MAX-PLANCK-INSTITUT
FUR
INFORMATIK

Fast Parallel Space Allocation,
Estimation and Integer Sorting

Torben Hagerup

MPI-1-91-106 June 1991

/ Z N ":
=

_INFORMATIK

Im Stadtwald
66123 Saarbriicken

Germany

Fast Parallel Space Allocation, Estimation and Integer Sorting

TORBEN HAGERUP *

Max-Planck-Institut fiir Informatik
W-6600 Saarbriicken, Germany

1 Introduction

We show that each of the following problems can be solved fast and with optimal speedup with
high probability on a randomized CRCW PRAM using O(n) space:

(1) Space allocation: Given n nonnegative integers ,...,2n, allocate n blocks of consecutive
memory cells of sizes z1,...,2x from a base segment of O(3°7., #;) consecutive memory cells;
(2) Estimation: Given n integers in the range 1..n, compute “good” estimates of the number of

occurrences of each value in the range 1..n;

(3) Integer chain-sorting: Given n integers zy,...,2, in the range 1..n, construct a linked list
containing the integers 1,...,n such that for all #,j € {1,...,n}, if i precedes j in the list, then

2 < 25
The running times achieved are O(log*n) for problem (1) and O((log*n)?) for problems (2) and (3).
Moreover, given slightly superlinear processor and space bounds, these problems or variations of
them can be solved in constant expected time.

Our algorithm for space allocation applies equally well to the allocation of consecutively
numbered processors, or of any other resource that comes in consecutively numbered units. It is used
as a crucial subroutine in our algorithms for problems (2) and (3), and we expect it to have numerous
other applications. Variants of the estimation problem also crop up quite frequently. Bast and
Hagerup (1991) apply an algorithm similar to ours to the problem of parallel hashing. Chain-sorting
is simply standard sorting with a nonstandard output convention, which was used previously by
Gavril (1975) in the context of merging. It may be viewed as standard sorting “minus” list ranking,
since chain-sorting followed by list ranking of the resulting list is equivalent to standard sorting.
The known lower bounds on parallel integer sorting apply to list ranking, but not to chain-sorting,
which is one reason for considering the latter problem: If chain-sorting constitutes the “essence”
of sorting, as indeed we feel, what happens if it is isolated from list ranking? In addition to the
results mentioned above, we also describe a simple algorithm for chain-sorting in constant expected

* Supported in part by the Deutsche Forschungsgemeinschaft, SFB 124, TP B2, VLSI Entwurfs-
methoden und Parallelitit, and in part by the ESPRIT II Basic Research Actions Program of the
EC under contract No. 3075 (project ALCOM).

time with O(nlogn/loglogn) processors. As a rather trivial by-product of our fast chain-sorting
algorithms, we are able to improve the best previous result on (standard) randomized sorting of n
integers in the range 1..7.

From a different point of view, the present paper explores the power flowing from a combination
of three new techniques in algorithm design and analysis: First, the “log*n” technique introduced by
Raman (1990) and developed in its full potential by Matias and Vishkin (1991). Second, randomized

» p for estimating various ities crudely, but rapidly. And third, the analysis

of randomized algorithms using martingale theory, which is not new, but has in the past not been

used as often as it deserves.
The structure of the paper is as follows: After some preliminaries in Section 2, Section 3
introduces various concepts under the general heading of “scattering” and lists some of their

basic properties. Section 4 defines and solves the interval allocation problem, our i of
problem (1) above, while Section 5 describes our best algorithm for problem (2). Section 6 is
devoted to the chain-sorting problem (3), and Section 7 studies the consequences of allowing slightly

superlinear processor and space bounds.

2 Preliminaries

The present paper employs different variants of the CRCW PRAM, definitions of most of which
can be found in (Chlebus et al., 1989). While we strive to implement each algorithm in the weakest
possible model, we expect the distinction between different variants to be of little concern to most
readers, and we rarely go through the not in all cases trivial arguments needed to show that a
particular i can be i ina i model. In all cases it will be obvious that
the standard ARBITRARY PRAM can be used. The word “processor” is often used not in the sense

of a physical processor, but rather to designate a logically distinct task, of which several may be
executed by a single physical processor. We speak of virtual processors when we want to emphasize
this point of view.

In order to make many proofs more readable, we make extensive use of the notion of a negligible
probability. What constitutes a negligi ility is different from case to case. Is the goal, e.g.,
to show that some event occurs with probability 2~ then in the proof all probabilities of the
) can be ignored. An event that occurs with high probability (w.h.p.) is the complement
of an event of negligible probability. We often tacitly assume that such events always occur.

form 27"

Lemma 2.1 states various inequalities commonly known as Chernoff bounds. For proofs see
(Hagerup and Riib, 1990). Lemma 2.2 is folklore.

Lemma 2.1: For every binomially distributed random variable S,

(a) For all € with 0 < € <1, Pr(S > (1+ €/ E(S)) < e~ 'E(9)/3. In particular, Px(S > 2E(S)) <
e E(S)/3,

(b) For all € with 0 < ¢ <1, Pr(S < (1 -)E(S)) < e~ ()2, In particular, Pr(S < E(S)/2) <
e—E(S)/a;

(c) For every z > 0, Pr(s > z) < (<2

Lemma 2.2: Let m € N and 0 < py,...,pm < 1, and let Xi,..., Xy, be 0-1 random variables with a
joint distribution. Suppose that

Pr(Xi=1|Xi =21,...,Xim1 = 2im1) < pi,

fori=1,...,m and for all zy,...,z;_; for which the conditional probability is defined. Then for all
2 €R, P(ER, X: > 2) < Pr(TQ
with Pr(Y; = 1) =p;, for i = 1,.

Y; > z), where Yi,...,Y,, are independent 0-1 random variables

,m.

The following fact is implied by Azuma’s inequality (Bollobss, 1987). In later applications, we
write “by a Chernoff bound” instead of “by Lemma 2.1”, and “by a martingale argument” rather
than “by Lemma 2.3".

Lemma 2.3: Let n €N, let Zi,...,Zn be independent random variables with finite ranges, and let
S be an arbitrary real function of Zi, ..., Z» with E(S) > 0. Assume that S changes by at most ¢ in
response to an arbitrary change in a single Z;. Then for every z > 2E(S),

Pr(S > z) < em= /"),

Lemma 2.4: For every fixed § > 0 and for p > n, the prefix sums of n numbers, each of absolute
size at most 20057)'™"

ToLERANT PRAM.

, can be computed in O(logn/loglogp) time on a p-processor COMMON or

Proof: This is a generalization of a result by Ragde (1990, p. 747), proved in essentially the same
way. U

Corollary 2.5: For every fixed § > 0 and m = (logn)°(*), given m nonnegative integers z1,...,Zm,
it is possible, on a COMMON or TOLERANT PRAM using constant time, O(n?) processors and O(n’)
space, to compute m nonnegative integers ¥y ,...,ym such that

() Fori=1,...,m—1, yiy1 — % > zi;

(2) ym S 4T, 200

Proof: Compute R = max{z; : 1 <i < m} and for i = 1,...,m, let z} be the smallest multiple of
[R/m] no smaller than z;. Apply Lemma 2.4 to z}, ..., !, after observing that 7, zf <437, 2
and that each z can be expressed in O(logm) bits (taking [R/m] as a unit). N

Lemma 2.6 (Eppstein and Galil (1988, Theorem 4(c))): For every 7 with 1 < 7 < n, the maximum
of n integers, each of absolute size °(), can be computed on a CoMMON or TOLERANT PRAM
using O(r) time, O(n/r) processors and O(r) space.

Corollary 2.7: For every 7 with 1 < 7 < n, the first 1 in a bit vector of size n can be computed on a
ComMoN or TOLERANT PRAM using O(7) time, O(n/7) processors and O(n) space.

The lemma below was essentially shown by Cole and Vishkin (1989, Section 3.2).

Lemma 2.8: For every m € N and every 7 with logn/loglogn + m < 7 < n, n integers in the range
1..m can be sorted on a CoMMON or TOLERANT PRAM using O(r) time, O(n/7) processors and
0(n) space.

