∈ [w, w̃] and u ∼ Nv

∣∣ G<w, R ≥ wβ/n] ≥ 1−O
(
e−wΩ(1)

)
, (8)

as desired.
(3) For the last case, |Nv| ≥ k and R < wβ/n, we will show that it is very unlikely that this

case occurs for a random v (over the random choices in G<w). More precisely, let VR ⊆ V<w be
the set of vertices v of weight less than w for which |Nv| ≥ k and R(v) < wβ/n. Further, let
E be the event that |VR| ≥ ne−c′w, where c′ is a constant to be fixed later. Then we will show
that Pr[E ] = e−Ω(w). Note that with this statement, we can conclude the proof as follows. Let
v be a random vertex of weight less than w. When we uncover G<w, then E occurs only with
probability e−Ω(w). On the other hand, if E does not occur, then there at most ne−c′w vertices
v′ ∈ V<w for which |Nv| ≥ k and R(v′) < wβ/n, and the probability that v is among them is
at most ne−c′w/|V<w| = O(e−c′wwβ−1+η) = O(e−Ω(w)) for any η > 0. Finally, if v is not among
these vertices, then either |Nv| < k, and we are done, or R(v) ≥ wβ/n, and then Nv 6∼ V≥w

with probability at most O(e−wΩ(1)
) by (8). Thus the theorem follows. So it remains to show

the following claim.

Claim 5.7. For VR := {v ∈ V<w | |Nv| ≥ k and R < wβ/n}, with E being the event that
|VR| ≥ ne−c′w,

Pr[E ] = O(e−Ω(w)). (9)

Before we prove Claim 5.7, we need some preparation. Sort the vertices v ∈ VR decreasingly
by |Nv|. We go through the list one by one, and pick greedily a set VGr ⊆ VR such that the Nv,
v ∈ VGr are pairwise disjoint. Then after this procedure, the following holds.

Claim 5.8.
∑

v∈VGr
2|Nv|

5 ≥ |VR|.

Proof of Claim 5.8. We prove Claim 5.8 by the following charging argument. Whenever we
pick a vertex v to be included into VGr, we inductively define levels Ls(v) ⊆ VR, s ≥ 0 by
L0(v) := {u ∈ Nv | |Nu| ≤ |Nv|

2} and Ls+1(v) :=
⋃

v′∈Ls(v)
{u ∈ Nv′ | |Nu| ≤ |Nv|

2−s
}. The

vertex v pays one coin to each vertex in
⋃

s≥0 Ls(v). We claim that (i) every vertex v that we

pick pays at most 2|Nv|
5 coins, and (ii) every vertex in VR is paid at least one coin. Note that

(i) and (ii) together will imply Claim 5.8.
To prove (i), we observe that |L0(v)| ≤ |Nv| and |L1(v)|/|L0(v)| ≤ |Nv|

2 by definition
of L0(v), and |Ls+1(v)|/|Ls(v)| ≤ |Nv|

21−s
for all s ≥ 1 by definition of Ls(v). Therefore,

|Ls(v)| ≤ |Nv |
1+2+

∑s−1
j=1 21−j

. Moreover, for all s > s0 := ⌊log2 logk |Nv|⌋ we have |Nv|
2−s

< k, so
Ls+1 = ∅ by definition of VR. On the other hand, for all s ≤ s0 we have |Nv|

2−s
≥ k ≥ 2, so

the terms |Nv|
3+

∑s−1
j=1 21−j

increase at least geometrically fast for s ≤ s0. Hence,
∑s0

s=0 |Ls(v)| ≤∑s0
s=0 |Nv|

3+
∑s−1

j=1 21−j

≤ 2|Nv |
3+

∑s0−1
j=1 21−j

≤ 2|Nv |
5, proving (i).

