MAX-PLANCK-INSTITUT
FUR
INFORMATIK

An Optimal Construction Method for
Generalized Convex Layers
Hans-Peter Lenhof Michiel Smid

MPI-I-91-112 August 1991

@

ae=

INFORMATIK 4 AR e Ltk R T

Im Stadtwald
W 6600 Saarbriicken

Germany

An Optimal Construction Method
for Generalized Convex Layers

Hans-Peter Lenhof Michiel Smid*
Maz-Planck-Institut fir Informatik
D-6600 Saarbricken, Germany

August 13, 1991

Abstract

Let P be a set of n points in the Euclidean plane and let C be a convex figure. In
1985, Chazelle and Edelsbrunner presented an algorithm, which preprocesses P such that
for any query point g, the points of P in the translate C + g can be retrieved efficiently.
Assuming that constant time suffices for deciding the inclusion of a point in C, they
provided 2 space and query time optimal solution. Their algorithm uses O(n) space.
A query with output size k can be solved in O(logn + k) time. The preprocessing step of
their algorithm, however, has time complexity O(n?). We show that the usage of a new
construction method for layers reduces the preprocessing time to O(nlogn). We thus
provide the first space, query time and preprocessing time optimal solution for this class
of point retrieval problems. Besides, we present two new dynamic data structures for
these problems. The first dynamic data structure allows on-line insertions and deletions
of points in O((logn)?) time. In this dynamic data structure, a query with output size k
can be solved in O(logn + k(logn)?) time. The second dynamic data structure, which
allows only semi-online updates, has O((log 7)?) amortized update time and O(logn+ k)
query time.

1 Introduction

‘We consider the following problem: Let P be a set of n points in the Euclidean plane and
let C be a convex figure. Preprocess P such that for any query point g, the points of P in
the translate C + g can be retrieved efficiently.

In 1985, Chazelle and Edelsbrunner [6] provided a space and query time optimal solution
for this class of point retrieval problems. Their solution uses O(n) space. A query with
output size k can be solved in O(logn + k) time. The preprocessing step, however, has time
complexity O(n?).

In a few special cases alternative solutions have been developed:

« Dynamic fixed polygonal windowing problem: In this case the boundary of the figure
C is a polygon. In 1986, Klein et al. [9] presented an optimal dynamic solution for
figures with a constant number of boundary edges. Their dynamic data structures use
O(n) space. Insertions and deletions can be carried out in O(logn) time. A query with
output size k can be done in O(logn + k) time.

*This author was supported by the ESPRIT I Basic Research Actions Program, under contract No. 3075
(project ALCOM).

o Fixed radius neighbor problem: In this case C is a disk. The previously best known
solutions to this problem are:

preprocessing query space
] | O(n(logn)*(loglogn)?) | Ologn + k) | O(n(log nloglogn)%)
O(nlogn) O(K(logn) O(nlogn)
prob. 7 Ologn + F O(n(logn)?)
] O(n7) Ologn + k O(n)
) polyn. time O(logn + F O(nlogn)
prob. O(n(logn)?) O(logn + O(nlogn)

The algorithms in [1] and [5] also handle queries with non-fixed radius.

As mentioned above, Chazelle and Edelsbrunner presented the first space and query
time optimal solution. The ing step of their i however, takes O(n?)
time. During this ing step the Buclidean plane is di d into cells. Then,
for every non-empty cell, i.e., a cell that contains points of P, a family of so-called layers is
constructed. In the worst case, the layers construction method of Chazelle and Edelsbrunner
requires ©(n?) time.

In this paper, we introduce a kind of “dual or mirror layers” with respect to the layers,
which Chazelle and Edelsbrunner use to build their query data structures. A family of these
“dual layers” can be constructed in O(nlogn) time. By walking across the “dual layers”
of such a family, we can determine a family of layers in O(n) time. Hence the whole layer
computation takes O(nlogn) time. This new construction method for lower and upper
envelopes only works in the case of curves, which are translates of a convex curve.

We thus provide the first space, query time and preprocessing time optimal solution for
this class of point retrieval problems. We want to emphasize that all these problems can
now be solved optimally by one general technique. Besides, this layer construction method
gives new dynamic data structures for the above class of point retrieval problems. The data
structure, which we use to determine the “dual layers”, can also be used to retrieve the
points that are contained in the translate C + g. On-line insertions and deletions in this
query data structure can be carried out in O((logn)?) time. A query with output size k can
be solved in O(logn + k(logn)?) time.

This update time is improved for so-called semi-online updates, as introduced by Dobkin
and Suri [8]. (See also [12].) A sequence of updates is called semi-online, if the insertions are
on-line, but with each inserted point p, we get an integer d which says that p will be deleted
d updates from the moment of insertion. In case d = oo, point p will never be deleted.

In [8, 12], the following is shown. Let D be a static data structure for a decomposable
searching problem. Let $(n), P(n) and Q(n) denote the size, the building time and the
query time of D, respectively. Then, there exists a dynamic data structure for the same
query problem, that allows semi-online updates. This data structure has size O(S(n)), a
query time of O(Q(n)logn) and an amortized update time of O((P(n)/n)logn) per semi-
online update. This dynamic data structure is a generalization of the one that is obtained by
applying Bentley’s logarithmic method, see [2]. It maintains a collection of O(logn) static
structures.

If we apply this result to our static data structure, we get a query time of O((logn)? + k)
and an amortized update time of O((logn)?). Using fractional cascading (7], the query time
is improved to O(logn + k).

In Section 2, we describe the algorithm of Chazelle and The new construc-
tion method for layers will be explained in Section 3. As part of a few concluding remarks
in Section 4, we present some applications of the point retrieval algorithm in computer
simulations of molecule docking. In these interactive motion planning problems disks with
fixed radius appear as projections of the spherical atoms. Besides, we present the results
concerning semi-online updates.

2 The algorithm of Chazelle and Edelsbrunner

In this section we explain the algorithm given in [6]. First we introduce in Subsection 2.1
relevant ic notions and ize the i ions. In fon 2.2
we describe the way the Euclidean plane is divided into cells. In Subsection 2.3 we discuss
the query data structure for a cell. Subsections 2.1, 2.2 and 2.3 summarize Sections 2, 3 and
4 of [6].

2.1 Geometric notions and computational assumptions

The Euclidean plane is denoted by E2. Let A € R, v = (vz,2,),w = (wa,wy) € E?, and
A, B C E®. We use the following notation:

interior of A cl(A;
boundary of A conv(A]
(v + we,v, +w,) A
A,:=A+v:={a+vla€c A} A+ B

closure of A
convex hull of A
(Wva, Avy)
{a+blac A,be B}

Throughout this paper, C is a bounded convex closed figure in E?. Let L (resp. R) denote
the point in bd(C) with minimal (resp. maximal) x-coordinate (If L (resp. R) is not unique,
we take the point with maximal (resp. minimal) y-coordinate.). For two different points
v,w € E? we define

I(v,w) := bd((=C)y) N bd((~C)uw),
where (—C) := {—c|c € C}. The intersection I(v,w) consists of at most two line segments
(see Figure 1). Hence I(v,w) can be represented in a constant amount of space.

Definition 1 The convez closed figure C is called computable, if

1. constant time suffices to test for any point p € E* whether or not p is contained in C,
and
2. constant time suffices to compute I(v,w) for any two (potentially infinitesimal close)

points v and w in B2,

Lemma 1 ([6]) a) If C is computable, then L and R can be determined in constant time.
b) Let C be computable, p a point in E2 and | a vertical line through p. Constant time
suffices to decide whether (1) C is to the right of | or (2) C is to the left of I or (8) CNI# 0
and p is above C o p is contained in C or p is below C.

‘We now define the so-called silos and rotated silos as substitutes for (~C) and C.