3 Scattering

The fundamental intuitive meaning of a scattering is that each of a number of objects is placed
randomly and independently of other objects in one of a number of cells placed in a row. In this
paper we are interested in the resulting fullness of the row, i.e., in the ratio of occupied cells to the
total number of cells. Since this is clearly a random variable that tends to take on larger values if
more objects are scattered, it provides a (very crude) basis for estimating the number of scattered
objects. By letting each object participate in the scattering with some suitable probability instead
of with ility 1 as above (a ditional ing), we can adjust the “region of sensitivity”
of a scattering according to need. A graduated conditional scattering (GCS) takes this idea one
step further by providing a whole array of conditional scatterings, each with a different associated
probability of participation, which gives us a way to make more substantial statements about the

number of scattered objects. Graduated conditional were introduced in (Hagerup and
Radzik, 1990), although not for the purpose of estimation.

Our analysis of the outcome of a GCS is mostly limited to determining the last (ie.,
lowest-probability) scattering to satisfy some property. Two properties are relevant to us: The row of
a scattering being full (all cells are occupied); and the row being at least half full. It turns out that

testing according to full rows is computationally easier, but leads to less accurate estimates. This is

expressed more precisely in the lemmas below.

Definition: For s € N and 0 < p < 1, a conditional scattering with probability p and range s is a
random experiment carried out by a set U of elements as follows: Each element u € U, independently
of other elements, chooses a random number X,, with Pr(X, = 0) = 1 — p and Px(X, = i) = p/s,
for i =1,...,s. An element u € U is said to occupy the value i if X, =4, for i = 1,...,s, and the
fullness of the scattering is k/s, where k = [{X,:u € UN\{0}| = |{i: 1 < i < s and i is occupied by
at least one element of U}|.

Lemma 3.1: Let m,s € N and 0 < p < 1, and let N be the number of occupied values in a

1 ing with ility p and range s carried out by a set of m elements. Then for

every integer k with 0 < k < s,

(2) Px(N < k) < (7)2mek/e-1);

(b) Pr(N < s/2) < 2°~mP/2;

(c) Pr(N < s) < s-27m0/%;

(d) If p = 1, then Pr(N < min{s/(4e),m/2}) < 2°™;
(e) Px(N > k) < (mpe/k)*.

Proof: By elementary combinatorics. W

Definition: For r,s € N, a graduated conditional scattering (GCS) with range 7 X s is a collection
S ={51,...,5,}, where 5, called the ith row of S, is a conditi ing with probability 2~
and range s, for i = 1,...,7. For 0 < f < 1, define the last f-row of S as 0 if none of Si,...,S, has
1<i<rand ; has fallness > f}.

fullness > f, and otherwise as max{

4

Lemma 3.2: Let m,7,s € N and let L be the last 1/2-row of a GCS of m elements with range X s.
Let M = 2%s and put ¢; = 1/(27¢) and c; = 12. Then

(a) f m < e1s, then Pr(L > 0) < 27%

(b) If m > ¢15, then Pr(m < ¢y M) < 27%

(¢)Pr(L > 0and m < e, M) < 27%

(d) I r > |logm], then Pr(m > ¢, M) < 27°.
Proof: If L > 0, the fullness of row L is at least 1/2. Hence by Lemma 3.1(e), for every I > 0,

2

Pr(L>1)< i (Z‘Lf;)/z < (@)'/ . o)

&m

Likewise, if L < r, the fullness of row L + 1 is less than 1/2. Hence by Lemma 3.1(b), for every I < r,
Ll —i-3 —1-2

Pr(L <I) <minf1,) 2™ T} g priromaT (%)

By (x), Pr(L > 1) < (2‘em/s)*/2, which for m < ¢;s is at most 2=*. This shows (a). To verify (b),
apply () with I = log(m/(c1s)) > 0 to obtain

25-lem\ */?
Pr(m < aM)=Pr(L>1)< (5) = (Pae)/? =

(c) follows immediately from (a) and (b). Finally apply (x+) with { = log(m/(czs)) < r to obtain

Pr(m > ;M) =Pr(L <) < rtl-m27'"? _ gatl-cas/t _ gl-2s <27,

which shows (d).
In the following we shall consistently use ¢, and c, with the same meaning as in Lemma 3.2.

Lemma 3.3: Let m,r,s € N and a > 0 and let L be the last 1-row of a GCS of m elements with
range r X s. Then if M = 2%s,

(a) Pr(L = r) < (27"em/s)’;

(b) Pr(M > max{s,am}) < (2e/a)’;

(¢c) Pr(L <7 and m > aM) < s-2'79/2,

Proof: Similar to that of Lemma 3.2. §

Lemma 3.4: Let 7,5 € N and suppose that one (virtual) processor is associated with each element of
some set U. Then the last 1-row of a GCS of U with range 7 X s can be determined in constant time
(a) on a Corrisiont PRAM using additional processors and O(rs) space;

(b) on a CoLrisioN PRAM using r additional and O(rs) initialized space.

Proof: Associate an r X s array A and an r X 1 test vector w with the GCS. Each processor
associated with an element of U chooses a random cell A[I,J], where Pr(I = i,J = j) = 2=/, for

ly (with whatever is

i=1,...,rand j = 1,...,s, and distinct act i

left over, processors do nothing). In other words, each processor chooses a random row, row i being
chosen with probability 2%, and then picks a cell at random from the chosen row. Next w([i] is set to
1 exactly if some processor chose a cell in row i, for i = 1,...,7. Each processor then checks that
some processor chose the right neighbor of the cell that it chose itself (view the leftmost cell as the
right neighbor of the rightmost cell); if not, it clears the relevant test cell, indicating that the row is
not full. For part (b), this is trivial. For part (a), since initializing A might be too expensive, the
check is carried out by letting each processor inspect the right neighbor of its chosen cell before and
after adding 1 (say) to its own cell. Finally Corollary 2.7 is used to determine the last 1 in the test

vector. W

Lemma 3.5: Suppose that one (virtual) processor is associated with each element of some set
U. Then for all constants K,§ > 0, the last 1/2-row of a GCS of U with range r X s, where
7,5 < (logn)¥, can be determined on a TOLERANT PRAM using constant time, O(n’) additional

processors and O(n?) space.

Proof: By Lemma 2.4 and Corollary 2.7. N

4 Interval allocation

Definition: For n € N and dy,dy,s € R, the incomplete compaction problem of size n and with
parameters dy — d; is the following: Given n bits z1,...,2n with 3%, 2; < dy, compute n
nonnegative integers g1 ..., yn such that

(W) Hi:1<i<nz;j=1andy; =0} <dy

(2) For 1<i<j<m,ify; #0, then y; % g5

(8) max{y; : 1 < j <n} =0(s).

A natural interpretation of the incomplete compaction problem is that (z1,...,2,) is a bit vector
representation of a set of at most d; active elements, scattered over an array of size n, the task
being to place all except at most d; of these in an array of size O(s). We choose our terminology

accordingly.

Lemma 4.1: For all d > 0 and 1 < 7 < 7, incomplete compaction problems of size n and with
parameters d*/* — 0 can be solved on a (deterministic) ToLERANT PRAM using O(r) time, O(n/7)

processors and O(n) space.

Proof: The result was proved by Ragde with 1/4 instead of 1/5 for the stronger ARBITRARY PRAM
(Ragde, 1990, Theorem 1). Our proof is very similar, but uses a simulation of ARBITRARY PRAMs
by ToLERANT PRAMs with more processors, as described in (Chlebus et al., 1989). N

Matias and Vishkin (1991) gave an algorithm for i 1 fon of greater bili
than Ragde’s. We describe an algorithm essentially identical to theirs together with a strengthened
analysis that achieves a better probability bound. Consider the following experiment, which occurs

as a crucial subroutine of the algorithm: v copies of each of m elements scatter over an array of size

6

s. An element succeeds if at least one of its copies does not collide with other copies. The following
lemma provides useful bounds on the number of unsuccessful elements.

d d over

Lemma 4.2: Let m,v,s € N and let Zy 1,..., Zm,, be ind and

{1,...,s}. Fori=1,...,mand j =1,...,v,let

1, if Zo;
0, otherwise.