For (ii), we show the following statement inductively for all vertices v. After v has paid its
coins, every vertex u which comes after v in the ordering, and for which Nu ∩ Nv 6= ∅ holds,
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has received at least one coin. Note that it will follow that each vertex that we consider and
that we do not pick has been paid by an earlier vertex. So assume that u comes after v in the
ordering, and that Nu ∩ Nv 6= ∅. Since we go through the vertices in descending order with
respect to |Nv|, we have |Nu| ≤ |Nv |. Let v′ ∈ Nu ∩ Nv. If |Nv′ | ≤ |Nv|

2, then v′ ∈ L0 and
u ∈ L1, so v pays to u. If |Nv′ | > |Nv|

2, then we have considered v′ before v. However, since
we picked v, and since v′ ∈ Nv (and thus, v ∈ Nv′), v

′ was not picked. Therefore, by induction
hypothesis v′ had been paid by some earlier vertex v′′, so v′ ∈ Ls(v

′′) for some s ≥ 0. Since
|Nu| ≤ |Nv| < |Nv′ |

1/2 ≤ |Nv′′ |
2−s

, we obtain u ∈ Ls+1(v
′′), so u has been paid by v′′ as well. This

proves (ii), and thus concludes the proof of Claim 5.8. Note that 2
∑

v∈VGr
|Nv|

5 ≥ |VR| ≥ ne−c′w

if E holds.

Proof of Claim 5.7. With Claim 5.8, we can finally prove Claim 5.7 as follows. Fix a vertex u
such that wu ≤ w̃. Then for each position xu of u, the expected degree of u conditioned on xu

is in O(w̃), and it is the sum of independent random variables by Lemmas 4.3 and 4.4. Note
that the hidden constant in the O(.)-notation is independent of wu and of xu. Therefore, by the
Chernoff-Hoeffding bound, there are constants c′, C > 0 independent of wu and xu such that
Pr[deg(u) ≥ i] ≤ e−2c′i for all i ≥ Cw̃, and this also holds if u is a random vertex with weight in
[w, w̃]. So let u be a random vertex with weight in [w, w̃], and let Vu := {v ∈ VGr | |Nv ∩Γ(u)| ≥
|Nv|cw

1−β/2}. Consider the random variables

S1 := 2
∑

v∈Vu

|Nv|
5 and S2 :=

cw1−β

2

∑

v∈Vu

|Nv|.

Note that S2 ≤ deg(u) by definition of Vu, and since all v ∈ Vu ⊆ VGr have disjoint Nv. Hence,
Pr[S2 ≥ i] ≤ Pr[deg(u) ≥ i] ≤ e−2c′i for all i ≥ Cw̃. Now consider the expectation of S1

conditioned on E . On the one hand, since we are in the case R < wβ/n, we have |Nv |cw
1−β/2 <

|Nv|cw/(2nR), and thus Pr[v ∈ Vu | v ∈ VGr] ≥ cw/(2n) by Claim 5.6. Hence, E[S1 | E ] ≥
cw/n ·

∑
v∈VGr

|Nv|
5 ≥ cwe−c′w/2 by Claim 5.8. On the other hand, since

∑
v∈Vu

|Nv|
5 ≤

(
∑

v∈Vu
|Nv |)

5, we may bound S1 ≤ 2 ·
(
2wβ−1S2/c

)5
. Both inequalities together yield

cwe−c′w/2 ≤ E[S1 | E ] ≤ 2 ·

(
2wβ−1

c

)5

· E[S5
2 | E ] = 2 ·

(
2wβ−1

c

)5

·
∑

i≥1

i5 Pr[S2 = i | E ]

≤ 2 ·

(
2wβ−1

c

)5

·

∑
i≥1 i

5 Pr[S2 = i]

Pr[E ]
.

Solving for Pr[E ] yields Pr[E ] ≤ wO(1)ec
′w
∑

i≥1 i
5 Pr[S2 = i]. Observe that S2 > 0 already

implies S2 > cw1−βk/2 ≫ w̃, since |Nv | ≥ k for all v ∈ VGr. So if w is sufficiently large then the
first Cw̃ terms of

∑
i≥1 i

5 Pr[S2 = i] vanish. On the other hand, recall that Pr[S2 ≥ i] ≤ e−2c′i

for all i ≥ Cw̃. Hence, if w is sufficiently large,

Pr[E ] ≤ wO(1)ec
′w
∑

i≥Cw̃

i5 Pr[S2 ≥ i] ≤ wO(1)ec
′w
∑

i≥Cw̃

i5e−2c′i = w̃O(1)e−Ω(w̃) = O(e−Ω(w)).

