MAX-PLANCK-INSTITUT
FUR
INFORMATIK

An O(nlognloglogn) algorithm for the

on-line closest pair problem

Christian Schwarz Michiel Smid

MPI-1-91-107 July 1991

Im Stadtwald
W 6600 Saarbriicken

Germany

An O(nlognloglogn) algorithm for the on-line
closest pair problem*

Christian Schwarz Michiel Smid
Maz-Planck-Institut fir Informatik
D-6600 Saarbricken, Germany

July 30, 1991

Abstract

Let V" be a set of n points in k-dimensional space. It is shown how the closest

pairin V can be maintained under insertions in O(log 7 loglog n) amortized time,
using O(n) space. Distances are measured in the L;-metric, where 1 < ¢ < co.

This gives an O(nlognloglogn) ti Ii for ing the closest
pair. The algorithm is based on Bentley'’s logarithmic method for d
bl It uses a) 1| ion of di to

k-dimensional space. It is also shown how to extend the method to maintain
the closest pair during semi-online updates. Then, the update time becomes
O((logn)?), even in the worst case.

1 Introduction

The closest pair problem is one of the problems in computational geometry that has re-
ceived much attention. In this problem, we are given a set of » points in k-dimensional
space and we want to compute a closest pair or its distance. Distances are measured
in the L,-metric, where 1 <t < co.

In the Ly-metric, the distance dy(p,q) between two points p = (ps,...,ps) and
q=(qu,---,q) in k-dimensional space is defined by

¥ 1y
a0 = (- q,-!’))
if 1 <t < o0, and for ¢ = oo, it is defined by

(P, 0) = max pi — @il

*This work was supported by the ESPRIT II Basic Research Actions Program, under contract
No. 3075 (project ALCOM).

Throughout this paper, we fix ¢ and measure all distances in the L,-metric. We write
d(p, q) for di(p, g)-

In the off-line version of the closest pair problem, the complete set of points is
known at the start of the algorithm. In this case, several optimal O(nlogn) algo-
rithms are known. See Bentley and Shamos (2], Shamos and Hoey [10], Preparata and
Shamos [8], Vaidya [17].

In this paper, we consider the on-line version: The points become available one
after another. A new point arrives as soon as the insertion of the previous point has
been completed. At the start of the algorithm, the final size of the point set is not
known.

To solve this on-line problem, we need a data structure that maintains the closest
pair in the current set V. The only operation that has to be supported is the insertion
of a point. During an insertion, we have to update the closest pair.

In Smid [13], a data structure is given that maintains the minimal distance in
amortized O((log z)*~?) time, using O(n) space. This leads to an O(n(logn)*~?) time
algorithm for the on-line closest pair problem. In the planar case, this result is optimal.
In Smid [15], an algorithm is sketched that improves the running time — for k >3 —
to O(n(logn)?/ loglogn).

In this paper, we give a data structure that uses O(n) space and that maintains
the closest pair in O(log nloglogn) amortized time. As a result, we can compute the
closest pair in a point set on-line in O(nlognloglogn) time.

Note that recently several papers have appeared that are concerned with the dy-
namic closest pair problem. Supowit [16] considers the case where there are only
deletions. He obtains an amortized deletion time of O((logn)*) using O(n(logn)*~*)

space. If both i i and deleti have to be d, the best linear size
data is obtained by bining results of Smid [12], Dickerson and Drys-
dale [4] and Salowe [9]. The 1ti has a t update time of

O(y/nlogn). In Smid [14], an amortized update time of O((logn)*loglogn) is ob-
tained using O(n(logn)) space.

The fr k of the algorithm for maintaining the closest pair under insertion of
points is as follows: Let V' be the current set of points, let (P, Q) be the current closest
pair and let § = d(P, Q). The algorithm for inserting a point p does the following:

1. It finds out if there is a point ¢ € V, g # p, such that d(p,q) < §. If there is
no such point, the insertion of p does not change the closest pair. Otherwise, it
finds a point gin V that is closest to p, and sets (P, Q) := (p,g) and & := d(p, g)-

2. It inserts p into the data structure.

In step 1, the closest pair is updated. It is clear that if the closest pair changes, then
the new point is part of the new closest pair.

The main problem is how to implement step 1. We have to find a nearest neighbor
g of the new point p, but only if d(p, g) < §. Hence, we need a data structure for this
restricted post-office problem. For the static version of this query problem, it is easy to
give a data structure solving it. This static structure is presented in Section 2. Then,

in Section 3, we apply the logarithmic method for decomposabl hi bl
(see Bentley [1]). The result is a data of linear size maintaining the closest
pair in O((log »)?) amortized time per insertion.

In [7), Mehlhorn gives a class of algorithms for which he proves that Bentley’s
logarithmic method is optimal. In the second part of the paper, however, we show
how fractional cascading (see Chazelle and Guibas [3] and Edelsbrunner, Guibas and
Stolfi [6]) can be applied in a non-trivial way to improve the time bound. (Clearly,
the resulting algorithm does not belong to Mehlhorn’s class.)

In our case, the objects stored are hypercubes belonging to different grids. We have
to implement the following queries: Given a paiat, do a point location, i.c., find the

it, in all grids. Standard fractis ding cannot be applied
h:re, because the hypercubes in the va.nous grids have different sizes.
We show how to extend fracti ding to this higher-di ional hi

problem. It turns out that we have to define an ordering xe.lahon for the hypercubes
in one grid that depends on the orderings in other grids. This ordering is defined
and analyzed in Section 4. Unfortunately, it takes O(loglogn) time to compare two
hypercubes in such an ordering. In Section 5, we present the improved data structure
for maintaining the closest pair. In Section 6, we use the new orderings for point
location in all grids, employing a variant of fractional cascading similar to [6]. In that
section, we also consider step 2 of the insertion algorithm. It is shown that we can use
old information to speed up this step (compared to Section 3). At the end of Section 6,
we have proved the main result of this paper.

In Section 7, we consider the case where the updates are semi-online. A sequence
of updates is called semi-online, if the insertions are online, but with each inserted
point p, we get an integer d saying that p will be deleted d updates from the moment
of insertion. This type of updates was introduced by Dobkin and Suri [5]. They
show that in the planar case, the closest pair in a point set can be maintained in
O((log n)?) amortized time when semi-online updates are performed. (Their algorithm
is a generalization of the logarithmic method.) This method was made worst-case in
Smid [11].

‘We show that the method of [5, 11] can be applied to the static data structure of
Section 2. The result is a data structure of linear size maintaining the closest pair in
O((log n)?) time per semi-online update, even in the worst case.

In Section 8, we finish the paper with some concluding remarks.