;.5 for some (i,5) # (i,4);

Finally let § = $7%, [T}, X:j. Then
v/2

@B <m (X))

(b) For every z > 2E(S), Pr(S > z) < == /(32mv),

Proof: (a) For j =1,...,v, define

X =

g with either ' < m or (i = m A §' < j);

0, otherwise.

{ 1, if Zmj = Zu z for some (i',5')

In other words, X} = 1 iff Zm,; has the same value as a lexicographically lower-numbered variable. It
is not difficult to see that }35_; Xm,; < 2305, X}. But

Pr(Xj=1|X{=21,...,X}j_; =2j1) < —

for j =1,...,v and for all (21,...,2;-1) € {0,1}"! with Pr(X{ = 21,..., X}_; = zj—1) > 0. Hence
by Lemma 2.2 and Chernoff bound (c),

2emv"/?
1
E >
Pr j‘X, v/2 <()

and

E(S}:m.E(ﬁxm,j) — (Zx)

i=1 i=1

v o2
<m-Pr (Zx;gu/z) sm<2’3ﬂ) .
=

(b) S is easily seen to satisfy the conditions of Lemma 2.3 with n = mv and ¢ = 2, which shows (b).

Theorem 4.3: There is a constant ¢ > 0 such that for all d,v,7 € R with 1 < d,7 < n and
1< v < logd, incomplete compaction problems of size n and with parameters

d d

W ot 25
can be solved on a ToLERANT PRAM using O(r) time, O(n/r) processors and O(n) space with
probability at least 1 — 27,

Proof (adapted from Raman (1990)): Observe first that it suffices to describe a basic algorithm
whose failure probability is bounded by 2-4*, for some fixed ¢ > 0. To see this, note that if
d > n'/!9, then the failure probability incurred by the basic algorithm is sufficiently small, whereas if
d < n!/1°, then the active elements can be moved to an array of size at most /7 using Lemma 4.1,
after which the basic ithm can be applied independently [/7 times, each trial failing with
probability at most 1/2. The basic algorithm is described below.

Without loss of generality assume that v is an integer (otherwise replace v by |v] and apply the
algorithm twice). Also assume first that v < & logd.

Step 1: Scatter the active elements over an array of size [Kd/v], where K = [217¢]. Let D be the
set of colliding elements.

Step 2: Divide {1,...,n} into [n/v®] clusters C1,...,Cfn/us) of size v° each, except for one cluster,
which may be smaller. For i = 1,...,[n/v®] and using the algorithm of Lemma 4.1, attempt to
compact the elements of C; N D into an array of size v* (this will succeed if |C; N D| < v). Let F; be
the set of active elements in clusters for which the compaction fails.

Step 3: Associate v processors with each active element not in F; (by construction, this is trivial)
and scatter these processors over an array of size [Kd/v®]. Place each element with at least one

d pr r in the cell ding to one such

By an argument already used in the proof of Lemma 4.2, for each fixed i € {1,..., [n/v5]},

d/t 1\ 2\
8. e =2 —8v
Pr(|C,ﬂD|2u}g(e o v/z) %) sz

It follows that
E(|R|)<d-27%.
Since the random choice made by a single active element in Step 1 can affect |Fj| by at
most 2¢°, a martingale argument gives that |Fi| < d- 277", except with negligible probability. By
Lemma 4.2, the set Fy of active elements that are neither in F; nor placed in Step 3 (i.e., those

without noncolliding associated processors), satisfies

d i \" 2¢\"? e
E(;F,{)gd(ze-:s..p“_/ﬁ) gd(i) =d.27%,

and the actual number of active elements in F, after Step 3 is bounded by 2d-27%" < d-2-7,
except with negligible probability. Adding to these the elements in Fj, we may conclude that
the number of elements remaining active after Step 3 is at most 2d - 2=7 < d-275%, except with
negligible probability. This proves the theorem in the case v < klogd. If v > Llogd, the same
algorithm and the same argument show that for some constant a > 0, the number of active elements
is reduced to at most d'~*. Now apply the algorithm again, but with v = [d*/%], and note that
Pr(Fy UF; # 0) < E(|F| + |F|) < d-27™. The latter probability is negligible. In other words, no
elements remain active. W

Corollary 4.4: For all fixed k € N, there is a constant ¢ > 0 such that for all 7 with 1 <7 < n,
incomplete compaction problems of size n and with parameters d —» 0, where s = d-max{log*n, 1},

8

can be solved on a ToLERANT PRAM using O(r) time, O(n/r) processors and O(n) space with
probability at least 1 — 2.

Proof: Apply Theorem 4.3 a constant number of times. N

Definition: For n € N and d € R, the complete linear compaction problem of size 7 and with limit d

is the incomplete compaction problem of size n and with parameters d — 0.

Corollary 4.5 (to Theorem 4.3): There is a constant € > 0 such that for all 7 with log*d < 7 < n,
complete linear compaction problems of size n and with limit d can be solved on a TOLERANT
PRAM using O(r) time, O(nlog"d/r) processors and O(n) space with probability at least 1 — 2"

Proof: Apply Theorem 4.3 at most log*d times, starting withv=1. I

A weaker form of Corollary 4.5 was first proved by Matias and Vishkin (1991), who also noted
that it has applications to processor scheduling as per Brent’s principle. We next describe an
improved algorithm that achieves optimality.

Theorem 4.6: There is a constant ¢ > 0 such that for all 7 with log*d < 7 < n, complete linear
compaction problems of size n and with limit d < n can be solved on a TOLERANT PRAM using
O(r) time, O(n/r) processors and O(n) space with probability at least 1 — 2.

Proof: Assume that d > n!/8, since otherwise the claim follows from Lemma 4.1 and Corollary 4.5.
We describe a preprocessing stage that reduces the problem size from n to O(n/log"d). Divide the
set {1,...,n} into O(n/log"d) ranges of size at most log*d each and associate a (virtual) processor
with each range. Using a global array A of size 2d, the processors now execute 4log*d rounds. In
each round, each processor chooses an active element in its range, if any are left, and attempts to
place the chosen element in a random cell of A. If the cell is not already occupied and there is no
collision, the element becomes inactive. Since each such trial succeeds with probability at least 1/2
independently of previous trials, Lemma 2.2 and Chernoff bound (b) imply that the probability that
a fixed processor has any active elements left after 4log"d rounds (call such a processor busy) is at

most e~'°8"%/4, The expected total number of busy processors is therefore

(wzizrn) = (wap):

and by a martingale argument, the actual number of busy processors is also O(n/(log"d)?), except
with negligible probability. Use Corollary 4.5 to place the busy processors in an array of size
0O(n/(log*d)?). This implicitly places the remaining active elements in an array of size O(n/log"d),
and the compaction can be completed using Corollary 4.5. 1

The maulti-compaction problem defined below generalizes the compaction problem by allowing
elements to belong to different classes. Each class is to be compacted into a separate array.

Definition: For n,m € N and dy, ..., dm € R, the (complete) multi-compaction problem of size n

and with parameters dy, ... ,dp, is the following: Given n integers z1,..., 2, in the range 0..m such

9

that for i = 1,...,m, |{j : 1 < j < n and z; = i}| < d;, compute n nonnegative integers y1,...,yn
such that

(1)Forj=1,...,n,2; =06 y; = 0;

(2)For1<i<j<n,ifz;=2;%0,then g + yj;
(3)Fori=1,...,n, max{y; : 1< j < n and 2; = i} = O(dy).