This concludes the proof of Claim 5.7, and thus of the lemma.

The upper bounds on the diameter and the average distance now follow easily from the
lemmas we proved so far. We collect the results in the following theorem, which reformulates
Theorem 2.2 and Theorem 2.3.
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Theorem 5.9 (Components and Distances). With high probability,

(i) there is a giant component, i.e., a connected component which contains Ω(n) vertices;

(ii) all other components have at most polylogarithmic size;

(iii) the giant component has polylogarithmic diameter.

Moreover, the average distance (i.e., the expected distance of two uniformly random vertices in
the largest component) is (2± o(1)) log logn

| log(β−2)| in expectation and with probability 1− o(1).

Proof. (i) has been proven in Lemma 5.2. For (ii) and (iii) we conclude from the same lemma
that whp the giant contains all vertices of weight at least w := (log n)C , for a suitable constant
C > 0, and that whp all such vertices have distance at most (1 + ε) log logn

| log(β−2)| from the heavy

core V̄ . Choose a sufficiently small constant ε > 0, and apply Lemma 5.5 with ℓ = wβ+ε.
Then a random vertex in V<w has probability at least 1 − e−wΩ(1)

to either be at distance at
most ℓ of V≥w, or to be in a component of size less than ℓ. Note that for sufficiently large
C this probability is at least 1 − n−ω(1). By the union bound, whp one of the two options
happens for all vertices in V<w. This already shows that whp all non-giant components are of
size less than ℓ = (log n)O(1). For the diameter of the giant, recall that whp the heavy core has
diameter o(log log n) by Lemma 5.1. Therefore, whp the diameter of the giant component is
O(ℓ+ log log n) = (log n)O(1).

For the average distance, let ε = ε(n) = o(1), and let v ∈ [n]. We set λε := (1 + ε) log logn
| log(β−2)| .

Fix ℓ ≥ 3, ℓ = no(1), and let w := w(ℓ) = ℓ1/(β+1). We uncover the graph in two steps: in a first
step, we uncover G1 := G[V<w ∪{v}], and in the second step, we uncover the rest. Consider the
ℓ− 1-neighborhood Γ of v in G1. If wv ≥ w then Γ trivially contains a vertex of weight at least
w. Otherwise, by Lemma 5.5, with probability 1−O(exp{−wΩ(1)}) either Γ ∼ V≥w, or Γ is the
whole connected component of v in G (which happens automatically in the case Γ 6∼ V≥w and
|Γ| < ℓ). If Γ is the whole connected component, then v is not connected to the core, and there
is nothing to show. Otherwise, there is a vertex v′ ∈ V≥w with dist(v, v′) ≤ ℓ, and by Lemma 5.2
with probability 1−O(exp{−wΩ(ε)}) there is a path from v′ to the heavy core of length at most
λε. Summarizing, we have shown that for every vertex v and every ℓ ≥ 3 with ℓ = no(1)

Pr [∞ > dist(v, Vcore) ≥ ℓ+ λε] ≤ e−Ω(w(ℓ)Ω(ε)) = O(e−ℓΩ(ε)
). (10)

Let us first consider the expectation of the average distance, i.e., if u, u′ denote random vertices
in the largest component of a random graph G then we consider EG[Eu,u′[dist(u, u′)]]. Since
dist(u, u′) ≤ n we can condition on any event happening with probability 1−n−ω(1), in particular
we can condition on the event E that G has a giant component containing Vcore, all other
components have size (log n)O(1), G has diameter (log n)O(1), and the core has diameter dcore =
o(log log n). Moreover, by bounding dist(u, u′) ≤ dist(u, Vcore) + dist(u′, Vcore) + dcore it suffices
to bound 2 · EG[Eu[dist(u, Vcore)] | E ] + dcore. Now we use E[X] =

∑
ℓ>0 Pr[X ≥ ℓ] for a random

variable X taking values in N to bound

Eu[dist(u, Vcore)] ≤ λε +

(logn)O(1)∑

ℓ=1

Pr
u
[dist(u, Vcore) ≥ ℓ+ λε] .