Definition 2 Let v be a point, r,(v) the vertical ray with v as lower endpoint and r4(v)
the vertical ray with v as upper endpoint. We call S(v) i= —C + ro(v) the silo of v and
RS(v) := C + r4(v) the rotated silo of v.

(=C)w
(=€)

2

I(v,w) = g1 U conv(gz, 95)

Figure 1: Example of a convex computable figure C and the intersection of two translates
(~C). and (~C)a-

—R+v

Figure 2: Silo S(v) and rotated silo RS(v).

Consider Figure 2. The silo S(v) contains the set of points ¢, such that C, intersects
ru(v). The boundary bd(S(v)) consists of the two rays —R + ro(v) and —L + r,(v) and
the lower part of bd((—C),). The rotated silo RS(v) contains the set of points g, such that
(=C), intersects r4(v). The boundary bd(RS(v)) consists of the two vertical rays R + r4(v)
and L + rq(v) and the upper part of bd((C),). The boundary of the intersection of the two
silos S(v) and S(w) (resp. rotated silos RS(v) and RS(w)) is either empty or consists of a
single point, a segment or a ray. This boundary can be computed in constant time.

2.2 How to divide the Euclidean plane into cells

In this section we describe how the Euclidean plane is divided into rectangles, such that any
translate C, of C' does not intersect more than nine rectangles. We call the rectangles the
cells of the subdivision. For every cell CE, we construct four query data structures, in which
we store the points of Pg; PnCE.

Let C be a computable figure with non-empty interior and extreme points L and R. We
assume that the segment § = conv(R, L) is parallel to the x-axis of the coordinate system.
The segment § decomposes C into two computable figures C, and Cj. The figure C, is the
upper part, and Cj is the lower part. We assume now that C is C, and explain the query
algorithm for C = C,. The query algorithm for C; works analogously.

Let M be a point on d(C) that lies on a tangent # # §, parallel to 3 (see Fig. 3). The
vertical projection of M onto § is denoted by N. We now define two orthogonal vectors
h=1(R-L)and # = }(M - N), whose lengths |7 and IR | fix the width and height of a
cell. We consider the decomposition G = {CE;;} of the Euclidean plane E? in cells
CEyj = {(p=»py)ilk] < pe < (i+1)1k1,5151 < py < (j+1)[51}, where i and j range over the
integers. We determine the non-empty cells, sort them in lexicographical order, and store
them in a balanced binary search tree. It is easy to see that any translate C, intersects at
most nine cells lying in three consecutive rows and columns. Given a translate Cy, we can
find the non-empty cells, which are intersected by C,, in O(logn) time.

Figure 3: Decomposing C and E2.
We distinguish between the following kinds of intersection:

Definition 3 Let CE be a cell and let N = north, E = east, S = south and W = west denote
the four edges of bd(CE). We say that Cy is D-grounded, if Cy N D equals the orthogonal

projection of Cy N cl(CE) onto D, for D € {N,S,W,E}. C, is said to be grounded if it is
D-grounded for at least one assignment of D to N,S,W or E.

Chazelle and Edelsbrunner prove:

Lemma 2 ([6]) Let g be a point in E? and CE a cell of G, such that Cy 1\ CE # 0. Then
C, is grounded with respect to CE.

Given a query translate C; and a cell CE, which is intersected by Cy, we can determine in
constant time, whether Cy is N, S, W or E-grounded with respect to the cell CE (see [6]).

2.3 The algorithm of Chazelle and Edelsbrunner

For every non-empty cell CE we build four data structures, one for every assignment of D to
N, E,S,W. Since all four data structures are constructed in the same way, we only consider
the problem “C, is S-grounded with respect to CE” and show how the query data structure
for S-grounded queries is built. Hence we assume for the rest of this section, that the query
translates C, are S-grounded with respect to the non-empty cell CE. In such a query, we
want to compute all points p € Pog = P N CE which lie in Cy.

Observation 1 Point p lies in C, (resp. RS(g)) if and only if g € (~C), (resp. g € S(p)).
Using Observation 1 we can show the following lemma:
Lemma 3 ([6]) Let p be a point of Pcg. Then, p is in Cq if and only if g € S(p).

Lemma 3 tells us, that we can compute all points p € PcgNCq in the following way: Compute
all silos S(p) for p € Pcg which contain g. Note that these are exactly those silos, whose

‘boundaries are intersected by the vertical ray from ¢ towards y = —oo.
How can we find all these silos S(p)7 We assume :}m the points Pog = {p1,---,pm} are
sorted in order of i . Since the d of the x-coordinates of any

two points in Pog is less than IAl,

U s
15igm
is'connected. The boundary L(Pcz) = bd(U), which we call the S-lager of Pz, is an
unbounded, connected, x-monotone curve. Any vertical line intersects this S-layer in at
most one point or ray. We call

= [L(Pes) nbd(S(e\ U bd(S(p5))
15i<i

the edge e; of p;. Since e; can be empty, not every point p € Pcg contributes to a part of
L(Pcg). If e; is empty, then p; is called redundant and we define

ezt(Pcg) := {p € Pcz|p non-redundant}.

Observation 2 ([6]) Let ek, -+, ex, be the sequence of non-empty edges of L(Pcg) ordered
from left to right.

(i) For each 1 < i < t — 1, the mazimal z-coordinate of bd(S(py,)) N bd(S(Pi,,)) is the
2z-coordinate of the right endpoint of e, and the left endpoint of ex,,, .

(i) ki < kipy for 1< i< t—1, i.e., the ordering of the edges coincides with that of Pcg.

L(Pég)

Figure 4: Example for a family of S-layers

Chazelle and Edelsbrunner use Observation 2 to develop an O(m) time construction method
for L(Pcg). But why do they compute L(Pcz)?

Lemma 4 ([6]) Let ey, -, ex, be the sequence of non-empty edges of L(Pcg) ordered from
left to right. Let Cy be a translate of C that is S-grounded with respect to CE, and r := r4(q)
the vertical ray with upper point q.

(i) The ray r intersects L(Pck) if and only if Cy N Pog is not empty.

(i3) If ex, N7 # 0, then py, lies in C, and there are indices i and j, with i <1< j, such that
CyNezt(Pog) = {pr,li < @ < 5}

The algorithm for finding all points of Cy N Pgg works as follows: First, we search for
the points of C, N ez#(Pcz). In order to find these points, we search for the edge ey, that
intersects the ray 7 := 74(g). (If there is no such edge then C; N Pcg = @ and the algorithm
stops.) Note that e, can be found in O(log?) time. Then we start at e, and walk along
L(Pcg) to the left, until we find an edge ek,_, such that ¢ ¢ S(pi,_,). Analogously, we
walk to the right, again starting at e,, until we find an edge ex;,, such that ¢ ¢ S(pk;,)-
During these walks, we report all POints e, Phs,, - Pk;- In this way, we have determined
the points of C, N e2t(Pcg) in O(logt + |C, N ezt(Pog)) time.

Let P}y := Pcp and Pyp i= Pz \eat(P5;) for i > 1. Suppose we have constructed the
S-layers L(Pig), for i > 1. If C, N ext(Plg) # 0, we search for all points p € Cq N ezt(P2p)
by testing, if the ray 7 intersects L(PZ.E). If r intersects the second S-layer, we walk across
L(P%g) in the same way as described above. We continue to test the S-layers, until we
find an S-layer, which is not intersected by the ray r, or until we have checked all non-
empty S-layers. Since the family Ls(Pcg) = (L(Pkg), -, L(P4g)) of non-empty S-layers is
nested, an S-layer which lies above a non-intersected S-layer, cannot be intersected by the
ray r. Hence, no point represented by such an S-layer, can lie in C,.