Theorem 4.7: There is a constant € > 0 such that for m = (logn)°®) and for all = with
log*n < 7 < n, multi-compaction problems of size n and with parameters dy, ..., dp, can be solved on
a ToLerANT PRAM using O(r) time, O(n/r) processors and O(n) space with probability at least

1-277,

Proof: For i =1,...,m, let Class i be the set {j : 1 < j < n and z; = i}. Essentially apply the
algorithm of Theorem 4.3 log*n times, one difference being that for each i € {1,...,m}, the elements
in Class i scatter in Step 3 over a separate array of size [Kd;/v®], space for which can be allocated
using Corollary 2.5. The analysis of Theorem 4.3 carries over to this more general situation and
shows that each class is compacted correctly, except with negligible probability. Optimality can be
achieved as in Theorem 4.6. Wl

Prior to studying the interval allocation problem, we describe a first simple estimation algorithm.
In giving a precise definition of the estimation problem, part of the challenge is to find the
right characterization of a good estimate. Estimates that are correct up to a constant factor
(a fi timator, in the i i below) are certainly sufficient for our purposes.

Unfortunately, however, such estimates are hard to come by, and we are forced to relax our

requirements to those defining a coarse-estimator.

Definition: Let n,m € N, and let 21, ...,2, be n integers in the range 1..m. Fori =1,...,m, let
b;=|{j:1<j<mand z; =i}. A fine-estimator for z1,...,2, of width m is a sequence of m
nonnegative integers by, ..., bm such that b; < b; < Kby, for i = 1,...,m and for some constant K.
A coarse-estimator for z1,...,z, of width m is a sequence of m independent nonnegative integer
random variables by, ..., b such that

(&) Ly bi = 0(n);

(B) Fori=1,...,m and for all a > 1, Pz(b; > ab;) < 272,

For n,m € N and 0 < p < 1, an algorithm solves the fi imation (imation) problem of
size n and width m with probability p if it inputs n integers zi,...,2, in the range 1..m and,
conditionally on an event of probability p, outputs a fine-estimator (coarse-estimator) for z1,...,2n
of width m.

A statement quite similar to Lemma 4.8 below can be derived by combining results of
(Stockmeyer, 1983) and (Ajtai and Ben-Or, 1984) with the standard simulation of unbounded fan-in
circuits by CRCW PRAMs (Stockmeyer and Vishkin, 1984). We give a different proof, which in the
context of PRAMs seems more direct.

10

Lemma 4.8: For every fixed § > 0, there is a constant € > 0 such that the following problem can
be solved on a TOLERANT PRAM using constant time, O(n'*®) processors and O(n!*¢) space with
probability at least 1 — 2~"“: Given 7 bits z1,...,2a, compute a bit y such that

1) Zjzi2n/2 > y=1;

(2) Zioyz;<n/8 = y=0.
Proof: The idea of the proof, which the reader may appreciate better after the first reading, is to
to a “pol; ial” dif which can then easily be detected

diffe

“amplify” a constant-fact
using Ragde’s lemma (Lemma 4.1).

Assume § < 1, take ¢ = [n%/2] and t = | s3] and let A be an array whose size is a multiple
of ¢ between 2ng and 4ng. As usual, we consider the ones in the input as (active) elements. Scatter ¢
numbered copies of each element over A. W.h.p., each element will have at least one noncolliding
copy; move it to the cell in A occupied by the lowest-numbered such copy and observe that all
distributions of the elements in A have the same probability.

Divide A into ¢ subarrays of the same size and define a subarray to be heavy if it contains more
than 8[logn] elements. Associate g processors with each cell of A and use Lemmas 4.1 and 2.4

to determine the set of heavy Associate a ive with each heavy subarray and
attempt, using Lemma 4.1, to move the set of representatives to an array of size [t/5]. Set y = 1 if
and only if this fails.

Let d = 7, z; be the total number of elements and note that the expected number of elements
in a fixed subarray is d/t. This quantity is > 16[logn] if d > n/2, while for sufficiently large values
of n it is < 4[logn] +1 if d < n/8. Using Lemmas 2.1 and 2.2, one can show that for sufficiently
large values of n, the probability that a fixed subarray is heavy is at least 1 — n~? if d > n/2, while it
is at most n~! if d < n/8. Hence the expected number of heavy subarrays is > t/2 if d > n/2, while
it is < 1if d < n/8. By a martingale argument, w.h.p. the actual number of heavy subarrays is > t/4
if d > n/2, while it is < [¢/5]'/5 if d < n/8. In the first case, the compaction using Lemma 4.1 will
surely fail, while in the second case it will succeed. In either case y receives the correct value. W

When using the algorithm of Lemma 4.8 to analyze the outcome of a GCS S = {S1,...,5,}
below, we apply the algorithm separately to each row of S and define a row to be almost-full if the
algorithm assigns the value 1 to the bit y associated with the row. The last almost-full row of S is 0
if nome of Sy, ..., 5, is almost-full, and otherwise is max{i : 1 < i < r and &; is almost-full}.

In the remainder of the paper, whenever dealing with n integers 21,...,2, in the range 1..m,
define B; = {j:1<j <nand z; =i} and b; = | By, for i = 1,....,m, and call a color, B; a color
class and b; the multiplicity of i.

Theorem 4.9: For every fixed § > 0, there is a constant € > 0 such that for all 7 with 1 < 7 < n°,
fine-estimation problems of size n and width m < n!~¢ can be solved on a TOLERANT PRAM using
O() time, O(n/7) processors and O(n) space with probability at least 1 — 2"

Proof: Let s = [n/3]. Fori= ,m, set b; = 0 if b; = 0, and otherwise carry out the following

procedure:

Step 1: Using Lemma 4.8, execute a GCS S; of B; with range |logn| X s and let I; be the last
almost-full row of S;.

11

Step 2: If I; > 0, take b; = c; - 2%s. Otherwise use Corollary 4.4 to allocate s processors to each
element of B;, let these processors execute a GCS S with range |log(sn)] X s and take b; = c, - 2%,
where I} is the last almost-full row of S.

It is easy to see that the space needed by the algorithm is O(n). To see that the same holds for the
number of operations, note that by Lemma 3.2(d) and condition (1) of Lemma 4.8, no processors are
allocated to a fixed color class B; with b; > cs, except with negligible probability.

Arguing as in its proof, one easily shows that the assertions of Lemma 3.2 continue to hold,
except with negligible probability, if L is taken to be the last almost-full row and ¢, is replaced by a
suitable positive constant ¢} < 1. Now fix i € {1,...,m} and use Lemma 3.2, modified in this way,
to conclude that the following happens w.h.p.: If I; > 0, we have b; < b; < (c2/c})b:. If l; = 0, then

sbi < ez 2% < (ea/c))sbi, ice., b < bi < (ea/cl)bi. W
Definition: For n € N, the (complete) interval allocation problem of size n is the following: Given n
nonnegative integers z,, ... ,2n, compute n nonnegative integers y1,...,yn such that

(1) Forj=1,...,n,2;=0&y; =0;
(2) For 1<i<j <n,if 0¢ {zs,2;}, then {ys,..., 5 + 2~ 1}N {yj,...,9; +2; -1} = 0;
(8) max{y; : 1< j < n} = O(T], 25).-

While the compaction problem asks that unit intervals be placed in a base segment, the interval
allocation problem specifies intervals of varying length to be placed. Viewed another way, each
interval is a request for a block of consecutive indices of a certain size. Informally, condition (2)
means that blocks do mot overlap, and (3) means that the allocated blocks are optimally packed,

except for a constant factor.