Throughout this paper, we use the following notation. If V' is a set of points in

k-space, then §(V) denotes the minimal distance in V, i.e.,

§(V) := min{d(p,q) : P, € V;p # q}-

2 The restricted post-office problem

Definition 1 Let ¢ € IN be fixed. In the restricted post-office problem, we are given
aset V of n points in k-space and o € IR such that 0 < o < c§(V). We have to store
V in a (static) data structure such that restricted post-office queries can be solved. In
such a query, we get a point p in k-space and § € IR such that 0 < § < o, and we have

3

to compute the value of
f(®,V,0,6) := min{d(p,q) : g € V,d(p, q) < &}

(We define min 0 := c0.) In case f(p, V,0,6) < 0o, we also want a nearest neighbor of
pin V.

Hence, in a restricted post-office query we want a nearest neighbor g of p, if d(p, g) < 8.
‘We note here that it is not necessary to know the value of §(V'). In the applications to
be p d later, the algorithms will that the value of o is at most equal
toc E(V), for ¢ = 1 resp. ¢ = 2. Before we give the data structure for such queries, we
define the notion of a o-grid.

Definition 2 Let o € IRyo. The subdivision of k-space induced by the set of (k—1)-
dimensional hyperplanes Uyict Usez hij: @ = j - o is called o-grid.

The o-grid consists of hypercubes of the form [i,0 : (i3 41)0] X... X [ix0 : (ix+1)],
for integers iy, ...,%. These hypercubes are called o-bozes.

Ip=(p1,...,pr)is a point in k-space and [i10 : (i1 +1)0] X... X [ix0 : (i +1)o] is
a o-box, then we say that pis contained in this o-box if i; = I_p; o],...yik = |pe/o).
In this way, even if a point lies on the boundary of a o-box, there is a unique o-box
containing it.

In the rest of this section, o-boxes will be sorted in lexicographical order. This
ordering is ob d by ing the “I left” corners of the o-boxes lexicograph-
ically.

The data structure DS(V,0): Let L be the set of all o-boxes that contain at
least one point of V. We store the elements of L in a balanced binary search tree,
sorted in lexicographical order. With each o-box h, we store a list of all points of V'
that are contained in k. The elements in this list are stored in arbitrary order.

The query algorithm: Let p = (py, ..., px) be a point in k-space and let § € R
such that 0 < § < 0. We have to compute f(p,V,0,8).

1. We perform 3* point location queries, with query points
(pr+ €15, Pk + €), Where €, 6,...,6 € {—6,0,8}.

That is, for each of these 3* points , we search in the binary search tree for the
o-box containing r.

X

. If we do not find any o-box, we output “f(p,V,0,8) =

ol

Otherwise, for each o-box found, we walk through the list of points that is stored
with it. Of all the points encountered in this way, we select a point g # p that is
closest to p. If d(p,q) < &, we output “f(p,V, 0, i) d(p,q)” together with the
point ¢g. Otherwise, we output “f(p,V,0,8) = co”

The running time of this algorithm depends on the following lemma.

4

Lemma 1 Let V' be a set of points in k-space and let ¢ € IN. Then, any k-dimensional
cube C having sides of length ¢ §(V') contains at most (ck + c)* points of V.

Proof: Partition the cube C into (ck+c)* subcubes with sides of length §(V')/(k+1).
Assume that C contains more than (ck + c)* points of V. Then one of the subcubes
contains at least two points of V. These two points have a distance at most equal to
the L,-diameter of this subcube. But this diameter is at most k-8(V)/(k+1) < §(V),
contradicting the fact that the minimal distance of V is equal to §(V').

Theorem 1 Let V be a set of n points in k-space and let o € IR such that 0 < ¢ <
¢6(V), with c € IN fized. There ezists a data structure such that, for each point p in
k-space and for each § € R satisfying 0 < & < o, we can find the vakue of £(p, V,0,6)
in O(log n) time. The data structure has size O(n) and can be built in O(nlogn) time.

Proof: To answer a query, we have to find a nearest neighbor of p, if this neighbor
has distance at most § to p. That is, we have to find all points of V that are inside
the Li-ball of radius & centered at p. This ball is contained in the k-dimensional cube
[pr—8:p1+8] X...x [pr— & : pi + 8]. Therefore, it suffices to compare p with all
points of V that are in this cube. Let

W:=Vn(pr—8:p+8X...x [p— 6:pe +8])

be the set of these points, and let W’ be the set of points that are contained in the lists
belonging to the o-boxes that result from the 3* point location queries. The algorithm
compares p with all points in W’. Hence, if we show that W C W, then it is clear
that the query algorithm is correct.

If W = 0, then certainly W C W'. So assume that W # 0. Let z = (z1,...,2i) be
a point in W. Assume w.lo.g. that z; > p; for i =1,...,k. Then p; < z; < p; + 6 for
i=1,...,k. Let B be the o-box whose list contains z. Assume that z ¢ W’. Then B
does not contain any of the 2* points (py + By, - -, & + B), Where 3y, ..., B € {0, 6}
These 2* points are the corners of the k-dimensional cube

B :=[pi:p+8X...x [px:pe+8],
having sides of length §. Since z € B’, and since B does not contain any of the corner
points of B, it follows that the o-box B must have at least one side of length strictly
less than &. This is a contradiction, because the o-boxes have sides of length o and
we assumed that § < 0. Hence, z € W’ and, therefore, W C W'. This proves the
correctness of the query algorithm.

Given a point 7, we can compute the o-box k containing r in constant time. Given
this 0-box, we can search for it in the binary search tree in O(klogn) time. Since
o < c§(V), it follows from Lemma 1 that each o-box contains at most (ck + c)* points
of V. It follows that the total query time is bounded by

O(3*klog n + 3*(ck + c)*) = O(log n), 1)

because k is a constant.

‘We only store non-empty o-boxes. Moreover, each point of V is stored only once.
Therefore, the data structure has size O(n). It is clear that it can be built in O(nlogn)
time. L}

8 Maintaining the closest pair under insertions

‘We apply Bentley’s logarithmic method for d bl hi bl [1] to
the static data structure of the previous section. Tlns gives a data structure that
maintains the closest pair under insertion of points.

The dynamic data structure: Let V be the current set of points in k-space, and
let n denote its size. Write 7 in the binary number system, n = S50 @i2°, a; € {0,1}.
Set V is partitioned into subsets: for each i such tha.t a; = 1, there is one subset V;,
of size 2°. The data structure stores the foll ion:

1. The current closest pair (P, Q) and its distance §.

2. For each i such that a; = 1, a static data structure DS(V;, o), where o; € R
satisfies 6(V) < o; < §(Vi). (That is, ¢ = 1 w.r.t. Definition 1.)