Note that conditioned on E , since u is chosen uniformly at random from the giant component,
dist(u, Vcore) < ∞. Taking expectation over G, conditioned on E , we may use (10) to bound
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the probability that dist(v, Vcore) is too large for a vertex chosen uniformly at random from V .
Since the giant has size Ω(n), this probability increases at most by a constant factor if we instead
choose v uniformly at random from the giant. Hence, we obtain

EG[Eu[dist(u, Vcore)] | E ] ≤ λε +

(log n)O(1)∑

ℓ=1

O(e−ℓΩ(ε)
) + n−ω(1).

For every constant ε > 0 the sum in the above expression is O(1), so if ε = o(1) tends to zero
sufficiently slowly, then it is still o(log log n). This yields the desired bound on the expected
average distance of 2λo(1) + o(log log n) = (2 + o(1)) log logn

| log(β−2)| .

For concentration, we want to show PrG[Eu,u′ [dist(u, u′)] ≥ 2λε] = o(1) for some ε = ε(n) =
o(1). Similarly as before, we bound

Pr
G
[Eu,u′ [dist(u, u′)] ≥ λε] ≤ n−ω(1) + Pr

G
[2 · Eu[dist(u, Vcore)] + dcore ≥ λε | E ].

Let γ > 0 be sufficiently small and ω(1) ≤ ρ ≤ o(log log n). We claim that for sufficiently large n,
2 · Eu[dist(u, Vcore)] + dcore ≥ λε can only happen if for some ℓ > ρ we have Pru[dist(u, Vcore) ≥
ℓ+ λε/2] ≥ e−ℓγ·ε . Indeed, otherwise we have (conditioned on E), similarly as before

Eu[dist(u, Vcore)] ≤ λε/2 + ρ+

(logn)O(1)∑

ℓ=ρ

Pr
u
[dist(u, Vcore) ≥ ℓ+ λε/2] ≤ λε/2 + ρ+O(1),

and Eu,u′[dist(u, u′)] ≤ 2 · Eu[dist(u, Vcore)] + dcore ≤ 2λε/2 + o(log log n) < 2λε (if ε = o(1)
decreases sufficiently slowly compared to (ρ+ dcore)/ log log n). Using the union bound over all
ρ ≤ ℓ ≤ (log n)O(1), the desired probability is bounded from above by

(log n)O(1)∑

ℓ=ρ

Pr
G

[
Pr
u
[dist(u, Vcore) ≥ ℓ+ λε/2] ≥ e−ℓγ·ε

∣∣ E
]
.

However, by (10) and Markov’s inequality, for sufficiently small γ > 0 we have for v randomly

chosen from V , PrG[Prv[∞ > dist(v, Vcore) ≥ ℓ + λε/2] > e−ℓγ·ε ] ≤ O(e−ℓΩ(ε)
). Since the giant

has linear size, this probability increases at most by a constant factor if we instead draw v from
the giant component (conditioned on E). Thus, the desired probability is bounded by

(log n)O(1)∑

ℓ=ρ

O(e−ℓΩ(ε)
),

which is o(1), since ρ = ω(1). This finishes the proof.

6 Degree Sequence

In this paper we assume that the weights follow a power law. We start with the maximum
degree ∆(G) of a GIRG, which is a simple corollary of Lemma 4.5.

Corollary 6.1. Whp, ∆(G) = Θ(wmax), where wmax = max{wv | v ∈ V }. In particular, for all
η > 0, whp, ∆(G) = Ω(w) and ∆(G) = O(n1/(β−1−η)).

18



Proof. We deduce from the model definition that ω(log2 n) ≤ w ≤ wmax = O(n1/(β−1−η)). Then
Lemma 4.5 directly implies the statement.

