Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Nanoscale interface confinement of ultrafast spin transfer torque driving non-uniform spin dynamics

MPG-Autoren
/persons/resource/persons182542

Razdolski,  Ilya
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons32638

Alekhin,  Alexandr
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons126966

Ilin,  Nikita
Physical Chemistry, Fritz Haber Institute, Max Planck Society;
Moscow Technological University MIREA;

/persons/resource/persons21862

Melnikov,  Alexey
Physical Chemistry, Fritz Haber Institute, Max Planck Society;
Institute of Physics, Martin Luther University Halle-Wittenberg;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

ncomms15007.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Razdolski, I., Alekhin, A., Ilin, N., Meyburg, J. P., Roddatis, V., Diesing, D., et al. (2017). Nanoscale interface confinement of ultrafast spin transfer torque driving non-uniform spin dynamics. Nature Communications, 8: 15007. doi:10.1038/ncomms15007.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-34AE-2
Zusammenfassung
Spintronics had a widespread impact over the past decades due to transferring information by spin rather than electric currents. Its further development requires miniaturization and reduction of characteristic timescales of spin dynamics combining the sub-nanometre spatial
and femtosecond temporal ranges. These demands shift the focus of interest towards the fundamental open question of the interaction of femtosecond spin current (SC) pulses with a ferromagnet (FM). The spatio-temporal properties of the impulsive spin transfer torque exerted by ultrashort SC pulses on the FM open the time domain for probing non-uniform magnetization dynamics. Here we employ laser-generated ultrashort SC pulses for driving ultrafast spin dynamics in FM and analysing its transient local source. Transverse spins
injected into FM excite inhomogeneous high-frequency spin dynamics up to 0.6 THz,
indicating that the perturbation of the FM magnetization is confined to 2 nm.