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What are infectious proteins?

The infectious isoform of the mammalian prion protein, PrPSc, was the first protein to be iden-

tified as an infectious protein [1] (Table 1). PrPSc can be transmitted both from cell-to-cell and

between animals or individuals and causes an invariably fatal, neurodegenerative disease [2].

Fungal prions, which are unrelated to the mammalian prion protein, convey cytosolic inheri-

tance based on different protein folding states and are transmitted from mother to daughter

cell during cell division or in the course of cytoplasmic fusion events [3,4]. In recent years,

other neurodegenerative diseases, such as Alzheimer disease and Parkinson disease, were also

recognized as being spread by cell-to-cell transmission of protein aggregates, although the

infectivity of these particles is a matter of debate [5]. In these cases, proteins other than the

prion protein (e.g., Aβ, microtubule-associated protein tau, α-synuclein, etc.) are prone to mis-

folding and aggregation (Table 1) and were subsequently labeled as prions, prionoids, or

prion-like proteins, depending on the preferences of the authors and reflecting the open ques-

tion with respect to infectivity [6].

In most cases, these proteins form amyloid or amyloid-like fibrils, but other aggregation

states, such as oligomers, amorphous aggregates, and 2-D crystals, have been observed. The

insolubility and aggregated nature of amyloids and infectious prion particles complicates their

structural characterization by X-ray crystallography, etc., but circular dichroism (CD) and

Fourier-transform infrared (FTIR) spectroscopies indicated that infectious proteins generally

contain predominantly β-sheets [2,5]. Therefore, often, a variety of techniques are used in

combination to elucidate the structure of these infectious proteins. Those that have provided

the most useful high-resolution results will be discussed in this article.

Five approaches

Electron microscopy and related techniques

Negative stain electron microscopy is widely used to characterize the aggregation state of amy-

loids and other polymers. It is a fast and straightforward tool to assess aggregate morphology

and to measure their size in two dimensions but is limited to low-resolution observations.

Height measurements are difficult to make via this approach and are more reliably done

through scanning probe microscopies (also known as atomic force microscopy [AFM]). Pro-

tein aggregates that display intrinsic symmetry, such as helical amyloid fibrils or 2-D crystals,

can be used to extract more detailed information about the aggregated protein (e.g., [7,8]). In
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these cases, image processing takes advantage of the repeating structure and can extract molec-

ular details through averaging that are not readily visible. Electron tomography can rapidly

provide 3-D tomograms of the observed specimens, but the dose fractionation that is necessary

to collect the different view angles limits the resolution of the reconstructed volumes [9,10].

High-resolution electron microscopy studies require the use of cryo low-dose imaging tech-

niques. With the advent of direct electron detectors, unprecedented structural detail can be

visualized, which, under optimal conditions, can reach atomic resolution [11,12]. The added

sensitivity that is provided by these new detectors is revolutionizing electron cryomicroscopy

and the structural details that can be obtained from even challenging samples, such as protein

aggregates (Fig 1) [10]. However, the structural heterogeneity that is commonly seen with pro-

tein aggregates often limits the resolution that can be obtained, and this also applies to individ-

ual amyloid fibrils of infectious prions [10,13].

Diffraction techniques

Protein aggregates, including those composed of infectious proteins, are also amenable to

structural analyses via diffraction techniques, such as small angle X-ray scattering (SAXS), X-

ray crystallography, and X-ray fiber diffraction. The latter technique is often used to detect the

characteristic 4.8 Å cross-β signature of amyloid fibrils [14], which is a defining criterion com-

monly used in biophysics for the term “amyloid.” The need to achieve sufficient sample orien-

tation is an ongoing challenge for X-ray fiber diffraction analyses of amyloid fibrils, but well-

oriented samples can reveal the necessary structural details to define the molecular dimensions

and structural architecture of different amyloid forms [15,16]. X-ray crystallography has more

stringent demands, as it requires the protein to form well-ordered 3-D crystals, which is nearly

impossible to achieve except with small amyloidogenic peptides [17].

Table 1. Infectious prions and prion-like proteins.

Diseases Protein name Amyloid

deposits

Transmissibility

Healthy state/

precursor protein

Infectious state Cell-to-

cell

Between

individuals

Prion diseases (e.g., Kuru, Creutzfeldt-Jakob disease, bovine

spongiform encephalopathy, chronic wasting disease, scrapie,

etc.)

PrPC PrPSc yes yes yes

Yeast prion1 Ure2p [URE3] yes yes2

Yeast prion1 Sup35p [PSI+] yes yes2

Yeast prion1 Rnq1p [PIN+] yes yes2

Heterokaryon incompatibility1 HET-s [HET-s] yes yes yes

Alzheimer disease APP Aβ yes yes no4

Alzheimer disease & tauopathies Tau PHF-Tau yes yes no4

Parkinson disease α-synuclein3 α-synuclein3 yes yes no4

Lou Gehrig disease SOD13 SOD13 yes yes no

Transthyretin amyloidses (many different forms) transthyretin transthyretin

amyloid

yes extra-

cellular

no4

Huntington disease huntingtin huntingtin no yes no

1 not a disease, but a metabolic/mating-type phenotype
2 unicellular organism, transmission occurs during cell division from mother to daughter cell
3 other proteins have also been implicated in these diseases
4 evidence suggests the possibility for transmission through iatrogenic or environmental mechanisms, but these claims are still under vigorous discussion

https://doi.org/10.1371/journal.ppat.1006229.t001

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006229 April 13, 2017 2 / 6

https://doi.org/10.1371/journal.ppat.1006229.t001
https://doi.org/10.1371/journal.ppat.1006229


In contrast, SAXS provides a measure of the sample/aggregate size without the need for

sample orientation. In fact, the random orientation of the protein aggregates in solution allows

calculation of the overall aspect ratio of the aggregate. Therefore, a sufficiently dispersed sam-

ple can provide molecular or protein aggregate dimensions via the radius of gyration [18].