Next, we calculate the expected number of vertices with degree at least d.

Lemma 6.2. For any sufficiently small η > 0 there exist constants c3, c4 > 0 such that for all
integers 1 ≤ d ≪ w, we have

c3nd
1−β−η ≤ E[#{v ∈ V | deg(v) ≥ d}] ≤ c4nd

1−β+η.

Proof. Let η be sufficiently small. Recall that by Lemma 4.4 there exist constants c5, c6 > 0
such that for all vertices v, c5wv ≤ E[deg(v)] ≤ c6wv. Let 1 ≤ d ≪ w and let v be any vertex
with wv ≥ 2

c5
d. Thus E[deg(v)] ≥ 2d, and by a Chernoff bound

Pr[deg(v) < d] ≤ Pr[deg(v) < 0.5E[deg(v)]] ≤ e−E[deg(v)]/8 ≤ e−d/4 ≤ e−1/4.

As we have power-law weights, there are Ω(nd1−β−η) vertices with weight at least 2
c5
d, and such

a vertex has degree at least d with probability at least 1 − e−1/4. By linearity of expectation,
E[#{v ∈ V | deg(v) ≥ d}] =

∑
v∈[n] Pr[deg(v) ≥ d] ≥ c3nd

1−β−η.

Next let v be a vertex with weight at most w := d
3ec6

, hence 2eE[deg(v)] ≤ 2d
3 < 3d

4 . By a
Chernoff bound (Theorem 3.1.(iii)) we obtain

Pr[deg(v) ≥ d] ≤ Pr[deg(v) > 3d/4] ≤ 2−3d/4.

Thus, for the upper bound it follows that

E[#{v ∈ V | deg(v) ≥ d}] =
∑

v∈[n]
Pr[deg(v) ≥ d] ≤ |V≥w|+

∑

v∈V≤w

Pr[deg(v) ≥ d]

≤ O(nw1−β+η) + n · 2−3d/4.

Note that d2 ≤ 3 · 23d/4 holds for all d ≥ 1. This fact implies n · 2−3d/4 ≤ 3nd−2 < 3nd1−β+η .
Hence indeed for c4 > 0 large enough it holds E[#{v ∈ V | deg(v) ≥ d}] ≤ c4nd

1−β+η.

With these preparations, we come to the main theorem of this section, which is a more
precise formulation of Theorem 2.1 and states that the degree sequence follows a power law with
the same exponent as the weight sequence.

Theorem 6.3. For all η > 0 there exist constants c7, c8 > 0 such that whp

c7
n

dβ−1+η
≤ #{v ∈ V | deg(v) ≥ d} ≤ c8

n

dβ−1−η
,

where the first inequality holds for all 1 ≤ d ≤ w and the second inequality holds for all d ≥ 1.

Before we prove Theorem 6.3, we note that together with our standard calculations from
Section 4 we immediately obtain the average degree in the graph.

Corollary 6.4. With high probability, 1
n

∑
v∈V deg(v) = Θ(1).
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Proof of Theorem 6.3. We first consider the case where d is larger than log3 n = o(w). From
Condition (PL2) on the vertex weights and Lemma 4.4 it follows that there exists a constant
c9 > 0 such that c9

n
dβ−1+η ≤ #{v ∈ V | E[deg(v)] ≥ 1.5d} for all log3 n ≤ d ≤ w. Then by

Lemma 4.5, whp every vertex v with E[deg(v)] ≥ 1.5d has degree at least (1− o(1))1.5d ≥ d for
n large enough. Hence whp there exist at least c9

n
dβ−1+η vertices with degree at least d.

Vice-versa, #{v ∈ V | E[deg(v)] ≥ 0.5d} ≤ c10
n

dβ−1−η for some constant c10 > 0. By
the same arguments as above, whp every vertex v with E[deg(v)] < 0.5d has degree at most
(1 + o(1))0.5d < d. Thus the total number of vertices with degree at least d can be at most
c10

n
dβ−1−η . This proves the theorem for d ≥ log3 n.