All kcg points p € C;N Pz are reported in O(|visited S-layers|logm + kcg) time. Since
we have found at least one point in every S-layer, with exception of the last visited, the
query time is O(kcglogm). By applying Chazelle’s hive graph [4] to Ls(Pcg), the query
time can be improved to O(logm + kcz). The hive graph connects L(Pjg) with L(P4g) in
such a way that the knowledge of the edge in L(Pgg) that intersects r, allows us to find the
intersecting edge in L(Pjy') in constant time. O(m) space suffices to store the hive graph of
Ls(Pcg)- The hive graph can be constructed in O(m) time (see [4]). Hence the cost of the
preprocessing step is dominated by the O(m?) operations required to construct the family
of S-layers. (Note that there are at most m S-layers, each of which is constructed in O(m)
time.)

‘We can now cite the main result of [6]:

Theorem 1 Let P be a set of n points in the Euclidean plane E? and C a convez computable
figure. There ezists a data structure, such that O(k + logn) time suffices to retrieve all k
points of P lying in a query translate Cy. The data structure has size O(n) and can be
constructed in O(n?) time.

3 Fast construction method for S-layers

Let Pcg = PN CE = {p1,--,pm} be the sequence of points in cell CE, sorted in order
of increasing x-coordinates. We assume that there are no two points in Pgg with the same
x-coordinate. (In Section 4 we show how degenerate cases can be handled.) We consider
again only S-grounded queries. In this section we describe a method to construct the family
of S-layers for the point set Pog with respect to the fixed convex computable figure C, which
takes O(mlogm) time. In Subsection 3.1 we present a new geometric concept for convex
curves, the so-called dual or mirror S-layers. Then we show that the family of S-layers
can be constructed from the family of dual S-] layers in O(m time. In Subsection 3. 2 we
describe an O(m(logm)?) time dual S-layer which is a modi

of Overmars and van Leeuwen’s convex layers construction algorithm (see [10]). Besides, we
show that this dual S-layer construction method gives new dynamic query data structures
for the investigated class of point retrieval problems. In Subsection 3.3 we discuss a modified
version of Chazelle’s convex layers construction algorithm [3] and we show that this algorithm
enables the construction of the dual S-layers with only O(mlogm) operations.

3.1 Dual S-layers

We now define minimal representations for the S-layer L(Pcg). Recall that the points of
Pcg = {p1,"*,Pm} are sorted by their x-coordinates.

Definition 4 o) A sequence R(Pegp) =< Py, » Pk >C Pog, which satisfies the following
properties, is called a representation system or r-system of the S-layer L(Pcg):

o ki< kigy foralli=1,---t—1
o bd(S(pi;)) N L(Peg) # 0 for all i=1,-
o L(Pcg) C Uiz bd(S(px:)-

b) An r-system R(Pcg) =< pi,, " ,Pk, > of the S-layer L(Pcg) with minimal length t is
called o minimal r-system of the S-lager L(Pcz).

In order to prevent the number of variables becoming too large, we redefine the edges
ex; and sets Pyp. If R(Pgp) =< Py, ", Pi, > is a minimal r-system for L(Pcg), then the
S-layer L(Pcg) can be represented by the union

L(Pcs) = |Jex, of the edges ey, := [L(Po) Nbd(S(pe))]\ | bd(S(px;))-
1<5<i

i=1

We say that edge ey, represents point pi,. Let P}y := Pcp and Php := Pip \ Rioi,
where R;_; := R(P3') is a minimal r-system of the S-layer L(Pj;'). Furthermore let
Rs(Pcg) = (Ry, -+, R.) be a family of minimal r-systems defined recursively in the above
way, such that every point p of Py is contained in one Pl for some 1 < i < z. It is easy to
see, that the assertions of Lemma 4 are also valid for each S-layer L(Pyg) defined as above.
Furthermore each family of S-layers that is constructed in the above way, consists of nested
S-layers. Hence, if we know such a family of minimal r-systems for L(Pcg), we can construct
the query data structures used in [6] in O(m) time.

We need some more notions: Let a and b be two points in cell CE with different
x-coordinates (we assume a, < b;). If the silos S(a) and S(b) intersect each other, we
call the point in the intersection bd(S(a)) N bd(S(b)) having the smallest x-coordinate the
si-point of a and b and the point having the largest x-coordinate the SI-point of a and b. We
use the notations si(a,b) and SI(a,b) for these intersection points. If the intersection is a
unique point, then si(a,) = 5I(a,b). Furthermore we define int,:(a,b) := int(RS(si(a,b))),
int*(a,b) := int(RS(SI(a,b))) and int3i(a,b) := int(RS(si(a,b))) U int(RS(SI(a,b))). The
intersection

e(a,) := bd(RS(SI(a,b))) N {p = (p=,py)| 0= < p= < bs}
will be called the dual-edge or d-edge of a and b. The d-edge of @ and b is x-monotone and
connects a and b. If we would use the boundary bd(RS(v)), where v is an arbitrary point in
the intersection of the silos a and b, instead of bd(RS(SI(a,b))) in the d-edge definition, we
would get the same set. The region

reg(a,b) := {p = (p=,py)| @z < p= < by Ap lies (strictly) above e(a,b)}
will be called the region of a and b (see Figure 5).

Lemma 5 Let a,b,c be three points in cell CE with different z-coordinates.
Then bd(S(c)) N bd(S(a) U S(b)) = 0 if and only if ¢ € reg(a,b).

Proof: “=”: Since a,b, ¢ lie in the same cell, every pair of the silos S(a), 5(b),5(c) has a
non-empty boundary intersection. Assuming wlog a. < b, we show that ¢ ¢ reg(a, b) implies
bd(S(c)) Nbd(S(a) U S(b)) # 8. If ¢z < @z or b < c, it is obvious that bd(S(c)) N bd(S(a) U
5(b)) # 0. Otherwise az < ¢, < be and ¢ lies below or on e(a, b). Then, c € RS(SI(a,b)) (see
Fig. 5). Observation 1 implies then SI(a,b) € S(c). Hence bd(S(c)) N bd(S(a) U S(b)) # 0.

“&": We assume that a, < b,. Since ¢ € reg(a,b), Observation 1 implies SI(a,b) € S(c).
Furthermore the convexity of the silos and the fact that a; < c. < bz, guarantee that (1)
left of 51(a,b) the boundary bd(S(c)) lies (strictly) above bd(S(a)) and (2) right of SI(a,b)
the boundary bd(S(c)) lies (strictly) above bd(S(b)). Hence bd(S(c))nbd(S(a)U S(5)) = 0. W

We now define 2 kind of “dual layer” to the S-layer L(Pcs):

Definition 5
a) Let DL(Pcg) be the lower envelope of the set of d-edges {e(pi,p;)|pi,p; € Pes}. We call

9

RS(si(a,b)) = RS(SI(a,b))

Figure 5: SI-point, d-edge and region of two points @ and b.

DI(Pgs) the dual S-layer or dS-layer of Pog.
b) A sequence DR(Pcg) =< pi,, -, Pk, >C P, which satisfies the following properties, is
called a dual representation system or dr-system of DL(Pcg):

o by < Eggq for alli= 1,00, —1
o (P Phiss) € DLPeg) for alli=1,- ¢~ 1
o Uiz} e(pri Prisa) = DL(Pog).

¢) A dr-system DR(Pc5) =< piy,--- Pk > of DL(Pcs) with minimal length t is called a
minimal dr-system of the dS-layer DL(Pcg).

The dS-layer is an x-monotone curve. All points p € Pcg, which can be element in a min-
imal dr-system of DL(Pcz) or has to be an element in all minimal dr-systems of DL(Pcz),
lie on the dS-layer DL(Pgg). Using Lemma 5 we can easily show, that < pi, -, Pk, > is a
minimal dr-system for DL(Pcg) if and only if < pg,, -+, P, > is a minimal r-system for the
S-layer L(Pcg).

Let Phg := Pcg and Pig = P! \ DRiy, where DR;_; = DR(P{7) is a minimal
dr-system for DL(Pi7). By computing a family DLs(Pcg) = (DL(Pkg), -+, DL(Pgg)) of
dS-layers resp. a corresponding minimal dr-system DRs(Pcg) = (DRy, -, DR.), we get a
family Rs(Pcg) = DRs(Pcg) of minimal r-systems, which enables us to build the query
data structure for S-grounded queries in O(m) time.