The insertion algorithm: Suppose we want to insert point p. The algorithm
makes two steps.

1. For each i such that o; = 1, we use the structure DS(V;, 0;) to compute the value
of £(p, Vi, 03, 8). I all these values are oo, we continue with step 2. Otherwise, we
compute an index j such that f(p, Vj, 03, 6) is minimal. The algorithm has found
a point ¢ € V; which is a nearest neighbor of p in V;. We set (P, Q) := (p, q) and
§:=d(p,q).

Let I be the integer such that ao = ay = ... = ez = 1, &y = 0. Let Vi := {p}U
VoUW, U...UViey. We set o := §, build a static data structure DS(V, o1), and
discard the structures DS(Vp, o), .., DS(Vi_1,01-1) (thereby implicitly making
the sets Vo, ..., Vi_; empty).

»

Theorem 2 The given dynamic data structure maintains the closest pair in a set of
n points in k-space at a cost of O((logn)?) amortized time per insertion. The data
structure has size O(n).

Proof: Note that we can apply the results of Section 2 to the structures DS(V;,0;),
because 0 < o; < §(V;), and we only perform restricted post-office queries with § =
§(V) < o

First we prove the correctness of the algorithm. Let V be the set of points at the
start of the insertion algorithm. The closest pair is updated in step 1.

If all values f(p, , 03, 6) are 0o, then for each 4, the set {d(p, q) : ¢ € V;,d(p,q) < &}
is empty. That is, for each %, all points in V; have distance more than § to p. In this
case, there is no point in V' having distance at most to p, and therefore the insertion
of p does not cause a change of the closest pair.

Otherwise, there are finite values of f(p, Vi, 0,5). Consider the integer j and the
point g that are chosen in step 1. Then, since g is not only a nearest neighbor of p
in V;, but even in the entire set V/, it follows that (p, q) is the closest pair in the new
set VU {p}.

This proves that step 1 correctly maintains the closest pair. In step 2, the rest of
the data structure is maintained. It is clear that the partition of the new set V U {p}
is according to the binary representation of the new number of points, i.e., n + 1.
Therefore, we only have to prove the bounds on the o;’s.

Consider the integer [in step 2. Note that afterwards there are only values o; for
i > 1. Leti> Il Then the subset V; and the value of o; did not change. Hence,
it is still true that o; < 8(Vi). Moreover, it is clear that 6(V U {p}) < 6(V). Since
8(V) < o, it follows that 8(V U {p}) < 0.

It remains to show that §(V U {p}) < oy < §Vi). This follows because o; =
8(V U {p}) and V; C V U {p}.

This proves the correctness of the entire algorithm. The proofs of the complexity
bounds are the same as in [1]. We repeat them here, because it indicates where there
is room for improvement.

Using Theorem 1, it immediately follows that the dynamic data structure has size

_:2 2‘) =0 (’fz*‘) = 0(n).

Let P(n) and Q(n) denote the building time and query time of the static structure DS.
Then, P(n) = O(nlogn) and Q(r) = O(logn). In step 1 of the algorithm, we perform
at most 1+ |logn] restricted post-office queries, one in each structure DS(V;,o3).
Therefore, the total time for step 1 is bounded by O(Q(n)logn).

Consider the integer ! in step 2. The time for building DS(V, o1) is P(2"). Suppose
we start with an empty set V and execute a sequence of n insertions. Then a static
structure for 2! points is built at most n/2 times. Therefore, the total time for step 2
during these n insertions is bounded by

logn n
o (Zj ?P(z')) = O(P(n)logn). 2)

Hence, the amortized time of step 2 is O((P(n)/n)logn). We have shown that the
overall amortized insertion time is bounded by

0(Q(n)logn + (P(n)/n)logn) = O((logn)?). 3)
This completes the proof. n
Remark: In Section 2, we mentioned that we do not have to know the value of (V)
if we build a data structure DS(Vj,0;). We said that the algorithm will guarantee

o1 < ¢§(Vi).! This is indeed true in the above algorithm: If we build the structure
DS(Vi, 1), we set oy := § = 6(V U{p}). Since V; C V U{p}, it is clear that o1 < 6(Vi).

Can we improve the insertion time of Theorem 27 In [7], Mehlhorn shows that for
a certain class of algorithms, the logarithmic method of [1] is optimal. That is, if we
take our algorithms from his class, we cannot improve the running time.

Note that ¢ = 1 in this section, see item 2 of the definition of the dynamic data structure.

(4

Consider again step 1 of the insertion algorithm. Let Q'(r) denote the time for
one point location query in the data structure DS, i.e., the time needed to search in
DS for the o-box containing a query point. Then, according to (1),

Q) = 0 (3+Q'(n) +3*(ck + o)) ,

where Q(n) is the total query time of the static data structure DS. The total time for
step 1 is bounded by

0(Q(n)logn) =0 (BkQ'(n) logn + 3%(ck + c)*log n) S (4)

In step 1, we perform 3* point location queries for each i € [0, ..., [log z|]. The query
points, however, are the same for all i. If we denote by Q”(n) the time to locate one
query point in all structures DS(Vi, 0;),0 < i < |logn), we can write (4) as

0(Q(n)logn) = O (3*Q"(n) + 3*(ck +)*logn) . (5)

Note that Q”(n) = O((logn)?). In order to improve the overall insertion time, we shall
improve the bound on Q”(n). In the next sections, we show that we can do this using
fractional cascading. For this purpose, we have to define new orderings for o;-boxes.
For the new data structure, we shall improve the number of comparisons to locate one
point in all static structures from O((logn)?) to O(logn). Unfortunately, because of
the new orderings, each comparison takes O(loglogn) time. In this way, Q"(r) will
be improved to O(lognloglogn). Hence, according to (5), the total time for step 1,
which is the first term in (3), will be improved to O(log nloglogn).

To improve step 2, we shall see that we can use the old structures for the sets
Va, - -, Vi1 to build the structure for Vi in O(2') comparisons. (In fact, to achieve this
we need to maintain more information.) Again, each comparison takes O(loglogn)
time. Thus, we can replace P(n) in the second term of (3) by O(n loglog n), improving
this term to O(log nloglogn), too.

4 Orderings for o;-boxes

Throughout this section, m € IN and 04,0, ... ,0,, is a sequence of real numbers such
that 0; < 0341 and 0341/0; € IN for 0 < i < m. We consider a sequence of o;-grids for
0 <i < m. Note that the o;-grid is a refinement of the 034,-grid, for 0 < i < m. That
is, a 0;41-box only overlaps complete o;-boxes.