Let 1 ≤ d ≤ log3 n, ε > 0 be sufficiently small, V ′ := V≤nε be the set of small-weight
vertices, and G′ := G[V ′]. First, we introduce some notation and define the two random variables
gd := #{v ∈ V | deg(v) ≥ d} and fd := #{v ∈ V ′ | degG′(v) ≥ d}. Note that by Lemma 6.2, we
already have c3nd

1−β−η ≤ E[gd] ≤ c4nd
1−β+η and it remains to prove concentration. Clearly,

fd ≤ gd ≤ fd + 2
∑

v∈V \V ′

deg(v). (11)

Next we apply Lemma 4.5 together with Lemma 4.2 and see that whp,

∑

v∈V \V ′

deg(v) = Θ (W≥nε) = O
(
n1+(2−β+η)ε

)
= n1−Ω(1).

Recall that we assume d ≤ log3 n, so in particular E[gd] = Ω(n/(log n)3(β−1+η)). It follows that
E
[∑

v∈V \V ′ deg(v)
]
= o(E[gd]). Inequalities (11) thus imply E[fd] = (1+ o(1))E[gd]. Hence, it is

sufficient to prove that the random variable fd is concentrated around its expectation, because
this will transfer immediately to gd.

We aim to show this concentration result again via 3.3. Analogouly to the proof of Claim 5.3,
we can assume that the probability space Ω is a product space of independent random variables.
For every ω ∈ Ω, we denote by G(ω) the resulting graph, and similarly we use G′ = G′(ω) and
fd = fd(ω). We introduce the bad event:

B := {ω ∈ Ω : the maximum degree in G′(ω) is at least n2ε}. (12)

We observe that Pr[B] = n−ω(1), since whp every vertex v ∈ V ′ has degree at most O(wv +
log2 n) = o(n2ε) by Lemma 4.5. Let ω, ω′ ∈ B such that they differ in at most two coordinates.
We observe that changing one coordinate xi or Yi can influence only the degrees of i itself and
of the vertices which are neighbors of i either before or after the coordinate change. It follows
that |fd(ω)− fd(ω

′)| ≤ 4n2ε =: c. Therefore, fd satisfies the Lipschitz condition of Theorem 3.3
with bad event B. Let t = n1−ε = o(E[fd]). Then since nPr[B] = n−ω(1), Theorem 3.3 implies

Pr [|fd − E[fd]| ≥ t] ≤ 2e−
t2

64c2n + (4n
2

c + 1)Pr[B] = e−Ω(n1−4ε) + n−ω(1) = n−ω(1),

which proves the concentration and concludes the proof.

7 Example: GIRGs and generalizations

In this section, we further discuss the special cases of our model mentioned in Section 2.1. In
particular, we show that the GIRG model introduced in [9] is a special case, and we discuss a
non-metric example.
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The distance model Consider the following situation, which will cover both of our examples.
As our underlying geometry we consider the ground space X = [0, 1]d, where d ≥ 1 is a (constant)
parameter of the model. We sample from this set according to the standard (Lebesgue) measure.
This is in the spirit of the classical random geometric graphs [25].

To describe the distance of two points x, y ∈ X , assume we have some measurable function
‖.‖ : [−1/2, 1/2)d → R≥0 such that ‖0‖ = 0 and ‖−x‖ = ‖x‖ for all x ∈ [−1/2, 1/2)d. Note that
‖.‖ does not need to be a norm or seminorm. We extend ‖.‖ to R

d via ‖z‖ := ‖z − u‖, where
u ∈ Z

d is the unique lattice point such that z−u ∈ [−1/2, 1/2)d . For r ≥ 0 and x ∈ X , we define
the r-ball around x to be Br(x) := {x ∈ X | ‖x − y‖ ≤ r}, and we denote by V (r) the volume
of the r-ball around 0. Intuitively, Br(x) is the ball around x in [0, 1]d with the torus geometry,
i.e., with 0 and 1 identified in each coordinate. Assume that V : R≥0 → [0, 1] is surjective, i.e.,
for each V0 ∈ [0, 1] there exists r such that V (r) = V0.