3.2 Convex layers and dS-layers

In this subsection we show that there are important similarities between lower convex hulls
and dS-layers. These similarities enable us to construct dS-layers with the same methods
that are used to construct lower convex hulls.

10

I;L(Pcz)

SI(p1,p2) =
SI(p1,p4)
SI(ps,ps)

Figure 6: S-layer and dS-layer of a point set Pcg = {p1,--,ps}. In the above situation
{p1,p4,ps} is the minimal dr-systems for DL(Pcg).

The dS-layer consists of curves, which connect points of the corresponding point set. All
points of this point set lie on or above the dS-layer. Given two dS-layers, where all points of
the first dS-layer are to the left of all points of the second dS-layer, there is exactly one new
d-edge on the dS-layer of all points, which connects the two dS-layers and shares only start-
and endpoint with them.

Before going on with the above considerations, we transfer the terms concave, reflez and
supporting from the theory of convex hulls to the theory of dS-layers: Let Pz = {p1,---,pp}
and PEy = {phs1, - P} with

(P1)e < (p2)e < -+ < () < (Phtr)s < o+ < (Pm)e

be a partition of Pcg. Let DR(PH) =< p}, -+, > be a minimal dr-system of DL(P¥z)
and DR(Pgg) =< pf,---,p} > a minimal dr-system of DL(P{g). Let the indices v and v be
such that p} = py and 7} = p,. The d-edge e(p},p}) is called

o si-supporting in pl, if for all £ € {1,-+,h}, ps ¢ int(p},2),
o si-supporting in pf, if for all g € {h+1,---,m}, p, & int.:(p}, 7}),
o si-concave in pl, if there is a point py € intyi(pl,p}), where f € {u+1,---,k},

o si-concave in p, if there is a point py € int,i(p},), where g € {h+ 1,---,v - 1},

o si-reflezin pl, if there is a point py € int,(p},p}), where f € {1,--

si-reflez in pf, if there is a point py € intyi(p},p}), where g € {v + 1,

11

A we define ST ting, SI-concave and SI-reflez, by replacing int.:(pl,}) by
int*(p},p}) in the above definition. Note that ps,psr € intui(p},p}), where f € {1,---,u—1}
and f' € {u+1,---,h}, is not possxble because in this case the d-edge e(ps,ps) would
lie below the d-edges e(p}_;,p}), e(p},p},;). But this would contradict the assumption, that
DR(PYg) is a dr-system for DL(PUz). Therefore, the three cases supporting, concave and
reflex are mutually exclusive, The d-edge e(p!, ;) is called a supporting d-edge for DL(Py
and DL(Pgy), if for all f € {1, m}, by & 'm,t”(p,,p:) Hence the d-edge e(p},p]) is a
supporting d-edge if and only if e(p}, p}) is si and ST ing in both endpoi
7} and p}. The endpoints p} and pj of a supporting d-edge are called supporting left and
right endpoint.

Note that every d-edge e(pi, Py,), Which belongs to two neighboring points pi;, P,
of a minimal dr-system, is a supporting d-edge with respect to the corresponding point set.

In order to compute a minimal dr-: system of DL(Pcg), we have to determine the “longest”
supporting d-edge for DL(P{jz) and DL(P{L). If we know a supporting d-edge e(p!, p}), we
can determine the “longest” supporting d- edge resp. a minimal dr-system of DL(Pog) with
the following procedure:

Case 1: Ife(p}_,,p},;) is a supporting d-edge, set DR(Pcg) =< p, -+, Pi_ysPfars -1 P} >3
Case 2: If e(p}_,p}y,) is not a supporting d-edge and e(p!_;,p}), e(p}, P},) are supporting
d-edges, then set DR(Pcg) :=< p,---,pi_1, P}, -+, P} >, or set
DR(Pcg) :=< phy- s Pfers 5P} >3

Case 3: He(p,_l,P]+1) p,_,,p,) are not supportmg d-edges and z(p,,p’“) is a supporting
d-edge, then set DR(Pcg) :=< p}, -+, ph Pjusy o % >3

Case 4: If e(p}_;,P}1), e(ph, P}41) ave mot Supportmg d-edges and e(p}_,, p}) is a supporting
d-edge, then set DR(Pcg) :=< p},-- ,p,_],p], “,PE >

Case 5: If e(p}_y,p}41), e(P}-1,P}) and e(p},p}.,) are not supporting d-edges, set
DR(Pcg) :=< phy- - Ph Py 05 >

Before we show how a supporting d-edge can be computed efficiently, we prove that we
can determine in constant time, if a d-edge e(p},p}) is si-supporting, si-concave or si reflex
(resp. SI-supporting, SI-concave or SI-reflex).

Lemma 6 o) 4 d-edge e(ph,7]) is

o si-supporting in pl, if ph_y, Py € intui(ph,7})

o si-supporting in 9}, if B}_1, P41 ¢ intui(php})

o si-concave in pl, if pl,; € inti(ph, ;)

o si-concave in B}, i pj_; € inta(pl,p})

o si-reflez in pl, if p_; € intyi(p,7})

o si-reflez in p}, if piy; € intyi(ph, p})-

6) If we replace int,i(p},p;) by int* (s, }) in @), we get analogous conditions for the prop-
erties SI-supporting, SI-concave and SI-reflez.

12

Proof: a) Let p} = p,. We only have to show the for property si-supporting,
betau:e all other statements follow by definition. We prove the first statement for prop-
erty The second can be shown analagously So, assume that
Py, ph € int,.(p,,pl) We assume that a point p; € int.i(p},p]) with f < u exists.
Since intsi(pi_,,pl) contains the part of int,:(p},), which lies to the left of the vertical
line through p‘, the point py lies in mt"(p,_,, p,) But this is a contradiction to the fact,
that e(p}_,,p!) is a supporting d-edge in DL(P{};). Therefore a point py € int,i(p},pj) with
f < u does not exist. A similar argument implies, that there is no point ps € int(p},p])
with f > u. Hence the d-edge e(p,p}) is si-supporting in p}.

b) Analogous to a). B

Lemma 6 implies that we can determine in constant time, if a given d-edge e(pﬁ,pg) is
a supporting d-edge. In the following lemma we show how we can determine a supporting
d-edge for the dS-layers DL(PQE) a.nd DL(P'C']E) efficiently. Using this lemma, the dS-layer
DL(Pcg) can be q

Lemma 7
Given the two minimal dr-systems DR(Pllz) =< pb,---,p, > and DR(Py) =< 75, ---, 7} >,
we can compute a supporting d-edge of the ding dS-layers in O(logs + log?) time.

Proof: We assume that the two dr-systems are stored in two arrays. Let 1 < i < s and
1< j <t We consider the d-edge e(p},p]). Each of the two points p} and pj can be
classified (1) as either si-reflex or si-supporting or si-concave and (2) as either SI-reflex or
SI-supporting or SI-concave with respect to the d-edge e(p},p]). As in the case of ordinary
convex hull construction we classify nine possible cases, which are schematically illustrated
in Figure 7.

P, .
FIN si-concave si-supp. si-reflex
o % U{J
A

done

sireflex ; L)JJ :

Figure 7: The nine possible cases.

In all cases, in which we have not found a supporting d-edge, we can reduce the number

13

of candidates for the left or right endpoints of the supporting d-edge. The dashed parts of the
dS-layers are those, which can be elimi from further for ining a sup-
porting point. If si(p},p}) # SI(p},pj), we classify the d-edge e(p},p}) with respect to both
intersection endpoints and eliminate the parts of the S-layers given by the two classifications.
For both intersection endpoints we have nine possible cases, which are illustrated in Figure 7
for si-classification. Since the table for SI-classification is the same as for si-classification and
since the dashed parts of the dS-layers, which can be eliminated from further consid

are also the same, we only consider the si-classification.