Lemma 2 Let A; # B; be two o;-bozes. Let A; C Aiyy...C Ay and B; C By, ... C
B, be the sequences of oy-bozes, i < | < m, containing A; and B;, respectively. Then,
there ezists an indez s € [i...m], such that Ay # By for 1 € [i...s] and A = By for
le[s+1...m].

Proof: Follows from the refinement property of sequence 0,07, ..., 0m. L}
Our searching strategy in Section 6 uses the results of the search in the o;-grid

for the search in the 0;4;-grid. Therefore, the ordering in the o;-grid depends on the
ordering in the 034,-grid.

Definition 3 For 0 < i < m, let <. be the lexicographical ordering of o;-boxes in
the o;-grid. The ordering <; for o;-boxes is inductively defined:

Li=m: a<nb <= a < b,ie., op-boxes are ordered lexicographically.

2. i < m: in this case, <iyq is already defined. Let a and b be o;-boxes, and let A
and B be the 034-boxes such that a C A and b C B. Then, if

(@) A=B: a<;b <= a<iz b
(b) A#B: a<;b < A<in B. L}

Note that if o; = 0341, the orderings <; and <4y are identical.
Lemma 3 For each 0 <i < m, <; is a total ordering on the set of o;-boes.

Proof: By backward induction on i, starting with i = m. First note that, for any o,
the lexicographical ordering <. is a total ordering on the o-boxes in the o-grid.

i =m: in this case, <; coincides with <;.. and is therefore a total ordering.

i < m: let us assume that <;;, is a total ordering on the 0;;;-boxes. We shall show
that <; is a total ordering on the o;-boxes. Let a, b a.nd c be o;-boxes and let 4, B
and C be the 0;4;-boxes ining a, b and c, resp . Of course, <; is reflexive:
a <; a holds because, in this case, A = A and therefore a <; ¢ <= a <., a from
case 2a of Definition 3, and a <. a since <i.; is reflexive.

To show that <; is antisymmetric, assume @ <; b and b <; a. We shall show
that @ = b. If A = B, then again case 2a of Definition 3 applies, and we have
@ Ziez b A b <i; a, and therefore @ = b holds. Otherwise, A # B. Then, case
2b of Deﬂmtxon 3 applies, and we have A Sin B as well as B <;;; A. Since <.
is ic by the induction hypothesis, it follows that A = B, which is a
contradiction.

Now we show that <; is transitive, i.e. a <; b A b <; ¢ => a <; c. First note
that, in any case, a <;b = A <;;; B. Therefore, we have A <;;; B and B <;y; C.
Since <;4; is transitive, A <;y; C holds. If A # C, then a <; c. Otherwise, A = C.
First, let us assume A # B. But then B <;;; C = A and A <;;; B hold, and from
the antisymmetry of <:41, it follows that A = B, contradicting our assumption. Thus
A= B,and then A= B =C. So,a<;b A b<;cimpliesa <jz b A b <pez ¢,
which implies @ <, c. This, in turn, implies @ <; c. At this point, we have shown
that <; is a partial ordering. To show that it is a total ordering, we have to show
that for any two o;-boxes a and b, a <; bor b <; a holds. If A = B, this follows from
a<;ib < a<i.b fA# B, thena <;b < A <;;; B and the induction
hypothesis implies that A <;4; B or B <;4; A holds. |]
Remark: Let 0 < i < j < m. Let a and b be 0;-boxes, and let A (resp. B) be the
o;-box containing a (resp. b). Then a <;b = A <; B.

This fact will be applied later in the following way: consider a list of o;-boxes that
are sorted w.r.t. <;. If we walk through this list, we visit certain o;-boxes. According
to the property just mentioned, we visit these o;-boxes in non-decreasing <;-order.

Lemma 4 Let A; and B; be two o;-bozes, and let A; # B;. Let s be the indez of
Lemma 2, and let A, and B, be the o,-bozes containing A; and B;, resp. Then

A; < By <= A, Si. B..

Proof: Let A; C Aiyy... C Ay and B; C Biyy... C By, be the sequences of o;-
boxes, i < I < m, containing A; and B;, respectively. From Lemma 2, we know that
s exists, and that A; # B, for i <1 < s and 4; = B for [> s. Recursively applying
case 2b of Definition 3, we get

A SiB <= A Sin Bin &= ... &= A, <, B..

I s = m, then A, <, B, <= A, <i. B, from case 1 of Definition 3. Otherwise,
s <m and A,;; = B,y;. From case 2a of Definition 3, it follows that 4, <, B, <
A, <icz B,. In both cases, we obtain 4; <; B; <= A, <i.. B,.]

Lemma 5 Let A; and B; be 0;-bozes. Comparison of A; and B; w.r.t. ordering <;,
i.e. deciding whether A; <; B; holds, can be done in time O(logm).

Proof: Deciding whether A; and B; are equal can be done by simply comparing the
coordinates of the boxes involved. So assume A; # B; from now on.

Let A; C A: C An and B; C By ... C Bn be the sequences of o-boxes,
i < 1 < m, containing 4; and B;, respectively, and let s be the index of Lemma 2.
From Lemma 4, 4; <; B; <= A, <tz B,. Since lexicographical comparison of two
o,-boxes takes constant time, comparing A; and B; can be done in constant time, once
index s is computed. From Lemma 2, we know that A, £ By fori <l < sand 4 = B;
for I > s. For a fixed o;-grid, deciding whether A; and B; are in the same o;-box is
easy: compute the op-boxes ining A; and B;, respectively, and check if they are
equal. Therefore, index s can be computed by a binary search on the grid indices
in the interval [i...m] in time O(logm). It follows that the total time for deciding
A; <; B;is O(logm). []

5 The improved data structure

In this section, we present a variant of the data structure of Section 3. The most
important difference is that we link the structures representing V; and V44, for 0 <
i < |logn]. First, we need two definitions. Let 09,0;...,0, be a sequence of real
numbers, as in the previous section.

Definition 4 For 0 < i < m, b denotes the 0;-boz at infinity. By definition, this
symbolic o;-box has the property that & <; b for any o;-box k. .

In order to link the structures for subsets V; and Vi1, we use a variant of fractional

ding. The data for V; will ially consist of a list of o;-boxes. From
the list of 0;4;-boxes, we shall “copy” a certain fraction of boxes into the list of ;-
boxes, and these copies will have a pointer to their originals in the list of o;41-boxes.
To be able to include the o;4;-boxes that are copied in the list of o;-boxes, we must
find a way to represent o;;-boxes by o;-boxes.

10

Definition 5 Let 0 < i < m. If H is a 0;4;-box, then the o;-copy of H is the
lexicographically smallest o;-box that is contained in H. The o;-copy of b3, is b°. 1

The improved data structure: Let V be the current set of points in k-space, and
let n denote its size. Write n in binary, n = S0o8™ &2, a; € {0,1}. The set V is
partitioned into subsets: for each 0 <i < |_log n), there is one subset V; of size a2
The data structure stores the followi

1.
2.

e

The current closest pair (P, Q) and its distance §.