Theorem 4.10: There is a constant € > 0 such that for all 7 with log*n < 7 < n, interval allocation
problems of size n can be solved on a TOLERANT PRAM using O(7) time, O(n/7) processors and
0O(n) space with probability at least 1 — 27"

Proof: Let the input be z1,...,2n, let W = ¥ z; and begin by computing B = max{z; : 1 <
j < n}. This can be done through a simple combination of an algorithm by Reischuk (1985)
with Lemma 4.1, the details of which are described elsewhere (Hagerup, 1991). Actually, for the
applications of Theorem 4.10 in the present paper, we will always have R = O(n), and it is not
necessary to actually compute R. Let u = [2R/n] and replace z; by the smallest number 2} in the
set {0} U{2'u: 1< i< |logn|} no smaller than z;, for j = 1,...,n. Then W < 307, 2} < 6, and
as a result of this transformation, we can and will in the following assume that each nonzero input
number 2} is a power of 2 in the range 2..n (simply measure blocks and intervals in units of size u).
Let m = |logn| and for i = 1,...,m, let B; = {j : 1< j < n and 2} = 2} and b; = |B;|. At this
point the problem is trivial if 7 > logn. Otherwise use Theorem 4.9 to compute estimates by, ..., bm
such that b; < b; < Kb;, for i = 1,...,m and for some constant K. Now for i = 1,...,m, two things
remain: To allocate sufficient space to Bj, i.e., to allocate cb; - 2¢ cells to B; from a common base
segment of size O(W), for a suitable constant ¢ € N, and to divide the space allocated to B; among
the elements of B;, with each element receiving 2° cells. The first problem can be solved using

12

Corollary 2.5, and the second problem reduces to the multi-compaction problem of size n and with

parameters by, ...,bn and can be solved using Theorem 4.7. Wl

Whereas the use of Theorem 4.10 in memory allocation is obvious, one additional observation

is needed for its ication to the ion of The reason is that a processor is
an active device that needs to know about the task that it is to execute. Theorem 4.10 can
be used to icate this i ion to the first pr r in each “block”, i.., in each

group of consecutively numbered processors allocated to a common task, but the information must
b ly be broad to the inis in each block. In recognition of this fact, we

consider a slight variation of the interval allocation problem.

Definition: For n € N, the interval marking problem of size n is the following: Given n nonnegative
integers z1,...,2, With 37_, z; = O(n), compute nonnegative integers s,zi,...,z, with s = O(n)
such that

(1) For all integers 4,j,k with 1 <i < j < k <5, if 2 = z % 0, then z; = z;;

(2)Fori=1,...,n, |{j

<j<sandz =i} =2

The broadcasting problem mentioned above reduces to the all nearest zero bit problem defined below.
Lemma 4.11, due to Berkman and Vishkin (1989), states that this problem can be solved using
negligible resources. Berkman and Vishkin in fact prove slightly stronger results that those cited in
the lemma.

Definition: The all nearest zero bit problem of size n is, given a bit vector 4 of size n, to mark each
position in A with the position of the nearest zero in 4 to its left, if any.

Lemma 4.11: All nearest zero bit problems of size n can be solved on a COMMON or TOLERANT
PRAM
(a) in O(r) time using O(n/r) processors and O(n) space, for all 7 with log*n < T < n;

(b) in constant time using O(n log*n) processors and O(nlog"n) space.

Theorem 4.12: There is a constant ¢ > 0 such that for all 7 with log*n < 7 < n, interval marking
problems of size n can be solved on a TOLERANT PRAM using O(r) time, O(n/r) processors and
0O(n) space with probability at least 1 — 27"

Proof: By the above discussion. W

5 Estimation

In this section we show that coarse-estimation problems of size and width n can be solved
optimally in O((log"n)?) time. We first explain the main ideas in the context of an algorithm that
uses O(nlog"n) operations and later indicate how to achieve optimality. We begin by tackling a
simpler problem, that of computing estimates for just the colors with large multiplicities.

13

Theorem 5.1: Let 2y,...,2, be integers in the range 1..n, and let B; = {j :1 < j < nand z; = i}
and b; = |Bil, for i = 1,...,n. Then for every fixed § > 0, there is a constant ¢ > 0 such that it is
possible, on a TOLERANT PRAM using constant time, O(n) operations and O(n) space, to compute
nonnegative integers by, ..., b, such that with probability at least 1 — 2", the following holds for
each i € {1,...,n}:

(1) b > 0 = b; < b; < Kby, for some constant K;

2)bi2nf = bi>o0.
Proof: Let h = [n%/4] and carry out the following algorithm:
Step 1: Draw a random sample Y of {1,...,n} by including each element of {1,...,n} in ¥
independently of other elements and with probability 1/h. For i =1,...,n, let BY = B;nY and
oY =|BY|.
Step 2: Use Theorem 4.9 to estimate bY, for i = 1,...,n. Note that although [Y| = O(n!~%/4)
h.p. by Chernoff bound (a), this is not directly possible, since the elements of ¥ as well as their
values {z; : j € Y} are scattered over ranges of size n. Therefore first use Corollary 4.4 to place

the elements of Y and their values in arrays of size O(n!~%/%), then, simulating an ARBITRARY
PRAM with fewer processors on the available TOLERANT PRAM, select a representative in each
nonempty set BY, and finally use the positions of the representatives as new values in a range of
size O(n!~¢/%), while keeping the bijection between old and new values. Now Theorem 4.9 provides
estimates 5Y,...,bY such that w.h.p., bY < bY < K'bY, fori=1,...,n and for some constant K'.
Step 3: For i = 1,...,n, if Y > n®/2, then take b; = 2hbY; otherwise take b; = 0.

Fix i € {1,...,n}. If b; > n®/2, then w.h.p. b;/(2h) < bY < 2b;/h and hence b;/(2h) < bY < 2K'b;/h,
from which follows that either b; = 0 or b; < b; < 4K'b;. If b; > n, clearly w.h.p. b; > 0. On the
other hand, if b; < n®/2, then w.h.p. bY < n®/2/K', BY < n®/? and b; = 0. W

Lemma 5.2: There is a constant € > 0 such that coarse-estimation problems of size and width n can
be solved on a CoLLisioN PRAM using O((log*n)?) time, O(nlog*n) operations and O(n) space
with probability at least 1 — 2.

We begin by describing the algorithm informally. As in the previous estimation algorithms, the
basic idea is that a GCS for each color can be used to estimate the multiplicity of that color. Since
we now have n colors to estimate, but want to get by with O(n) space, however, we can allocate
only constant space to each GCS, which yields extremely poor estimates. Our solution has several
components. We indeed begin by allocating constant space to each color, but then reassign ever more
resources to the estimation of colors that, based on previous less accurate estimates, appear to have
large multiplicities. In other words, the algorithm proceeds in a number of stages, each of which

produces more accurate esti of fewer and larger multiplicities than its
Furthermore, we have carefully matched the definition of the coarse-estimation problem to what the
algorithm can actually produce.

It turns out that the resources allocated to each surviving color can be increased very rapidly,
causing the necessary number of stages to be O(log"n). This, however, is achieved at a considerable

loss of precision, as compared to an estimation at a more sedate pace, and the estimates obtained

14

from the basic procedure are not sufficiently accurate and have to undergo a final readjustment. The
latter is made possible by the less accurate esti (a kind of b ing), which allows us to
divide the available resources between colors in i proportion to their i

We now provide a more formal description of the algorithm. By Theorem 5.1, we can assume
that b; < n'/%, for 1 < i < n. Begin by computing integers T and v,...,vr such that (1)
vp = [a1/9], (2) for t = 2,...,T, vy = [logv], and (3) v; = 1. Then execute the following steps:

(1) for i€ {1,...,n} pardo

(2) if b; = 0 then b; := 0 else let i be active;
(3) fort:=1to T do

(4) for each active i € {1,...,n} pardo

(5) begin
(6) Allocate a 2v; X v; array and 2v; processors to i;
() Let the elements of B; carry out a GCS S;
(8) with range 2v X v;
(9) 1; := last 1-row of Sj;
(10) if I; < 2v, (+ not entirely full +) then
(11) begin
(12) Make i inactive;
(13) b; := ¢y - 2vy; (% preliminary estimate *)
(14) end;
(15) end;
(16) for each i € {1,...,n} with b; > 0 pardo
(17) begin
(18) - 7i:=2[logb:] +4; s; := 3[loghi];
(19) Allocate an r; X s; array and b; processors to i;
(20) Let the elements of B; carry out a GCS S;
(21) with range r; X s

(22) L :=last 1/2-row of Si;
(23) b;:=max{b;,co - 25;};
(24) end;

Each allocation of space and processors in lines (6) and (19) can be done in O(log"n) time using
Theorems 4.10 and 4.12. Provided that the allocated resources stay within the limits imposed by
Lemma 5.2, it is not difficult to see that the whole algorithm can be executed within the time,
processor and space bounds allowed by the lemma (use Lemmas 3.4 and 3.5). The lemmas below
show that the resources allocated are not excessive and that the output of the algorithm is indeed a
coarse-estimator with the required probability. For t = 1,...,T, Stage ¢ is the tth execution of lines
(4)~(15). Tgnore color classes of multiplicity 0.