(p},P}) = (si-concave, si-supporting): In this case the set {e(p},p;)|f <iA1l< g <t} of
d-edges cannot contain a supporting d-edge, because e(p}, p}) lies below or on these d-edges in
the range spanned by the x-coordinates of the dS-layer DL(P{¥;) and, hence, all the d-edges
in the above set are also si-concave in the left endpoint. Therefore the point set {py|f < i}
can be removed from the candidate list of left supporting points.

(#,9}) = (si-supporting, si-concave): In this case the same argument as in the case
(si-concave, si-supporting) implies, that we can remove the point set {pj|g > j} from the
candidate set of right supporting points.

(p},7) = (si-concave, si-reflex): The fact that the d-edge e(p}, p}) is si-reflex in p7;, implies
P} ¢ RS(si(p},p5)). Hence all points of the point set {p}|g < j} must lie outside the rotated
silo RS(si(p},p5)). For any d-edge e(p},p}), where f € {1,---,s} and g < j, there exists
always a part of this d-edge, which lies strictly above e(p!,p). Therefore no d-edge of this
set can be supporting. Hence we can remove the point set {p}|g < j} from the candidate
List of right supporting points.

(p.p5) = (si-reflex, si-concave): The same argument as in the case (si-concave, si-reflex)
implies that we can remove the point set {plf\ f > i} from the candidate list of left supporting
points.

(@, p}) = (si-reflex, si-reflex): Using again the same argument as in the last two cases,
we can remove the point set {p‘,] f > i} from the candidate list of left supporting points and
the point set {pj|g < j} from the candidate list of right supporting points.

(p4,#}) = (si-supporting, si-reflex): We can remove the point set {pjlg < j} from the
candidate list of right supporting points.

(p},p}) = (si-reflex, si-supporting): We can remove the point set {p}|f > i} from the
candidate list of left supporting points.

(p},p;) = (si-concave, si-concave): This is the difficult case. Let I, I, be the vertical lines
with (1)z = (p})z and (I2)z = (p})s- Let further

A = bd(RS(SI(p}, 1)) N bd(RS(si(P5-1, 7))

There are three different cases:

e Casel: A=0.
o Case2: A =(A,,4,) is a point or a vertical line segment.
o Case 3: A is a line segment with startpoint a = (az, =) and endpoint b = (b, by)
(az < bz).
Case 1: A = 0. Consider Figure 8. If bd(RS(SI(p},p}.;))) does not intersect line I, any
rotated silo, whose boundary contains a point of the set {p}|f < i} and whose interior does

not contain a point of the set P, lies on the left side of /,. Hence the boundary of such
a rotated silo does not touch the shaded right region, which contains all points of the set

14

A

Figure 8: A possible situation in Case 1.

Figure 9: Example for Case 2b.

Py} Therefore the set {p}|f < i} cannot contain a left endpoint of a supporting d-edge.
I bd(RS(si(p}_;,p}))) does not intersect Iy, we can eliminate the set {p}lg > j} from the
candidate list of right “supporting points”.

Case 2: A = (A,,A,) is a point or a vertical line segment with x-coordinate A.. We
distinguish three subcases:

Case 2a: If A, < (l1)z, an argument similiar to Case 1 implies, that the set {p‘,[f < i}
cannot contain a left endpoint of a supporting d-edge.

Case 2b: See Figure 9. If (). < A; < (I2)s, the set {py|f < i} does not contain a left
supporting point and the set {pj|g > j} does not contain a right supporting point.

15

Case 2c: If Az > (I2)s, then the set {p}|g > j} does not contain a right supporting point.

Case 3: If Cases 1 and 2 do not apply, then A is a line segment with startpoint a = (az, ay)

I

Figure 10: Example for Case 3c.

and endpoint b = (b, b,), where a < b.. We distinguish again three subcases:
Case 3a: If b, < (I2)s, then the set {pj|g > j} does not contain a right supporting point.
Case 3b: If @z > (I1)=, then the set {p}|f < i} does not contain a left supporting point.
Case 3c: b, > (Iz): and a. < (h).. Assume e(p},p;) with g > j is a supporting d-edge.
Since (p}, p}) = (si-concave, si-concave), p} must lie outside the rotated silo RS(si(p}_;,7}))-
Therefore, the part of bd(RS(si(p}_;,p}))) lying to the left of the vertical line through a is
contained in int(RS(SI(p!,p};,))). Hence the index f must be greater or equal to i and py
must lie on that part of the line segment from a to b, that is to the left of /; (see Figure
10). The fact that all rotated silos are translates of a convex figure, implies the following
statement: Consider any rotated silo, whose interior does not contain a point of the set Py
and whose boundary contains the point pj. The part of the boundary of such a rotated
silo, lying to the left of the vertical line through p}_,, is contained in int(RS(si(p}_;,5)))-
Hence the boundary of such a silo does not touch the shaded left region, in which all points
of the left dr-system lie. Thus pj, cannot be the right endpoint of a supporting d-edge and
we get a contradiction. Therefore we can eliminate the set {pj|g > j} from the candidate
list of right supporting points. The same argument implies, that the set {p’,\ f < i} does not
contain a left supporting point.

In all cases, in which we do not find a supporting d-edge, a portion of one or both
dr-systems can be eliminated. By testing always a pair of points lying in the “middle” of
the remaining chains, we can find a supporting d-edge in O(logs + logt) time. N

'We are now able to describe the whole dS-layer construction algorithm, which is a slightly
modified version of the (lower) convex layer construction algorithm of Overmars and van
Leeuwen [10]. We store the point set Pcg = {p1,--*,pm} in the leaves of an augmented
balanced binary search tree T, sorted by their x-coordinates. This tree T is identical to the

16

dynamic data structure used in [10]. Let u denote a node of T with left son v and right son w.
Let P(v) (resp. P(w)) be the points of P stored in the subtree rooted at v (resp. w). During
the construction of tree T we determine a minimal dr-system of DL(P(u)). We assume that
a concatenable queue Q, is associated to node v, in which the chain of a minimal dr-system
of DL(P(v)) is stored, and that a concatenable queue Q,, is associated to node w, in which
the chain of a minimal dr-system of DL(P(w)) is stored. The concatenable queues enable us
to carry out the following operations in O(logm) time:

o tolocate the supporting points using Lemma 7,

o to split the chains associated to v (or w) in the fragment, which belongs to the chain
of u, and the remaining subchain,

o to concatenate the fragments of left and right minimal dr-system to the concatenable
queue, which belongs to the computed minimal dr-system DR(P(u)).

The concatenable queue, which belongs to the minimal dr-system DR(P(u)), is associated
to the node u. Furthermore we store information about the ‘bndge , which connects the
two original parts of the ble queue. The ini are fated to v
and w. Besides we store the bridge between the two fragments of Q, in node v and the
bridge between the two fragments of Q,, in node w. For details about information stored in
the nodes of tree T, see [10]. The tree T uses O(m) space.

dS-layer construction algorithm

(1) Construct the augmented tree T';
(2) 2:= |Pegl;

(3) Pr := Pog;

(4) while (z # 0) do

Determine and store the minimal dr-system DR(Pr) associated to
root(T);

Remove the points represented by DR(Pr) one by one from T;
2=z~ |DR(Pr)l;

Pr:= Pr\ DR(Pr)

od

The tree construction in Step 1 takes O(mlogm) time. Determing the minimal dr-system
and storing this minimal dr-system can be done in O(| DR(Pr)|) time. Removing the points
represented by DR(Pr) costs O(|DR(Pr)|(logm)?) time. Thus the whole while-loop can be
carried out in O(m(logm)?) time. Hence the whole dS-layers construction for cell CE with
|Pcg| = m can be done in O(m(logm)?) time.
‘We summmarize now:

Theorem 2 Let P be a set of n points in the Euclidean plane E®. There ezists a data
structure of size O(n), such that O(logn + k) time suffices to retrieve all k points of P lying
inside a query translate C, of a convez computable figure C. The data structure can be
constructed in O(n(logn)?) time.