A sequence 00,03,, O|lgn) Of grid sizes, satisfying 0; < 0341 and 0442/0; € N
for 0 < i < |logn], and §(V) < 0; < 26(V;) for 0 < i < |logn]. (Note that
§(9) = c0.) These values define the orderings <;, 0 <i < |logn].

For each i € [0... [logn]], a list V(3) storing the points of V; in arbitrary order.
For each i € [0... [log n)], an augmented list A(i), storing o;-boxes sorted w.r.t.
ordering <;. These lists are defined as follows:

Let B(3) be the list consisting of all o;-boxes that contain at least one point of V.
(Note that V; and, hence, B(i) may be empty.)

(a) For i = [logn], let C(3) := {b}. Then A(i) is the union of the two
(disjoint) lists B(3) and C(s).

(b) Let 0 <i < |logn|, and suppose that the augmented list A(i+1) is defined
already.
Let C(i) be the list consisting of o;-copies of every fourth element of list
A(i + 1), plus {b°}.
The augmented list A(5) is the union? of the lists B(i) and C(i). The
elements in A(3) are sorted w.r.t. <;.

For each i € [0,..., |log n]], each o;-box h in the List A(:) contains

o a list L} of all points in V; that are contained in k, if h € B(i). (A box
h ¢ B(i) does not contain any point of V(:).) Each point p in L? contains
a pointer to its copy in the list V(3).

o If h belongs to C(3), it contains a bridge-pointer, which is a pointer to the
0;41-box H € A(i + 1) such that k is the o;-copy of H.

o If h belongs to B(3), it contains a nezt_bridge-pointer, which is a pointer to
the smallest (w.r.t. <;) element in A(7) that is not smaller than & and that
contains a bridge-pointer. (Note that, if h € C(3), the nest_bridge-pointer
of k points to h itself.)

For each i € [0,..., |logn]], each point p in the list V(i) contains a pointer to
the oy-box in A(i) containing p.

2The union is set-theoretic, i.e., each element is stored only once.

1

5. For each i € [0,..., |logn], lists V3, V2,... V%, List V7 stores the points of V;
sorted by their j-th coordinates. Each point in the list V7 has a pointer to its
copy in the list V(7).
This induces a layered structure, with levels 0 < i < |logn, where each level corre-
sponds to an augmented list A() containing o;-boxes, together with the other parts
of the structure (lists V7, list V(7)) which are indexed by i. There are links, called
bridges, between level i and level i + 1, for 0 < i < [logn].

Lemma 6 The size of the improved data structure is O(n).

Proof: First, we show that |A(i) \ {5°}| < 2** for each 0 < i < |logn). Let
i = [logn]. Then, [AG)\ {8} = |BG)| < M| = 2 = 2l < 2U~s~1+1 I, for
0 <4 < [logn], |A(i+1)\{63,} < 272, then IA(!)\{’?“)J <IBE)I+ICE)\ {5} <
[Vil + |AG + 1) \ {83, }]/4 < 2 + 2742 /4 = 2%

The closest pair and its distance, the sequence of grid sizes, the lists V(7),0 <i <
|logn], and the lists V7,0 < i < |logn],1 < j < k, use space O(n) altogether. It
remains to show the space bound for the augmented lists A(z). Each A(z) uses space
O(2°), since each record h of A(%) consists of a constant number of fields. Therefore,
the total space used by the lists A(i) is O(SL%E™ 2%) = O(n).]

6 The improved insertion algorithm

Suppose we want o insert point p = (p1, Pz, -,). Like the insertion algorithm of
Section 3, the improved insertion algorithm makes two steps.

1. Update the closest pair.
2. Update the rest of the data structure.

We treat both steps separately.

6.1 Update the closest pair

We have to compute the values of f(p, V;,0;,68) for all 7 such that V; is non-empty.

These values are computed by issuing 3* point location queries with query points
(p1+€1,..., Pk + &), Where ey, ..., e € {—6,0,8},

at all levels of the layered structure. Each query is solved by a fractional cascading-like
search using the bridges that link the levels of the layered structure. More precisely,
each of the 3* query points is located iteratively in levels 0,1,..., [logn]. Once the
3* query points are located at all levels, the values f(p, V;,0:,8) can be computed as
in the query algorithm of Section 2. Then we proceed as in step 1 of Section 3.

Point location in all lists A(:): We give the algorithm to locate one point r =
(ray---,ms) in all lists A(i),0 < i < |logn]. More precisely, for each 0 < i < |logn],

12

let a; be the o;-box that contains 7. Then we find the smallest (w.r.t. <;) o;-box b; in
the list A(3), such that a; <; b;. Given b;, we can easily check if r is contained in it. If
it does, a; = b; and we have located a;. Otherwise, a; is not stored in A(3).

‘We start with i = 0. We do a linear search in the list A(0) and find the smallest (w.r.t.
<o) do-box by such that aq <o bo.

Now let 0 < i < [logn], and assume that we have located b;_, in A(i — 1). Then:

o follow the nezt_bridge-pointer from b;_,, giving element c;_y;
o follow the bridge-pointer from ¢;_; to element & in list A(3);

o Start in & and walk back along the list A(:) until we have reached the smallest
(w.r.t. <;) element b; such that a; <; b;.
The following lemma implies that we indeed have to walk back in the list A(s), once
we are in &.

Lemma 7 For each 1 <i< |logn|, a; <; &.

Proof: Let1<i < |logn|. First note that a;_; <:_; ciy. If a; = &, then a; <; &
Assume that a; # &. Since the query point 7 is contained in a;_; and a;, we have
i1 C a;. Moreover, ¢;_, C &, because c;_y is the oi-copy of &. Then @i i1 cit
implies a; <; &. L}
The next lemma implies that if we start in &, we have to make at most four steps back
to find b;.

Lemma 8 For each 1 < i < |logn], there are at most three elements in the list A(i)
strictly between b; and &.

Proof: If we reach the front of list A(:) within three or less steps backwards from
&, the lemma is clear. So assume z is the o;-box that we reach by going four steps
back in the list A7), starting in &. Since & was copied, z was also copied. Let z_;
be the o;_;-copy of z;. Then, because z <; & and z # &, we have z;; <iy 1.
Since ¢;-; is the first element after b;_; that contains a bridge, we have z;_; <;; b;_;.
As there are no elements in A(i) between a;_, and bi_y, z_; <i-; @, holds, which
implies z; <; ¢;. Now q; <; b; by definition, and we conclude z; <; b;, i.e., b; does not
come earlier than 2; in the list A(7). L}

Lemma 9 The algorithm locates a query point r in all lists A(i) in O(lognloglogn)
time.