Lemma 5.3: W.h.p., every b;, for i = 1,...,7, is defined in some stage.

15

Proof: Fix i € {1,...,n}. If b is not defined in any stage, l; = 2v7 in Stage T. By Lemma 3.3(a),
the probability of this is at most (2727 en/vz)", i.c., negligible. Wl

Definition: For i =1,...,nand ¢t = 1,...,T, call i tardy in Stage ¢ if b; is defined in Stage ¢ or

later and b; < ¢;v}.
Lemma 5.4: Fori=1,...,n and t = 2,...,T, Pr(i is tardy in Stage t) < v; ".

Proof: If i is tardy in Stage t, I; = 2v,_; in Stage ¢ — 1. By Lemma 3.3(a), the probability of this is

at most 3 2y Ve-1
—2v¢—1. L
(2 ec,v,) < (aem <27 <ot
Vet
Lemma 5.5: W.h.p., the total amount of space (and hence processors) allocated in line (6) over all

stages is O(n).

Proof: Fix i € {1,...,n}, let S; be the total amount of space allocated to i in line (6), and for
t=1,...,T, denote by A; the event that i is active at the beginning of Stage ¢. By a martingale
argument, it suffices to show that B(S;) = O(b;). But

3
E(S:) =) 20} Pr(4,)
=

x b
=0(1)+) 20} Pr(A) +) 20} Pr(4)
3

=2
a1 vI>bi /ey

T .
=0(1)+) 20} + 20} Pr(i is tardy in Stage ¢).
Fro
The first sum is O(b;) since the sequence {v;}7, grows faster than a geometric series, while the
second sum is O(1) by Lemma 5.4.

Lemma 5.6: W.h.p., max{b; : 1 < i < n} = O(n'/4).

Proof: Fix i € {1,...,n}. If b; is defined in Stage T — 1 or earlier, b; < c; - 22*T~1vp_;, which
for sufficiently large n is bounded by n!/4. If b; is defined in Stage T, Lemma 3.3(b) implies
that Pr(b; > ¢, - max{vr,n'/3b;}) < (2en~1/8)*7. The claim now follows from the assumption that
b <nl/s 0

Lemma 5.7: Whp.,

Proof: Fix i € {1,...,n}. By Lemmas 2.3 and 5.6, it suffices to show that E(b;) = O(b;). For
t=1,...,T, denote by D, and Z, the events that b; is defined in Stage ¢ and that i is tardy in
Stage t, respectively. Then

x
E(b:) = 0(1)+ Y E(b: | DN Z,)Pr(De N Z2)
=

- i
+ Y E(b: | D:nZ,)Pr(D: N Z2).

t=2

16

Fix t € {2,...,T}. By Lemma 3.3(b), Pr(b; > 16c;eb; | D, N Z;) < 273%. Since b; < c, - 22"y if b;
is defined in Stage ¢, it follows that E(b; | D¢ N Z;) < 16czeb; + c2 - 22w, - 273% = O(b;), and hence
that 357, E(b: | De N Ze) Pr(De N Zg) = O(bs).

On the other hand and again by Lemma 3.3(b), Pr(b: > c20? | De N Z¢) < (2ec1)™ < vy and
therefore E(b; | De N Z:) < e2v} + €3 - 22%w,07% = O(v}). Since Pr(Z;) < v;" by Lemma 5.4, we
have 31, E(b; | D¢ N Z:) Pr(Z:) = O(1). The claim follows. W

Lemma 5.8: Whp., S0, b = O(n).
Proof: Fixi € {1,...,n} and consider b; as a constant. b; < c, -22M°8b1+4 . 31og b; < 3-2%¢,82 log .
Hence by Lemmas 2.3, 5.6 and 5.7, it suffices to show that E(b;) = O(b; + b;). But by Lemma 3.2(c),

Pr(b: > b + ¢ - max{3[logb;], bi/c1 }) < 2731085 =
The claim now follows from the above upper bound on b;. W

Lemma 5.9: For i = 1,...,n and for all @ > 1, Pr(b; > ab; > b;logb;) < 2732,
Proof: Fix ¢ € {1,...,T}. If a > logh; and b; is defined in Stage ¢, then a > log(c;v;). Hence by
Lemma 3.3(c),

Pr(b; > ab; > b;logb; and b; is defined in Stage t)

< vy 21782 <y, - g1 Sls(eav)g=ta < 9=3a . o/(cy2).

It follows that
2

(c3v%)

T
Pr(b: > ab; > bilogh)) <27%°) <273 g
=

Lemma 5.10: For i = 1,...,n and for all @ > 1, Pr(b; > ab;) < 27°.
Proof: Without loss of generality assume that b; > 2.
Pr(b: > ab;) < Pr(b; > ab; > b:logh:)
+ Pr(a < logh; and b; > b;logh;)
+ Pr(b; > ab; and a < logb; and b; < b;logb;).

Since b; > b;, the first term can be bounded by Lemma 5.9:
Pr(b; > ab; > bilogb:) < Pr(b; > ab; > bilogh;) < 273,
The second term is zero if @ > logb;. If a < logb;,
Pr(b; > bilogb;) = Pr(b; > bilogh; > b;logh;) < 27318 < 273,

In order to bound the last term, note that b; < b;logb; implies 2logb; + 4 > logb;. By Lemma 3.2(d),
it follows that for each fixed value of b; with a < logb; and b; < b;logb;,

Pr(b; > ab;) < 27318 < 273,

17

Hence Pr(b; > ab; and a < logb; and b; < b;logb;) < 273% and Pr(b; > ab;) < 3-273¢ < 27°. This
ends the proof of Lemma 5.2. N

We now describe an implementation of scattering that might be called “scattering in time”, as
opposed to “scattering in space”. Suppose that we want to determine the number of occupied values
in a conditional ing with probability 1 and range s of some set U. Instead of providing an

array of s memory cells, e may provide a single counter, initialized to zero, and an array of s time
slots. Each element in U chooses a random time slot and increments the counter by one in that time
slot (perhaps together with other elements; the increment is by one in any case). The final value of
the counter is the desired quantity. An associated processor allocation problem can be solved using

Lemma 2.8 and Theorem 4.7.

Theorem 5.11: There is a constant € > 0 such that coarse-estimation problems of size and width n
can be solved on a CoLLisIoN PRAM using O((log*n)?) time, O(n) operations and O(n) space with
probability at least 1 — 27",

Proof: Carry out the following algorithm:

,n, let B; carry out a conditional scattering S; in time with probability 1 and

Step 1: Fori=1,.
range log*n and take 5{") = [64¢]n;, where n; is the number of occupied values in S;.

Step 2: Draw a random sample ¥ C {1,...,n} by including each element of {1,...,n} in ¥
independently of other elements and with probability 1/log*n. Pack both the sample and the values
represented in the sample into ranges of size O(n/log’n), as described in the proof of Theorem 5.1.
Then apply the algorithm of Lemma 5.2 to Y to obtain estimates 5Y,...,bY. For i =1,...,n, let
B = logn - 5Y.

Step 3: For i = 1,...,n, if b; > 0, then compute the final estimate of b; as b; = max{}{",8(”,1};
0.

otherwise take b;
We can assume that bY,...,5Y is indeed a coarse-estimator for Y. It is easy to see that w.h.p.,
the algorithm works in O((log*n)?) time and uses O(n) space. The correctness of the algorithm is

demonstrated in the lemmas below. N

Lemma 5.12: Wh.p., 3| o(n).

Proof: Easy. Nl

Lemma 5.13: For i = 1,...,7 and for all a > 1, Pr(b; > ab;) < 27°.