Proof: Decomposing the Euclidean plane into cells, distributing the points of P in their
corresponding cells and storing the non-empty cells in sorted order in a binary search tree

17

can be done in O(nlogn) time. Then we have to construct the four query data structures
for every non-empty cell CE. If [Pgg| = m, the construction of a family of dx-layers
(x € {N,5,0,W}) costs O(m(logm)?) time. Building the four query data structures for cell
CE with the help of these dual layer families can be done in O(m) operations. Hence the
preprocessing for all non-empty cells can be carried out in O(n(logn)?) time.

Since the new data structures, which we use to construct the dual layers, has size O(n),
all data structures together use O(n) space. The query time is the same as in [6], because
we use the same query data structure. B

It is worthwhile to mention that we also get dynamic data structures for this class of retrieval
problems, because we can use the dynamic data structure T to search for all points of cell CE
in a query translate C,, which is S-grounded with respect to CE. Insertions and deletions in
the dynamic data structure T can be done in O((log|Pr|)?) time, where Pr is the point set
stored in T (see [10]). We describe now a simple way to find all points stored in T, which lie
in the query translate C,: Search the edge of the S-layer L(Pr), which lies below or above
the query point g. This search can be carried out in the concatenable queue associated to
the root of T' with O(log|Pr|) operations. If the point p, which belongs to the above edge,
does not lie in C,, we are ready in this cell. If the point lies in C,, we store p in a queue
called REMEMBER, delete p from T and search again. We continue to do this until we have
found all points p € Cg stored in the original tree T. Afterwards we restore T by inserting all
points p € REMEMBER in T again. This retrieval operation takes O(log| Pr| + k(log | Pr|)%)
time, where k is the number of points stored in Pr, which lie in C,.

Theorem 3 Let P be a set of n points in E? and C a convez computable figure. There exists
a dynamic data structure which stores the point set P and which uses O(n) space, such that
O(logn + k(logn)?) time suffices to retricue all k poins o[P lying inside o query translate
Cy. The data structure can be di cost of O((logn)?)
per insertion and deletion.

3.3 An improved dS-lay nstruction

Let Pcg = PN CE = {p1,---,pm} be the sequence of points in cell CE, sorted in order
of increasing x-coordinates. We assume wlog that there are no two points in Pog with the
same x-coordinate. We consider again only S-grounded queries.

In the last subsection we saw that we can construct the augmented balanced binary
search tree T for Pcg in O(mlogm) time. In Step 4 of the dS-layer construction algorithm,
we delete points from T. Each deletion costs O((logm)?) time. Hence all deletions together
can be done in O(m(logm)?) time. Chazelle showed in [3] that the deletions involved in
the computation of the convex layers can be batched together, such that all deletions can
be done in O(mlogm) time. We prove now, that we can use a slightly modified version of
Chazelle’s convex layer construction algorithm to reduce the preprocessing time for our data
structure to O(mlogm).

We store the points p1,- - -, pm in the leaves of the balanced binary search tree T presented
in the last subsection. The subset of points stored at the leaves of a subtree T'(u) with
root u, is denoted by P(u). Let DL(P(w)) be the dS-layer of P(u) and DR(P(u)) a minimal
dr-system of DL(P(u)). Connecting Pcg by the set

£¢ = | J{e(a,b)|a,b neighboring points in DR(P(u))}
weT

P1

P16

Figure 11: Dual S-layers of 16 points {ps,---,p1}. The corresponding figure C is a disk.

of d-edges, we get a planar embedding of the graph G = (V,£) with nodes V = Pcg and
edges £ = {{a,b}|e(a,b) € £}. The connected acyclic planar graph G is called the dS-graph
of Pgp. We use the notation G also for the two-dimensional embedding of the graph. The
d-edges of G are in one-to-one correspondence with the nodes of the tree T (see Figure 12).
Each node u € T corresponds to the “longest” supporting d-edge of G, which connects the
dS-layers of node u’s children. Assume v and w are the children of node v € T, then u

Ps—Po

Ps—Dps Po — P16

n P1e

Pre

Figure 12: Tree T and the dS-graph for the point set of Figure 11.

corresponds to the “longest” supporting d-edge of DL(P(v)) and DL(P(w)).

The dS-graph G is represented by an adjacency list structure. We endow each vertex
P € Pcg with a list V(p), which contains the names of the adjacent vertices. Each list
V(p) consists of two sublists VL(p) and VR(p), defined as follows: VL(p) (resp. VR(p))
contains the vertices adjacent to p, which have smaller (resp. larger) x-coordinates than p.
The points in VL(p) and VR(p) are sorted with respect to the corresponding d-edges from
bottom d-edge to top d-edge. Each vertex p has a pointer to the bottom d-edge of VL(p)

19

and a pointer to the bottom d-edge of VR(p) (see Figure 13). The sorting of the d-edges in
VL(p) and VR(p) can be carried out by considering the intersection points of the d-edges
with vertical lines near vertex p. If we have d-edges e(a,p) and e(b,p), which deliver the
same intersection point with the selected vertical line, we sort these d-edges by considering
the x-coordinates of the corresponding points a and b.

Vi(p)

bottom-d-edges

Figure 13: Adjacency list structure for vertex p and the bottom d-edges.

First we describe one simple way to compute the dS-graph G in O(mlogm) time. We
assume that we know the dS-graphs of {p1,*,P|m/2)} and {P|m/2j41,""",Pm}. Using the
extra pointers to the bottom d-edges, we can easily run across the chains {p},---,p}} and
{p},---,p} of the computed dr-systems. In order to compute a “longest" supporting d-edge
ey, for the two dS-layers, we go ahead as follows: We set e, = e(p},p}) for j = 1,2,..., until
we get a d-edge e(pl,p]), which is supporting in pj. 1f e(p},75) is also supporting in p},
we use the in 2.2to ine the “longest”
d-edge and add this d-edge to the dS-graph G. If the d-edge ¢(p},p}) is not supporting in p,
we move the first endpoint p} to ph,ps---, until we find a point pl, such that e(pl,p}) is
supporting in pl. The d-edge e(p},p}) is now supporting in p, but in general not in p}. If
the d-edge is not supporting in p}, we move again the right endpoint pj to pj,;, P4z, - In
this way we move both endpoints around their dS-layers until we find a “longest” supporting
d-edge e;,. Since this construction method requires O(m) operations for every level of the
tree T, the whole dS-graph can be constructed in O(mlogm) time.

Starting in the leftmost or rightmost vertex of the dS-graph G and following the extra
pointers to the bottom d-edges, we can find a minimal dr-system DR(Pcg) for DL(Pcg).
‘We store this dr-system and then we remove all points p € DR(P¢g) from the dS-graph G.

Before we describe in detail how points will be deleted from G, we briefly introduce the
geometrical concept, on which Chazelle’s deletion method is based. In order to remove the
vertex p from G and in order to reshape the dS-graph G, we move the vertex p = (pz,py) on.
the vertical ray Ip := {(p=,¥)|y > py} towards y = co. By moving the point towards y = oo,
the d-edges adjacent to p will be pulled up and will be removed one by one. The d-edges
adjacent to p have to be considered in the order in which they appear as supporting d-edges
in the path from leaf p to the root of T (see Figure 14).