Let α ∈ R>0 be a parameter. Since the case α = 1 deviates slightly from the general
case, we assume α 6= 1. Let p be any edge probability function that satisfies for all u, v and
xu, xv ∈ X = [0, 1]d,

puv(xu, xv) = Θ

(
min

{
1, V (‖xu − xv‖)

−α ·
(
wuwv

W

)max{α,1}
})

. (13)

Then, as we will prove later in Theorem 7.3, p satisfies conditions (EP1) and (EP2), so it is a
special case of our model.

Example 7.1. If we choose ‖.‖ to be the Euclidean distance ||.||2 then we obtain the GIRG
model introduced in [9], where the distance of two points in [0, 1]d is given by their Euclidean
distance on the torus. In [9] it was shown that a graph from such a GIRG model whp has
clustering coefficient Ω(1), that it can be stored with O(n) bits in expectation, and that it can
be sampled in expected time O(n). Moreover, it was shown that hyperbolic random graphs are
contained in the GIRG model.

The next distance measure is particularly useful to model social networks: assume that two
individuals share one feature (e.g., they are in the same sports club), but are very different in
many other features (work, music, ...). Then they are still likely to know each other, which is
captured by the minimum component distance.

Example 7.2. Let the minimum component distance be defined by

‖x‖min := min{xi | 1 ≤ i ≤ d} for x = (x1, . . . , xd) ∈ [−1/2, 1/2)d .

Note that the minimum component distance is not a metric for d ≥ 2, since there are x, y, z ∈ X
such that x and y are close in one component, y and z are close in one (different) component, but
x and z are not close in any component. Thus the triangle inequality is not satisfied. However,
it still satisfies the requirements specified above, so our results of this paper apply.

Theorem 7.3. In the geometric setting described above, let p be any function that satisfies
Equation (13). Then conditions (EP1) and (EP2) are satisfied.

Proof. Fix u, v, and xu. Note that V (r) is the cumulative probability distribution Prxv(‖xu −
xv‖ ≤ r). The marginal edge probability is given by the Riemann-Stieltjes integral over r,

E := Exv [puv(xu, xv) | xu] = Θ

(∫ ∞

0
min

{
1, V (r)−α ·

(
wuwv

W

)max{α,1}
}
dV (r)

)
.
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In particular, for every sequence of partitions r(t) = {0 = r
(t)
0 < . . . < r

(t)
ℓ(t)} with meshes tending

to zero, the upper Darboux sum with respect to r(t) converges to the expectation,

E = Θ


 lim

t→∞

ℓ(t)∑

s=1


 sup

r
(t)
s−1≤r≤r

(t)
s

min

{
1, V (r)−α ·

(
wuwv

W

)max{α,1}
}

(
V (r

(t)
s+1)− V (r(t)s )

)

 .

Since V is surjective, we may refine the meshes r(t) if necessary such that the meshes of the

partitions V (t) = {V (r
(t)
0 ), . . . , V (r

(t)
ℓ(t)

)} also tend to zero. Hence,

E = Θ


 lim

t→∞

ℓ(t)∑

s=1

min

{
1, (V (t)

s )−α ·
(
wuwv

W

)max{α,1}
}(

V
(t)
s+1 − V (t)

s

)



= Θ

(∫ 1

0
min

{
1, V −α ·

(
wuwv

W

)max{α,1}
}
dV

)
,

where the latter integral is an ordinary Riemann integral. If wuwv/W ≥ 1, the integrand is 1
and we obtain E = Θ(1) = Θ

(
min

{
1, wuwv

W

})
. On the other hand, if wuwv/W < 1 then let

r0 := (wuwv

W
)max{α,1}/α < 1. Note that if r0 = Θ(1), then also r0 = Θ(wuwv/W). Therefore,

E = Θ

(∫ r0

0
1dV +

(
wuwv

W

)max{α,1} ∫ 1

r0

V −αdV

)

=





Θ
(
r0 +

wuwv

W

(
1− r1−α

0

) )
= Θ

(
wuwv

W

)
, if α < 1, and

Θ

(
r0 +

(
wuwv

W

)α (
r1−α
0 − 1

) )
= Θ

(
wuwv

W

)
, if α > 1,

as required.

