Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

Live User-guided Intrinsic Video For Static Scenes

MPG-Autoren
/persons/resource/persons136488

Meka,  Abhimitra
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons136490

Zollhöfer,  Michael
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45289

Richardt,  Christian
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45610

Theobalt,  Christian       
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

MPI-I-2017-4-001.pdf
(beliebiger Volltext), 9MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Fox, G., Meka, A., Zollhöfer, M., Richardt, C., & Theobalt, C.(2017). Live User-guided Intrinsic Video For Static Scenes (MPI-I-2017-4-001). Saarbrücken: Max-Planck-Institut für Informatik.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002C-5DA7-3
Zusammenfassung
We present a novel real-time approach for user-guided intrinsic decomposition of static scenes captured by an RGB-D sensor. In the first step, we acquire a three-dimensional representation of the scene using a dense volumetric reconstruction framework. The obtained reconstruction serves as a proxy to densely fuse reflectance estimates and to store user-provided constraints in three-dimensional space. User constraints, in the form of constant shading and reflectance strokes, can be placed directly on the real-world geometry using an intuitive touch-based interaction metaphor, or using interactive mouse strokes. Fusing the decomposition results and constraints in three-dimensional space allows for robust propagation of this information to novel views by re-projection.We leverage this information to improve on the decomposition quality of existing intrinsic video decomposition techniques by further constraining the ill-posed decomposition problem. In addition to improved decomposition quality, we show a variety of live augmented reality applications such as recoloring of objects, relighting of scenes and editing of material appearance.