The deletion of a point p lying on the current dS-layer will now be described in detail. Let

20

-, v be the nodes of T, which lie on the path from leaf p to the root of 7. Every node

ds to a “longest” ing d-edge of two dS-layers. Since p lies in the current

dS -layer of all points present in G, p lies on one of these two dS-layers. Let wi,- - -, wy be the
subsequence of K that corresponds to supporting d-edges with p as an endpomt (see
Figure 14). We d between p-left supporting d-edges e(wi,p), where w; € VL(p),

Figure 14: Leaf-to-root path for point ps of Figure 11 and the corresponding d-edges in the
dS-graph.

and p-right supporting d-edges e(p, w;), where wj € VR(p). Let e,,,---, ¢, be the sequence
of supporting d-edges corresponding to the sequence ws, - - - , wy, of nodes. Since the d-edges
with endpoint p have to be removed in this “leaf-to-root” order, we have to merge the lists
VL(p) and VR(p). This merging can be done in O(l) steps.

For any node w; let G(w;) denote the dS-subgraph of G, that belongs to the subtree
of T rooted at w;. In order to remove p from G, we have to update the sequence of
dS-graphs G(w1),- -+, G(wy) in this order. We assume that we have already removed p from
the dS-graphs G(w),---,G(w;i—1) and we want to update G(w;). Furthermore we assume
wlog, that the supporting d-edge e(p, ¢) corresponding to w; is a p-right supporting d-edge.
Let e(a,p) and e(p,b) be the last p-left supporting d-edge and the last p-right supporting
d-edge, which we have pulled up. Without loss of generality we can assume, that e(a,p)
and e(p,b) exist. In this situation the new part of G(w;_;) lies between a and b above the
composed curve (e(a,p), e(p, b)) (see Figure 15).

Let e(a,a’),---,e(b',b) be the sequence of d-edges between a and b, which lie on the
dS-layer of all points represented in G(w;_;). Hence ' is the vertex of the current dS-layer
DL(P(w;_y)) following a in counterclockwise order and b’ is the vertex following b in clockwise
order. Let ¢ denote the vertex of the right dS-subgraph following c in clockwise order (see

21

Figure 15: Schematical illustration of the deletion process.

Figure 15). Updating G(w;) means pulling up the vertex p until it disappears from the
dS-layer DL(P(w;)). During this process we stop at every point on the vertical line I, where
a supporting d-edge has to be exchanged by another “longest” supporting d-edge, and change
the dS-graph.

Let IS,, ISs, IS, be the intersection points of the vertical line from p towards y = oo with
the three boundaries bd(RS(SI(a,a'))),bd(RS(si(b',b))) and bd(RS(si(¢, c))). (We consider
SI(,), if both points lie to the left of I, and si(,), if both points lie to the right of I,. If
one point lies to the left and the other to the right of /,, we can choose si(,) or SI(,).
If the intersection is a line segment, we choose the point with maximal y-coordinate.) The
first placement for p, where a supporting d-edge has to be exchanged, is that point of these
three intersection points, which has minimal y-coordinate. Therefore we compute the three
intersection points and sort them in order of increasing y-coordinates. If for example IS,
is the intersection point with smallest y-coordinate, the point p reaches first IS, on his
way towards y = co. At this point we have to replace the d-edge e(p,c) by the d-edge
e(p,¢’) in the dS-graph. Hence we replace ¢ by ¢’, compute the intersection point ISy of the

Figure 16: Determing the next placement for point p.

vertical line through p with the boundary bd(RS(si(c',c"))) and insert the new intersection
point in the sorted sequence of intersection points (see Figure 16). The first element in this

22

d 1 1

sorted sequence always the next for p. At every of p with
corresponding endpoints a,b,c we have to test, if e(a, c) or e(b,c) is a supporting d-edge for
the two dS-layers. If we have found a “longest” supporting d-edge, we change the dS-graph
G(w;) and start to remove p from G(wis;). In this way we handle all supporting d-edges
with endpoint p. If v; ¢ {wi,---,wi}, then p is not an endpoint of the supporting d-edge
associated to v;. Therefore this supporting d-edge does not change, and no additional work
is required.

In this way we remove all points p € DR(Pgg) from the dS-graph G. Then we determine
a minimal dr-system DR(P}z) of the dS-layer DL(P%g), where Pz := Pog \ DR(Pcs).
This can be done by running across the path of the current dS-graph G, which starts in
the leftmost or rightmost vertex, and following the extra pointers to the bottom d-edges.
After we have determined and stored DR(P%g), we remove all points in DR(P2g) from the
dS-graph G. Then we determine a minimal dr-system DR(P3g) of the dS-layer DL(P%g),
where P3g := P%p \ DR(P%g). We continue in this way, until we get P&z = 0.

It can easily be seen that the above deletion procedure and the whole dS-layer construc-
tion algorithm work correctly. We leave out here the complexity analysis, because it is almost
identical to that given in [3].

‘We summarize now:

Lemma 8 A fomily of minimal dr-systems for the set Pcg with |Pcg| = m can be computed
in O(mlogm) time using O(m) space.

Lemma 8 implies that the whole preprocessing for the entire data structure requires
O(nlogn) operations. Hence, we get the main result of this paper:

Theorem 4 Let P be a set of n points in E? and C a convez computable figure. There
ezists a data structure that stores the point set P, such that O(logn + k) time suffices to
retrieve all k points lying inside a query translate C,. The data structure has size O(n) and
can be constructed in O(nlogn) time.

‘We close this subsection with a few examples of convex computable figures C.
In the case C is a disk, we don’t need to decompose C into upper and lower parts, because
both parts lead to the same decomposition of E2.

Corollary 1 Let P be a set of n points in the Euclidean plane E? and let C be a disk. In
O(nlogn) time we can preprocess P so that for any query point g, all k points of P, which
lie in the query translate C,, can be retrieved in O(logn + k) time. The query data structure
has size O(n).

Other shapes which C may assume, are for example triangles, rectangles, ellipses or hybrid
convex figures bounded by a constant number of analytic curves.

Our method also works for non-bounded convex computable figures. In such cases we
only have to modify the decomposition of the Euclidean plane. If C is a hyberbola for
example, we only have one single cell: the whole Euclidean plane. After a suitable basis
transformation we need only one single query data structure, for example the query data
structure for S-grounded queries.

If C is a convex m-gon, the primitive ions like i i ing and point-
inside-or-outside-test can be done in O(logm) time.

Corollary 2 Let P be a set of n points in the Euclidean plane and let C be a convez m-gon.
In O(nlognlogm + mlogm) time we can preprocess P so that for any query point g, all k
points of P, which lie in the query translate Cy, can be retrieved in O(logn + (k + 1)logm)
time. The query data structure has size O(n + m).

23

The algorithm uses only O(n + m) space, because vertices of the dS-graph only contain
pointers to their adjacent vertices, and not to the sequence of polygon edges. A similar result
was given by Klein et al.[9]. Their query algorithm, however, has running time O(mlog n-+k).

4 Some concluding remarks

1) How to handle points with the same x-coordinate?

If there are points with the same x-coordinate, we sort these points in order of increas-
ing y-coordinates and store the sorted sequence of points in a queue. Hence, for every
x-coordinate, there is one queue. When we start the computation of the family of dS-layers
for S-grounded queries, we take the first point from every queue and start the construction
with this point set P*. Whenever a point p € P~ has become an element of a computed min-
imal dr-system, we remove p from P*, we pick up the next point of the queue (if the queue
is not empty) to which p has belonged, and we include this point into P*. Here, including
into P* means that we insert this point in the data structures used in the preprocessing.

These additional sorting, inserting and deleting operations do not change space or pre-
processing time bounds.

2) Faster dynamic data structures

The static data structure of Theorem 4 has a building time P(n) = O(nlogn), size $(n) =
0O(n), and a query time Q(n) = O(logn+k). Since the point retrieval problem is a decompos-
able searching problem, we can apply the techniques of Dobkin and Suri [8], and Smid [12].
This gives data structures that can handle semi-online updates in O(’{Eﬂ logn) = O((logn)?)
amortized time. These data structure still have a building time of O(nlogn) and a size of
O(n). The query time becomes O(Q(n)logn) = O((logn)? + k), which is better than that
of Theorem 3.