Proof: First note that |A(0)] < 3. At level i, we perform O(1) steps, each con-
sisting of a comparison of two o;-boxes. From Lemma 5, each comparison takes time
O(loglog). '
Corollary 1 Step 1 of the improved insertion algorithm takes O(log nloglogn) time.
Proof: Since k is a constant, it follows from (5) that the total time for step 1 is
0(Q"(n) + logn), if Q“(n) is the time to locate one query point in all lists A(i). By
Lemma 9, we have Q“(n) = O(lognloglog).]

13

6.2 TUpdate the rest of the data structure

In this section, § (resp. Snew) denotes the minimal distance at the start (resp. end) of
the insertion algorithm That is, § = §(V) and §ney = §(V U {p}). Let I be such that
ao = -1 = 1,ay = 0. We have to build new structures for the levels

! Note that afterwards, there will be new values oo, ..., 01, and hence, the
ordenngs <o,...,<; will change. For the choice of the new values 00, . - -,01, We use
the following lemma,

Lemma 10 Let 0o, ..., 00gn) be the grid sizes before the insertion of p, and let o :=
00/00/bnew). Then o < o; as well as 0;/c € IN for 0 <i < |logn|, and 0 < 260,

Proof: First we note that 8., < §. From the definition of the improved data
structure, § < oo. Thus, |0o/8pew| = 1, which implies ¢ < 0o. Since oo < o; for
any 0 < i < |logn], we have o < o;. Similarly, as 0o/ € IN by definition and
:/0is € IN,0 <i < [logn, it follows that o;/o € IN.

Let g 1= |00/Spew) a0d 7 := 0o — qbney- Then 0o = qénew + 7,0 < 7 < bpe, and
g2 1. Now, 0 = (q8new +7)/q = Snew + /a0 < new + new/q < 2 8news]

Define o := 00/ |00/bnew|. For 0 < i < |logn], we define the ordering <! for o-boxes,
as follows.
Let a and b be o-boxes and let A and B be the o;-boxes containing a and b, respectively.
1. fA=B,thena<!b <= a <jez b.
2. HA#B,thena</b < AZ;B.
Roughly speaking, this defines the “ordering of o-boxes in the 0;-grid”. In Lemma 3,

it was shown that <; is a total ordering. Using a proof that is completely analogous
to that of Lemma 3, it can be shown that </ is a total ordering on the o-boxes.

Now we discuss the algorithm updating the levels 0,1,...,1. We distinguish two cases.
1= [logn|+1, we set V; := {p}UVoUWAU...UViy, Vg i= V; = ... 1= Vi_y := D and
define 0 1= urus 03 = Suvmr. -+ 91 = boew. Them, we build the Tists Vf,1 < 7 < k
and the list V(l). Finally, we build the augmented list A(l), where o-boxes are ordered
lexicographically. By iteratively copying every fourth element, setting up bridge- and
nezt_bridge-pointers etc., we build A(I —1),...,A(0). This is the same procedure as
step 3 of the algorithm for the case [< [log 7, except that we already have A(I) here.
Since the boxes are ordered lexi hically in all lists, ison of two boxes takes
0(1) time, and therefore we can surely implement this rebuilding in O(nlogn) time.

Otherwise, | < |logn]. Since ajugn) = 1, We have I < |logn] — 1. In this case, the
update algorithm makes three steps:

I Foreach0<i<l:

(a) Construct the list B'(i) consisting of all o-boxes that contain at least one
point of V;. This list is sorted w.r.t. <!

14

(b) Transform B'(:) into the list B”(i) storing the same elements, but sorted
w.rt <ig.

Note: After step I, the lists B(0), B'(1), ..., B"(I— 1) store o-boxes, all sorted
w.r.t. the same ordering <{,,. This will become the new ordering <.
IL Let V;:= {p} UV UV, U...UViy, and Vo := V} 1= ... := Vj_y := 0.
For each j =1,2,...k:
(a) Merge the lists {p}, V¢, V7, ..., V7, into V{'.
(b) Merge the lists {p}, V(0), V(1),..., V(I — 1) into V(1).
(c) Merge the lists B”(0), B"(1),..., B"(l—1) and the o-box containing p into
B(l).

(d) Define 0 := 0,01 :=0,...,01:=0.

Note: From Lemma 10, 06 < 01 < ... < Ollogn] a0d pewr < 05 < 26 <
26(V;). Note that, according to the changes of the o;’s, the orderings <o,...,<;
change, too.

The list B(I) consists of all o;-boxes that contain at least one point of V;, sorted
wrt =<

At this point, we have updated the items 2, 3 and 5 of the definition in Section 5.
As item 1 (the closest pair itself) was already updated in 6.1, only item 4 is
left. Concerning that issue, we have already computed the new list B(l), and,
implicitly, also the lists B(j) for 0 < j < [because we know that they are empty.

III. Construct the augmented lists A(1), A(l — 1),..., A(0).
After this short description, we shall discuss the steps in more detail. Step I iteratively
executes steps Ia and Ib, for 0 < i < I.
Step Ia:

o Walk along the list A(%), stripping off all elements that do not belong to B(3).
The list B(7) is ordered w.r.t. <.

© Walk along the list B(i). For each o;-box h in this list: walk along the points in

L? and determine all o-boxes that contain at least one point of L?. (Note that,
according to Lemma 1, each list L? contains O(1) points.) Sort these (constant
number of) o-boxes lexicographically. The elements of the various L retain the
pointers to their copies in the list V(i) and, moreover, each point p € V/(5) does
not point to the o;-box h any more, but to the o-boz containing p.

This gives the list B'(i) sorted w.r.t. <}.

Step Ib:

o Initialize the list R to the empty list. R will be a list of o74;-boxes.

15

o Walk along the elements of B/(i). For each o-box h in this list: If is not
contained in the o141-box at the end of R, we add the o14;-box containing h at
the end of R. Note that this can only happen if we “enter” a new oy41-box, i.e. b
cannot be contained in one of the previous g141-boxes in R, see the remark after
Lemma 3. By now, h is contained in the o4;-box at the end of R. We give k a
pointer to this box.

Note: In this way, the list R contains 0741-boxes, sorted w.r.t. <p4;.

e Forj=1,2,...k
Walk along the list V7. For each point g in this list:

— follow the pointer to the copy of g in the list V(i);
— follow the pointer to the o-box in B'(i) that contains g;
— follow the pointer to the o74;-box in R that contains g¢;

— store g at the end of the list R}, and give this copy of ¢ a pointer to the
copy of g in the list V(3).