It remains to show that p satisfies (EP2), i.e., that puv ≥
(

n
wβ−1−η

)−1+ω(1/ log logn)
for all

vertices u, v with wu,wv ≥ w̄, all xu, xv ∈ X , and all η > 0. Since V (‖xu − xv‖2) ≤ 1, we
may use Equation (13) to bound puv ≥ Ω(min{1, (wuwv/W)max{α,1}}). If wuwv/W ≥ 1 then
there is nothing to show (since the right hand side of (EP2) is o(1) by the upper bound on w).
Otherwise, if wuwv/W < 1, then

puv ≥ Ω

((
wuwv

W

)max{α,1}
)

≥ Ω

(
w2

n

)
≥
( n

wβ−1−η

)−1+ω(1/ log logn)
,

where the last step follows from the lower bound on w. This concludes the proof.

Finally, we discuss a variation of Example 7.1 where we let α → ∞ and thus obtain a
threshold function.

Example 7.4. Let ‖.‖ be the Euclidean distance ||.||2 and let p again satisfy (13), but this time
we assume that α = ∞. More precisely, we require

puv(xu, xv) =

{
Θ(1) if ‖xu − xv‖ ≤ O

((
wuwv

W

)1/d)

0 if ‖xu − xv‖ ≥ Ω
((

wuwv

W

)1/d)
,

(14)

where the constants hidden by O and Ω do not have to match, i.e., there can be an interval
[c1(

wuwv

W
)1/d, c2(

wuwv

W
)1/d] for ‖xu − xv‖ where the behaviour of puv(xu, xv) is arbitrary. This
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function p yields the case α = ∞ of the GIRG model introduced in [9]. In [9] we proved that
threshold hyperbolic random graphs are contained in this model, and furthermore that the model
whp has clustering coefficient Ω(1), it can be stored with O(n) bits in expectation, and that it
can be sampled in expected time O(n).

Notice that the volume of a ball with radius r0 = Θ((wuwv

W
)
1
d ) around any fixed x ∈ X is

Θ(min{1, wuwv

W
}). Thus, by (14), for fixed xu it follows directly that

Exv [puv(xu, xv) | xu] = Θ
(
Pr
xv

[
‖xu − xv‖2 ≤ r | xu

])
= Θ

(
min

{
1, wuwv

W

})
.

In order to also satisfy (EP2), we additionally require that 2 < β < 3 and w = ω(n1/2).
Then for all wu,wv ≥ w we have wuwv

W
= ω(1). For all positions xu, xv ∈ X we thus obtain

puv(xu, xv) = Θ(1) by (14). We emphasize that this additional assumption is only necessary for
property (EP2). For the degree sequence this condition is not required.

8 Conclusion

We studied a class of random graphs that genericly augment Chung-Lu random graphs by an
underlying ground space, i.e., every vertex has a random position in the ground space and
edge probabilities may arbitrarily depend on the vertex positions, as long as marginal edge
probabilities are preserved. Since our model is very general, it contains well-known special
cases like hyperbolic random graphs [5, 24] and geometric inhomogeneous random graphs [9].
Beyond these well-studied models, our model also includes non-metric ground spaces, which are
motivated by social networks, where two persons are likely to know each other if they share a
hobby, regardless of their other hobbies.

Despite its generality, we show that all instantiations of our model have similar connectivity
properties, assuming that vertex weights follow a power law with exponent 2 < β < 3. In par-
ticular, there exists a unique giant component of linear size and the diameter is polylogarithmic.
Surprisingly, for all instantiations of our model the average distance is the same as in Chung-Lu
random graphs, namely (2±o(1)) log logn

| log(β−2)| . In some sense, this shows universality of ultra-small
worlds.

We leave it as an open problem to determine whether the diameter of our model is O(log n)
for 2 < β < 3.
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