Nuclear magnetic resonance spectroscopy

A large array of spectroscopic techniques has been applied to the study of protein aggregates,

including infectious prions. One particularly powerful technique is nuclear magnetic reso-

nance (NMR), because it provides single-residue resolution and can be applied to both soluble

species and insoluble aggregates. In case of insoluble particles, the slow tumbling time of the

aggregates has to be taken into account. Therefore, solution-state NMR is best combined with

hydrogen/deuterium exchange assays, in which the exchange rate of hydrogen atoms, which

participate in peptide bonds, with the solvent strongly depends on the local secondary struc-

ture in the aggregate. In particular, hydrogen atoms within β-strands participate in relatively

stable hydrogen bonds and exchange very slowly. This makes hydrogen/deuterium exchange

coupled with solution NMR spectroscopy a powerful tool to identify the location of the regular

secondary structure elements in prion aggregates [19].

The most powerful experimental technique to characterize heterogeneous protein aggre-

gates and infectious prions to date is solid-state NMR spectroscopy [20,21]. Solid-state NMR

Fig 1. Electron cryomicroscopy analysis of infectious prion protein amyloid fibrils. (A) Section of a cryo electron

micrograph showing prion fibrils lacking the glycosylphosphatidylinositol (GPI) anchor. A single isolated and twisted fibril

used for the 3-D reconstruction is enclosed by a black box. (B) Close-up view of the isolated prion fibril. (C) Reprojected

image of the 3-D fibril map for comparison with the unprocessed image (B). (D) 3-D reconstruction of the GPI-anchorless

prion fibril. (E) Cross section of the reconstructed fibril showing two distinct protofilaments. (F) Contoured density maps of

the cross section with lines contoured at increasing levels of 0.125 σ. (G) Cartoon depicting the proposed configuration of

the polypeptide chains in the prion fibril. Please note that this is not an atomistic model. (H) Close-up view of the possible ß-

sheet stacking in a four-rung ß-solenoid architecture for illustration purposes only. Different colors represent different ß-

solenoid rungs. Characteristic distances of the four-rung ß-solenoid architecture are labeled. Figure adapted from [10].

https://doi.org/10.1371/journal.ppat.1006229.g001
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spectroscopy has now reached a level at which it can reliably determine the 3-D structure of

single molecules in amyloid fibrils [22–25]. In combination with information from other tech-

niques, such as electron microscopy and modeling, this approach can also provide insights

into the higher order arrangements of molecules in prion aggregates [26,27].

Mass spectrometry

Mass spectrometry analysis of peptide fragments obtained under denaturing, exchange-

quenching conditions has been used to assess the global exchange of short stretches of a given

protein. Application of such an approach to GPI-anchorless PrPSc showed an overall very low

rate of exchange of a stretch spanning from position ~81 to ~226, which is suggestive of a high

content of β-sheet secondary structure and tight packing. Slightly higher exchange of some

short regions within this stretch suggests the presence of short loops connecting short β-

strands [28]. Similar results have been obtained more recently for infectious, recombinant

PrPSc, suggesting a common structure for all infectious PrPSc forms [29], which is very differ-

ent from that of noninfectious recombinant amyloids [28].

Chemical probes

Chemical probes have been successfully used to obtain structural information of proteins diffi-

cult to study by other means. Typical approaches include surface labeling, which provides

information about accessibility of specific amino acids, and cross-linking with bifunctional

reagents, which provides upper limits on the distance between pairs of accessible residues.

Identification of modified sites is typically achieved by mass spectrometry after tryptic diges-

tion [30].

Surface labeling of PrPSc with tyrosine-specific reagents showed that its C-terminal region

has suffered a very substantial structural rearrangement, contrary to the hypothesis of con-

served C-terminal α-helices [31]. PrPSc has also been probed with cross-linking reagents.

Experiments using bis (sulfosuccinimidyl) suberate (BS3) showed that the amino termini of

successive PrP 27–30 units in a PrP 27–30 stack are within 11.4 Å [32]. While such a distance

constraint was interpreted at the time as a limitation to the maximum number of rungs in the

PrPSc β-solenoid, it is fully compatible with head-to-head stacking of PrPSc units [10].

In summary, chemical probing should be seen as a complement to other techniques that

provide a general view of the architecture of infectious proteins. Recent advances in sensitivity

and accuracy of mass spectrometry methods, such as Fourier-transform instruments and

chemical footprinting with synchrotron radiation, has opened up exciting new possibilities

[30].

Conclusion

Recent technological advances have provided a wealth of data on the structures of patholog-

ically aggregated, infectious proteins involved in Alzheimer disease, Parkinson disease, and

the prion diseases. In the former cases, the structure of the aggregated proteins (Aβ and α-

synuclein) were found to adopt an in-register β-sheet structure [24,25]. In contrast, for the

archetypical prion diseases (PrPSc), a four-rung β-solenoid architecture was observed [10,15],

in agreement with lower-resolution approaches [18,28,31,32]. The ability to generate disease-

relevant protein conformers in vitro, in combination with solid-state NMR and other analysis

techniques, was crucial for determining the high-resolution structures of misfolded Aβ and α-

synuclein [24,25]. A similar approach may provide high-resolution structural information

about PrPSc in the future.
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