Result: In step Ia, we obtained a list R of oy4;-boxes, sorted w.r.t. <iy;. Now
we have, for each o11-box h € R, the lists R?,j = 1,2,...k, which contain the
points of V; N &, sorted by their j-th coordinates. (By V; Nk, we mean the set of
points in V; that are contained in h in the sense of Definition 2.) Note that the
set V(i) Nk and the lists R} are connected by pointers in the same way as the
set V(i) and the lists V7, for j = 1,2,...k.

o For each o14;-box h in R: construct a list of o-boxes that contain at least one
point of V; N, sorted lexicographically. We call this list L(k). We construct
lists Ly(h), L2(R), . .., Li(k) iteratively, where L;(k) is the list of j-dimensional
o-boxes that contain at least one point of V(i) N k, sorted lexicographically
w.r.t. dimensions 1,2,...j. Each point p € V(i) Nk points to the j-dimensional
o-box h containing it. We say that a point p = (pi,...,px) is contained in a
j-dimensional o-boz, if (py,...,p;) is contained in the o-box belonging to the
o-grid of j-dimensional space. Clearly, Li(k) = L(h).

By walking through the list R¥, grouping the points of V; N & in slabs of length
o according to their first coordinates, we get Ly(h).

Assume we have constructed L;_;(h). We show how to construct L;(k).

For each of the elements t € L;_y(h), initialize a list L(£) to the empty list. L(z)
will be a list of j-dimensional o-boxes, ordered w.r.t. to dimension j. Walk along
the list R}. For each point in this list:

— follow the pointer to the copy of z in V(i);
— follow the pointer to the (j — 1)-dimensional o-box containing z;

— if z is not contained in the j-dimensional o-box at the end of L(t) — note
that it cannot be contained in one of the previous boxes in L(t) —, we add
the j-dimensional o-box containing z at the end of L(t);

16

— give z a pointer to the last element of L(t).

Then, list L;(k) is obtained by concatenating the lists L(t) for each t € L;_,(h),
walking through L;_;(k) from head to tail. Finally, we concatenate the lists L(k)
for each 0141-box k in list R by walking through R from head to tail. In this
way, we obtain a list of o-boxes covering the points in V; which is sorted w.r.t.
<i41- This list is called B”() and is the final result of step Ib.

Step II: We consider the process of merging the lists {p}, V(0),V(1),...,V(I—1)
into the new list V(l). The other merges are similar.

1. V':=merge({p}, V(0)); i:=1;

2. while i <l do V':=merge(V',V(i)); i:=i+1 od;

3. V() =V,

It follows that the total number of comparisons used by these merging processes is
O(XiZ} 2°) = 0(2"), which is linear in the size of V;.

Step ITI: We show how the list A(i) can be constructed, given A(i + 1). Walk along
the list A(i + 1), and construct C(:), the list of o;-copies, ding to the definiti
of the improved data structure in Section 5. For each element in C(i), we set the
bridge-pointer to the resp. original in A(i + 1).

Then we merge B(i) and C(:). During this merge, we keep in mind the elements
of B(i) between two consecutive elements of C(:). Having reached such an element
z € C(i), we let the nezt_bridge-pointer of the bered el point to z. This
completes the construction of A(i).

Lemma 11 Step 2 of the improved insertion algorithm correctly maintains the data
structure and runs in amortized time O(log n loglog).

Proof: Let P'(2') be the time needed by step 2 of the improved insertion algo-
rithm when the set V; is constructed. From the description above, it follows that the
algorithm is correct and makes a linear number of steps, where each step takes time
O(loglog n). Therefore, P'(2') = O(2'loglog n) for I < |log n] and P'(2) = O(nlogn)
for I = |logn] + 1. Note that we never have to build a set Vjjogn). Similarly to (2), it
follows that the amortized time for step 2 is bounded by

logn)+1 llogn)-1
ol-| ¥ 2P(z') =0(logn+ Y loglogn| = O(lognloglogn).
=0

n =
=0 |

‘We combine Lemma 6, Corollary 1 and Lemma 11. This gives the final result:

Theorem 3 There ezists a data structure that maintains the closest pair in a set of n
points in k-space in O(log nloglog n) amortized time per insertion. The data structure
uses O(n) space.

Corollary 2 The closest pair in a set of n points in k-space can be computed on-line
in O(nlognloglogn) time using O(n) space.

17

7 Maintaining the closest pair under semi-online
updates

In this section, we extend the results of Section 3 to semi-online updates. Recall that
a sequence of updates is called semi-online, if the insertions are on-line, but with each
inserted point, we get an integer d indicating that the point will be deleted d updates
from the moment of its insertion.

In [5, 11], the following general result is proved. Let g: T x T — IR be a function
and let V be a subset of T of size n. Suppose we have a static data structure D
that stores V, such that for any p € T, the value min{g(p,q) : ¢ € V,p # g} can be
computed in Q(n) time. Suppose this static structure has size S(n) and that it can
be built in P(n) time. Let m = |logn].

Then there exists a data structure of size O(S(r)) that maintains a partition
Vo, Vi, ..., Vi of V, values min{g(p,q) : ¢ € V;,p # ¢} for 0 < i < m, p € V,
i< j <m, and the value

[pEV‘ -2‘<m qev, 2 9(.9), ®©
in O((P(n)/n)logn + Q(n)logn + (log n)’) worst-case time per semi-online update.

This data is a of the one obtained by apply-mg the loga-
rithmic method of [1]. The main difference is that values min{g(p,q) : g € V;,p # g}
are maintained.

We want to apply this result to the closest pair problem. In [5, 11, the authors take
9(p,g) = d(p, g) and for D they take a data structure for the static post-office problem.
Then, the value of (6) is equal to §(V), the minimal distance in V. The complexity of
the resulting update algorithm, however, is very high in the higher-dimensional case.

In this section, we show that instead of D, we can use the data structure DS for
the restricted post-office problem of Section 2. This will improve the update time
considerably. Let the function g be defined by

d(p,q) ifd(p,q) <5,
9(p9,9) :={ 24 Lthgw&

Note that in our case, the function g depends on three variables. Recall the definition
of the function f, see Section 2.

Lemma 12 Let V be a set of points in k-space and let Vo, Vi, ..., V,n be a partition
of V. Then

Zip min min f(p,V;,8(V;),6(V3) = (V). M
Proof: Let 0 <i<m,p€ V; and i < j < m. Using the definition of the function f,
it immediately follows that i(V) < f(p,V;,8(V;), 8(V;)). Sincei, p and j are arbitrary,
it follows that §(V') is at most equal to the left-hand side in (7).