Using fractional cascading, the query time can be improved to O(logn + k): The data
structure consists of O(logn) static structures for sets of sizes O(2°), i = 0,1,...,logn. To
answer a query, we query each static structure separately. Each such query starts with a
binary search in the outermost layer. Since for each binary search the query point is the
same, we can connect these layers using ional ding. More precisely,
we copy elements from a structure for O(2) points to a structure for O(2°~!) points, for
i =logn,...,1. The search starts in the structure for O(2°) points. Once we have located
the query point in the (¢ — 1)-th structure we use the fractional cascading information to
locate the point in the i-th structure. (See [7] for details.)

During an update, we rebuild static structures for sets of sizes 2°, ..., 2!, for some I. This
rebuilding takes time O(2'log2!). Then we copy elements from the i-th structure to the
(¢ —1)-th structure, for i = I+1,1,..., 1, and construct the fractional cascading information
for these new static structures. This takes only O(2') time. Hence, the amortized update
time for this improved structure remains bounded by O((logn)?).

3) Collision tests for molecules

We give an application of our result in the field of in
chemistry. Testing whether and when a molecule A in motion collides with another fixed
molecule B are two important problems, which arise in molecular modelling or docking
simulation. Especially the following problems are of interest:

o Trans(4, B): Given a translation direction for molecule 4, test whether molecule A
collides with the fixed molecule B. If A collides with B, then determine, when the
collision takes place.

24

o Rot(4, B): Given arotation axe and a (rotation) direction for molecule A, test whether
molecule 4 collides with the fixed molecule B. If A collides with B, then determine,
when the collision takes place.

‘We use the following “atom model”: Each atom a of a molecule is a sphere with center
¢(a) = (az,y,0a.) and radius r,, where r, is the van der Waals radius of atom a. Let A
and B be two molecules, which consists of n and m atoms resp. We assume for simplicity
that all n atoms of molecule A have radius r4 and all m atoms of molecule B have radius
rp. Furthermore we assume that the shapes of the molecules are fixed. (Hence we don’t
allow distorsions of the shapes, our model supports only docking simulation based on the
lock-and-key model. It would be desirable of course, to have molecular dynamics tools,
which could carry out energy minimization and could determine possible new shapes for
the molecules, if the molecules are so close to each other, that they influence each other.
The best tool would be an algorithm, that carries out the docking process with fitting of the
shapes automatically. The user has to place the molecules, such that the possible active sites
are close together. Then the algorithm guides the molecules in a local energy minimum, in
which perhaps molecule A has docked at the active side of molecule B. Such an algorithm
would also support the induced fit model.). Since there are lower bounds for the minimal
distance between to different atoms, a sphere with fixed radius can contain only a constant
number of atoms or atomic nucleii.

We now consider the problem Trans(4, B). Instead of determing collision between atoms
in A and B, we test for collisions between the centers of all n atoms in A and the spheres,
which we obtain, by blowing up every atom in B to a sphere with radius r4 + r5.

Let pr be the projection parallel to the jon direction into a fixed plane, which is
orthogonal to the translation direction. In order to test for collision, we carry out a space
sweep in the translation direction with a plane E, which is orthogonal to the translation
direction. First we sort all atoms of A and B with respect to the following order “<”: a < @,
if the sweep plane reaches the center of atom a before it reaches the center of a. We move
the plane in the translation direction and we stop, when the plane reaches a center of any
atom. If we stop at the center of an atom a € A, we insert pr(c(a)) in the dynamic point
retrieval query structure of Theorem 3, where we take for C a disk with radius r4 + r5. If
we stop at the center of an atom b € B, we do the following test: We test whether there is a
point in the dynamic data structure, which lies in the circle with radius 74 + 75 and center
pr(c(b)). If we find a point, which lies in this circle, molecule A will collide with molecule B.

Sorting the points in the translation direction takes O((n + m)log(n + m)) operations.
The space sweep and the construction of the query data structure costs O(n(logn)?+mlogn)
time. Hence the whole collision test takes O(n(logn)? + (n + m)log(n + m)) time.

If we want to determine when A collides with B, we have to modify the above algorithm
slightly. Whenever we stop at a center of an atom b € B during the sweep, we have to
retrieve all atoms A, of 4, whose projected centers lie in the sphere with radius r4 + 5
and center pr(c(b)). For all these atoms of A we determine, when they collide with atom b.
Besides we have to determine the collision points (if existing) of all pairs (a,b), where a € 4,
and b* € By := {b € B]lc(b) — c(b)| < 2(r4 + 78)}. We compare every computed collision
point with the minimal one we have found until now. If we find a new minimum, we store
the corresponding collision atom pair and the new minimum. After all these tests have been
done, we remove the point set corresponding to 4; from the query data structure and go to
the next atom in the sweep direction.

Note that there are only a constant number of atoms in Bs. Hence, if we know the set
Bj, the whole operation for atom b can be done in O(|4|(logn)?) time. If we assume that

0
&

we know the sets By for all b € B, the space sweep can be carried out in O(n(logn)? + (n +
m)log(n + m)) time. (We only have to compute the sets B; once. Computing the distances
between all pairs of atoms in B and determing a neighbor list for each atom is the simplest
way to get the sets By. But there are a few more efficient methods to determine the sets
By.)

Note that the collision detection for rotations can be handled in the same way and that
we get the same upper bounds as in the case of translations. If we carry out a collision
test for a rotation, we choose a sweep plane, which contains the rotation axe, and rotate
this plane around this axe. The centers are sorted according to the rotation angles, when
the rotated plane hits the centers. In this case the projection pr is the rotation around the
rotation axe in a fixed plane, which contains the rotation axe.

References

[1] A. Aggarwal, M. Hansen and T. Leighton. Solving Query-Retrieval Problems by Com-
pacting Voronoi Diagrams. PROC. OF THE 16TH ANNUAL SYMP. OF THEORY OF
COMPUTING (1990), pp. 331-340.

[2] 3. L. Bentley. Decomposable Searching Problems. INFORM. PROC. LETT. vol. 8
(1979), pp. 244-251.

[3] B. Chazelle. On the Convez Layers of a Planar Set. IEEE TRANSACTIONS ON IN-
FORMATION THEORY, vol. 31, no. 4 (1985), pp. 509-517.

[4] B. Chazelle. Filtering Search: A New Approach to Query-Answering. SIAM J. OF
COMP. vol. 15 (1986), pp. 703-724.

[5] B. Chazelle, R. Cole, F.P. Preparata and C. Yap. New Upper Bounds for Neighbor
Searching. INFORMATION AND CONTROL, vol. 68 (1986), pp. 105-124.

[6] B. Chazelle and H. Edelsbrunner. Optimal Solutions for a Class of Point Retrieval
Problems. J. SYMBOLIC COMPUTATION, vol. 1 (1985), pp. 47-56.

[7] B. Chazelle and L. Guibas. Fractional Cascading: I, A Data Structuring Technique; I,
Applications. ALGORITHMICA, vol. 1 (1986), pp. 133-191.

[8] D. Dobkin and S. Suri. Maintenance of Geometric Extrema. JOURNAL OF THE ACM,
vol. 38 (1991), pp. 275-298.

[9] R. Klein, O. Nurmi, T. Ottmann and D. Wood. 4 Dynamic Fized Windowing Problem.
ALGORITHMICA, vol. 4 (1989), pp. 535-550.

[10) M.H. Overmars and J. van Leeuwen. Maintenance of Configurations in the Plane. J.
COMPUT. SYST. SCL vol. 23 (1981), pp. 166-204.

[11] F.P. Preparata and M.I Shamos. Computational Geometry: an Introduction. Springer-
Verlag New York-Berlin-Heidelberg-Tokyo (1985).

[12] M. Smid. Algorithms for Semi-online Updates on D ble Problems. PROC. 2ND
CANADIAN CONF. ON COMPUTATIONAL GEOMETRY, 1990, pp. 347-350.