Proof:
Case 1: b; < 16alog™n. ab{") < b; < 16alog"n implies 64en; < 16log"n, from which follows that
n; < min{log"n/(4¢), b:/2}. By Lemma 3.1(d), this happens with probability at most 2% < 27¢.
Case 2: b; > 16alog™n. Let b = [B;nY|. bY is binomially distributed, and E(8}) = b;/log"n.
Hence by Chernoff bound (b), Pr(b} < b;/(2log"n)) < e~%/(81e6™") < 2=2¢_ By property (B) of
a coarse-estimator, Pr(bY > 2abY) < 272°. But bY > b;/(2log*n) and bY < 2abY together imply
b; < 2log"n - BY < dalog*n -BY = ab(®). Hence Pr(b; > ab;) <2722 4222 <272

18

6 Integer sorting

The parallel complexity of integer sorting has been intensively studied. We specialize here to
the case in which n integers in the range 1..n are to be sorted on a CRCW PRAM. Rajasekaran
and Reif (1989) describe a randomized algorithm with optimal speedup for this problem that
uses O(logn) time and O(n/logn) processors with high probability. Bhatt et al. (1989) give a
deterministic algorithm that works in O(logn/loglogn) time using O(n(loglogn)?/logn) processors.
By the result of Beame and Hastad (1989, Corollary 4.2), this is as fast as possible for any algorithm
that uses a polynomial number of processors. The lower bound actually is a reduction from the
parity problem: If one can sort a sequence of n bits, one can clearly compute their parity in O(1)
additional time. This argument, however, breaks down if sorting is replaced by chain-sorting, since
the global information is lost, and, as shown in this section, we are indeed able to chain-sort much

faster than in ©(logn/loglogn) time.

Our algorithms share a common overall structure consisting of three parts. Suppose that n
integers 21,...,2n in the range 1..n are to be chain-sorted. The first part of each algorithm
computes more or less accurate estimates by, ... ,bn of by, ..., bn. The second part allocates an array,
called a bucket and of size roughly proportional to b;, to each color i and then stores the elements of
B; in this bucket through a random scattering process. The third part chains the elements together
in the right order. The same three parts can be distinguished in the algorithms of (Rajasekaran and
Reif, 1989).

For m €N and V C {1,...,m}, define MAXGAP(V) as the size of the largest set disjoint
from V and of the form {a,.
V={1,..,m}

,8} or {b,...,m,1,...,a}, where a,b € {1,...,m}, or as zero if

Lemma 6.1: Let m and k be integers with 1 < k < m and let V be a set chosen randomly
from the uniform distribution over all k-element subsets of {1,...,m}. Then for every z > 0,
Pr(MAXGAP, (V) > z) < me™2/™,

Proof: Easy and omitted. B

Theorem 6.2: For every fixed k € N, n integers in the range 1..n can be chain-sorted on a
Coiuisiont PRAM using constant time and O(knlogn/loglogn) processors with probability at
least 1 —n~k.

Proof: Assume first that k = 1. We describe the three parts of an algorithm with the desired
properties. For simplicity, let us ignore questions of rounding.

Part 1: For i = 1,...,n, let the elements of B; carry out a modified GCS S; with range
(logn/loglogn) X logn and let I; be the last 1-row of S;. The modification, which saves a factor of
©(log n/loglogn) in the number of is that the probabili iated with the ith row of
... Jogn/loglogn. Using the techniques of Section 3, it is

S; is (logn)~* instead of 2, for i =

easy to derive from I; an estimate b; of b; such that, for some constant K > 0 and except with
negligible probability, b; < b; < K (logn)®b;.

19

Part 2: For i = 1,...,n, associate 8logn/loglogn processors with each element of B; and scatter
these over a bucket Q; of 16e(logn)? - b; cells. Call j € {1,...,n} lucky if some processor associated
with j does mot collide. By Lemma 4.2, if b; < b; for all i € {1,...,n}, then the probability that
some j € {1,...,n} is unlucky is at most n~2, i.e., negligible. We therefore determine for each

j€{1,...,n} the lowest d lliding processor jated with j and place j in the cell

chosen by that processor.

Part 3: For i = 1,...,n, call Q; empty if b; = 0. If Q; is nonempty, define its dilation as |Q:/b:,
where |Q;| denotes the number of cells in Q;. The assumption b; < K(logn)®b; implies that the
dilation of Q; is O((logn)®). Hence by Lemma 6.1, the size of the largest gap between consecutive
elements stored in Q; can be bounded by an integer m, where m = O((logn)°), except with negligible
probability. Now the successor of each element in Q: whose successor also belongs to Q: can be
determined as follows: Divide Q; into subarrays of size 2(m + 1) and consider the cells of each
subarray as the leaves of a complete (logn/loglogn)-ary tree of constant height. Define a node in
such a tree to be empty if no element is stored in a leaf of the subtree rooted at that node. Using
the ©(log n/loglog n) processors associated with each element, compute for each nonempty node its
nearest nonempty right sibling and its leftmost nonempty child, if any (Corollary 2.7). Using this
information, compute the successor of each element whose successor belongs to the same tree. In
order to handle elements with successors in the tree following their own, repeat the computation
with all trees “shifted” by m + 1. This leaves only elements with successors in a different bucket.
Deal with these, finally, by using Lemma 4.11(b) to compute for each nonempty bucket the next
nonempty bucket, if any. This ends the proof of Theorem 6.2 for k = 1. In order to extend the result
to general k € I, simply consider k independent computations as above carried out simultaneously.
The probability that all fail is at most n~*. W

Our next algorithm is allowed @(logn/loglogn) time, which puts it in a time range where
parallel computing is easy. In particular, we have sufficient time to convert the linked list produced
by a chain-sorting routine to the standard output format of n numbers stored in order in an array of
size n. The resulting algorithm for sorting integers of linear size achieves at the same time optimal
speed and optimal speedup, which makes it superior to all previously published algorithms. The
same result was found independently by Matias and Vishkin (1991) and by Raman (1991).

Our algorithm makes use of a subroutine for optimal monotonic list ranking. The monotonic list
ranking problem of size n is, given a linked list of n labeled elements such that the labels strictly
increase along the list, to mark each element of the list with its position within the list.

Lemma 6.3 (Bhatt et al., 1989): Monotonic list ranking problems of size n can be solved on a
(deterministic) CoMMON or TOLERANT PRAM using O(logn/loglogn) time, O(n) operations and
O(n) space.

Theorem 6.4: For every fixed k € N, n integers in the range 1..n(logn)* can be sorted on a
TOLERANT PRAM using O(logn/loglogn) time, O(n) operations and O(n) space with probability
at least 1 — 2-(og™)",

Remark: Using Theorem 6.6, the probability bound of Theorem 6.4 can be improved for the
CorrisioN PRAM to 1 — 2”‘!, for some fixed € > 0.

Proof: Let m = (logn)**®. By Lemma 2.8 and the principle of radix sorting, we can assume that
the input numbers in fact belong to the smaller range 1..u, where u = n/m?; see (Rajasekaran and
Reif, 1989, Section 3.1) for a fuller discussion of this approach. Now draw a random sample ¥ of the
input elements by including each element with probability 1/m and independently of other elements.
Compact the sample, chain-sort it using Theorem 6.2 and rank the resulting list using Lemma 6.3.
By Chernoff bounds, n/(2m) < |Y| < 2n/m, except with negligible probability, so that these steps
are not too expensive. Letting bY = |B;NY/|, fori=1,...,u, take

bi=2m-bY + m?,

for i =1,...,u. Again using Chernoff bounds, one easily shows that except with negligible
probability, b; < by, for all 4, and Y1, b; = O(n). Now use a prefix summation to allocate a bucket
Qi of size 8b; to B;, for i = 1,...,u, such that Q4 borders Q; on the right, fori = 1,...,u— 1.