18

Let pand g be a closest pairin V. Let i and j be indices such that p € V; and g € V.
Assume w.lo.g. that i < j. Then, d(p,q) = 6(V) < &(V;), and f(p, V,8(V),8(V)) =
d(p,q) = 8(V). It follows that there is one term on the left-hand side of (7) that is at
most equal to 6(V). Therefore, the minimum of all these terms is surely at most equal
to 6(V). [

It immediately follows from Lemma 12 that
min 9(p,q,6(V;)) = 6(V)- (®)

min min min

0Sitm peVi iSi<m geV;
Theorem 4 There ezists a data structure that maintains the closest pair in a set of
n points in k-space in O((logn)?) worst-case time per semi-online update. The size of
the data structure is O(n).

Proof: First note that the closest pair of a set V' of size n can be computed (off-
line) in O(n log) time, using linear space, see [2, 8, 17]. We saw in Theorem 1 that
the data structure DS(V,8(V)) has size S(n) = O(n) and can be built in O(nlogn)
time, if 6(V) is given. Hence, DS(V,6(V)) can be built in P(n) = O(nlogn) time.
A query “given point p, compute min{g(p,q,8(V)) : ¢ € V,p # q}” can be solved in
Q(n) = O(log n) time, because

min{g(p,4,6(V)) : g € V,p # ¢} = f(p, V,8(V), (V).
Apply the result of [5, 11] mentioned above. Then we obtain a data structure of size

0(S(n)) = O(r) that maintains — among other things — the minimal value of the
function g in

O((P(n)/n)logn + Q(r)logn + (logn)*) = O((logn)?)

time per semi-online update, in the worst case. By (8), the minimal value of g is equal
to the minimal distance of the entire set V. The algorithm can easily be ded
such that it not only maintains the minimal distance, but also a pair of points having
this minimal distance. [|

Remark: If we apply the results of the previous sections to the data structure of
Theorem 4, then the update time still remains O((logn)?). There are two reasons
for this. First, if we build a structure DS(V;,8(V;)), we have to compute the value
of §(V;). (In the previous sections, we took a value o; approximating §(V;).) It takes
O(|V;|log |Vi]) time to compute 6(V;). Second, the data structure of Theorem 4 main-
tains more information than that of the previous sections. More precisely, values
min{g(p,q) : ¢ € V;,p # g} for 0 < i < m,p € V;,i < j < m, are maintained.
Maintaining these values takes ©((log n)?) amortized time.

8 Concluding remarks

We have shown how the closest pair in a set of n points in k-space can be computed
on-line, in O(nlognloglogn) time. We started with a static data structure for the

19

restricted yost oﬂice problem Then, we applied the logarithmic method to it. Next,

we fr: ding in a trivial way to a simple form of higher-
dimensional fractional cascading. It would be mterestmg to know if this extended
method can be applied to other higher-di ional query probl
‘We have shown that fractional cascadmg can be appl:ed to improve the query t:me
ofa data. tructure that is obtained from the 1 hmic method for d
i bl The resulting algorithm is faster than the lower bound proved for

Mehlhorn’s class of algorithms [7]. A natural question is whether this technique can
be applied to other problems as well.

It is an open problem whether the loglog » term in our time bounds can be removed.
This term is the time needed to compare two o;-boxes in the ordering <;. Note that we

really need the orderings to prove the and the running time for the point
location algorithm. However, it might be possible to define other orderings that are
computable in constant time, while retaining the crucial properties of the order:

given in this paper.

Finally, it would be interesting to improve the update time for semi-online updates.
Maybe the time bound can be improved for off-line sequences of updates. (Note that
a sequence of off-line updates is a special case of a sequence of semi-online updates.)

References

[1] J.L. Bentley. Decomposable searching problems. Inform. Proc. Lett. 8 (1979), pp.
244-251.

[2] J.L. Bentley and M.I. Shamos. Divide-and- in multidi ional space.
Proc. 8th Annual ACM Symp. on Theory of Computing, 1976, pp. 220-230.

[3] B. Chazelle and L.J. Guibas. Fractional cascading I: A data structuring technigue.
Algorithmica 1 (1986), pp. 133-162.

[4] M.T. Dickerson and R.S. Drysdale. Enumerating k distances for n points in the
plane. Proc. Tth ACM Symp. on Computational Geometry, 1991, pp. 234-238.

5] D. Dobkin and S. Suri. Dynamically computing the mazima of decomposable func-
tions, with applications. Proc. 30th Annual IEEE Symp. on Foundations of Com-
puter Science, 1989, pp. 488-493.

(6] H. Edelsbrunner, L.J. Guibas and J. Stolfi. Optimal point location in a monotone
subdivision. SIAM J. Comput. 15 (1986), pp. 317-340.

[7] K. Mehlhorn. Lower bounds on the efficiency of transforming static data structures
into dynamic structures. Math. Systems Theory 15 (1981), pp. 1-16.

[8] F.P. Preparata and M.I Shamos. Computational Geometry, an Introduction.
Springer-Verlag, New York, 1985.

[9] J.5. Salowe. Shallow interdistance selection and interdistance enumeration. To
appear in Proceedings WADS, 1991.

20

[10] M.I Shamos and D. Hoey. Closest-pair problems. Proc. 16th Annual IEEE Symp.
on Foundations of Computer Science, 1975, pp. 151-162.

[11] M. Smid. Algorithms for semi-online updates on di ble problems. Proc.
2nd Canadian Conf. on Computational Geometry, 1990, pp. 347-350.

[12] M. Smid. Maintaining the minimal distance of a point set in less than linear time.
Algorithms Review 2 (1991), pp. 33-44.

[13] M. Smid. Dynamic rectangular point location, with an application to the clos-
est pair problem. Report MPI-I-91-101, Max-Planck-Institut fir Informatik,
Saarbriicken, 1991.

[14] M. Smid. Maintaining the minimal distance of a point set in polylogarithmic
time (revised version). Report MPI-1-91-103, Max-Planck-Institut fir Informatik,
Saarbriicken, 1991. See also: Proc. 2nd Annual ACM-SIAM Symp. on Discrete
Algorithms, 1991, pp. 1-6.

[15] M. Smid. Rectangular point Iocatwn and the dynam:c cIosest pmr problem. Sub-
mitted to Second Annual I on Al Taiwan.

[16] K.J. Supowit. New technigues for some dynamic closest-point and farthest-point
problems. Proc. 1st Annual ACM-SIAM Symp. on Discrete Algorithms, 1990, pp.
84-90.

[17) P.M. Vaidya. An O(nlogn) algorithm for the all-nearest-neighbors problem. Dis-
crete Comput. Geom. 4 (1989), pp. 101-115.

21