The next task is to place the elements of B; in Q;, for i = 1,...,u. This is done in a number
of stages. All elements are initially active. In each stage, each active element in B; chooses and
attempts to write to a random cell in Q;. If it does not collide, it is placed in the chosen cell and
becomes inactive. We leave to the reader to show that O(loglogn) stages are sufficient to reduce
the number of active elements below n/m. At this point the elements successfully placed in buckets
can be collected in sorted order via a prefix summation, and the less than n/m remaining elements
can be collected in nonsorted order via another prefix summation and sorted using the algorithms of
Theorem 6.2 and Lemma 6.3. A final merge of the two sorted sequences completes the sorting. A
processor allocation problem that was ignored above can easily be solved using Theorem 4.6. Since
the number of active elements decreases geometrically over the stages, the total number of operations
executed is O(n). W

Our final a.lgomhm combines optimality with a running time of O((log*n)?), which causes major
must be esti using Theorem 5.11, which means that the estimates

obtained are not very reliable. Buckets must be allocated as described in Section 4, and colors
cannot be handled independently, as far as the pl in buckets is d, since the failure
probability for small color classes cannot be ignored. Instead it is necessary to monitor the progress
of the colors throughout the process, pushing more resources towards colors that are not keeping

pace with the rest.

Theorem 6.5: There is a constant € > 0 such that n integers in the range 1..n can be chain-sorted
on a CoLLisioN PRAM using O((log*n)?) time, O(n) operations and O(n) space with probability at
least 1 — 27",

Proof: Use the following algorithm:

Part 1: Use Theorem 5.11 to compute a coarse-estimator by, ..., b, for the input numbers.

Part 2: By Theorem 5.1, it is possible to obtain reliable esti of large multiplicities. Fur
by an argument already used in the proof of Theorem 4.7, it is easy to place the elements of a

21

large color class B; in an array of size O(b;). Let us therefore without loss of generality assume
that b; < n'/8, for i
ve_1 = [logwe], for ¢t = 2,...,T, and v = 1. Also take vr41 = 2'T. Then execute the following
algorithm, where K = 10-2%.

1,...,n. Define T,vy,...,vr similarly as in Section 5, i.., vr = [n'/%],

(1) Let all color classes and all elements be active;
(2) fori€{1,...,n} pardo s[i] := Kbs;

(3) fort:=1to T do

(4) for each active color class B; pardo

(5) begin

(6) Allocate v; processors to each active element in B;;

() Allocate v, sectors of [s,[i]/v;] cells each to Bj;

(8) Scatter B; over each of its v, sectors;

(9) Place each element of B; that is successful (does
(10) not collide in every sector) and make it inactive;
(11) if no elements in B; remain active
(12) then make B; inactive;

(13) Tight,[i] := (s:[i] < Kv},, and B; is active);
(14) if not Tight,[i] then

(15) begin (+ test scattering *)

(16) Allocate ve4 cells to B; and let the elements
@7 of B; carry out a conditional scattering S;
(18) with probability Kvy,,/s:[i] and range ves1;
(19) if S; has fullness 1 then Tight,[s] := true;
(20) end;

(21) if Tight,[4)

(22) then sy41[i] := Kv?,,b; (* expand B; %)

(23) else sp41[i] = [slil/2];

(24) end;

Let Stage t, for t = 1,...,T, be the tth execution of lines (4)~(24). Fort =1,...,T and i=1,...,n,
let Ny[i] denote the number of active elements in B; at the start of Stage t. Also say that B; has
sufficient space in Stage ¢ if s,[d] > HN.[]- v, where H = 2%, and that B; is ezpanded in Stage ¢ if
the assignment sy41[i] := Kv?,,b; in line (22) is carried out in Stage . Finally, the scattering of B;
in Stage t succeeds if Nyya[i] < Nofd] - v

‘We now bound the probability that a given color class is expanded in a given stage. Suppose

that B; is expanded in Stage ¢ > 4. Then either (1) B; has insufficient space in Stage ¢, or (2) the
scattering of B; in Stage ¢ does not succeed, although B; has sufficient space in Stage t, or (3) B; is
expanded in Stage ¢, although B; has sufficient space in Stage ¢ and the scattering of B; in Stage t
succeeds.

Case 1: B; has insufficient space in Stage ¢, i.e., s¢[i] < HNy[i] - v;. We divide into two subcases:
Case la: B; is expanded in Stage t — 1, i.e., s¢[i] = Kv?b;. Then Kv?b; < HN{[i] - v < Hbsvy, i.e.,

22

b; > (K/H)vib; = 10v,b;. By property (B) of a coarse-estimator, the probability of this is at most
27100 < 410,
Case 1b: B; is not expanded in Stage ¢ — 1. Then a scattering S; is carried out in Stage ¢ — 1, and
the fullness of S is below 1. By Lemma 3.1(c), the probability of this is at most
vp - 2 NS 30ali) /e < o, . =K N2 (2l

< v -2~ Ku/CH) ¢ ":+‘1~
Altogether, Case 1 occurs with probability at most 2v;}.
Case 2: Now B; has sufficient space in Stage t, i.e., s,[i] > HN,[i] - v;. Then
Nei] . o F o
—) < Nifi]- B < Vi) -0y

84l

Bt <)

and hence Pr(Ne41[i] > Nefd] - v;74) < vh. It follows that Case 2 occurs with probability at most
"

v
Case 3: Now B; has sufficient space in Stage ¢ and the scattering of B; in Stage ¢ succeeds, i.e.,
sefi] > HNJi]-ve and Negy < Nefi] - v If sefi] < Koy, then

sfi] 10

Fenalil < Ml -0 € groa— < oo

<1,
ie., B; is inactive after Stage t. Hence Case 3 always involves the execution of a scattering S;. By
Lemma 3.1(e), the probability that the fullness of S; equals 1 is at most

Nepali) Kb N0 (Nli]__Kee)
TS v vear BN vevers
+

Ke 1 "y 10e |+ i .
<|l=- N £9™a € g,
= (" u,uL,) =\s @7y = = Vea1

Hence Case 3 occurs with probability at most v},. Summing up, we have argued that the
probability that B; is expanded in Stage t > 4 is at most 4v;} < v %; in particular, no expansion
takes place in Stage T, except with negligible probability. Since the amount of space allocated to B;
in Stage t is O(v},,b;), it is easy to see that the expected amount of space allocated to B; over the
course of the algorithm is O(b;), and hence, by property (A) of a coarse-estimator, that the expected
total amount of space used by the ithm is O(n). By a martingal the actual space
requirements of the algorithm are O(n), except with negligible probability. It also follows from the
analysis that, except with negligible probability, all elements are successfully placed, and it is clear
that the algorithm can be executed within the stated time bounds.

The allocations of space and in the algorithm can be carried out using Theorem 4.10.
It is easy to see that the total number of other operations executed by the algorithm, exclusive of
those caused by color classes with insufficient space, is at most proportional to the total amount of
space allocated. But the number of operations caused by a color class B; in Stage t is O(vsbs),
whereas the probability that B; has insufficient space in Stage t was shown above to be at most
2v;34. It now follows as in the case of space and using an argument as in the proof of Theorem 5.11

that the total number of operations executed is O(n), except with negligible probability.

23

Part 3: Contrary to our informal introductory description, the buckets allocated by this last
algorithm are not contiguous blocks of memory; instead each bucket is spread over O(logn)
contiguous segments. It is easy, for each bucket, to chain together its constituent segments into
a linked list, with segments containing no elements left out of the list. Furthermore, using
Lemma 4.11(a), the lists corresponding to nonempty color classes can be concatenated in ascending
order to a list Ly. Another application of Lemma 4.11(a), this time to an array of size O(n)
containing all segments, provides another list L, that chains together all elements. Each element
j now determines its successor in the final output list as follows: It is the successor of j in L if
this successor belongs to the same segment S as j; otherwise it is the first element in the segment
following S in L;. This completes the proof of Theorem 6.5. W

With little extra effort, our chain-sorting algorithm can be modified to deliver its output in a
different format that also appears to be useful. We first need two definitions.

A padded representation of size s > n of a sequence zy,...,2, is a vector of size s whose non-nil
elements, taken in order, precisely form the sequence z1,...,2,. Here nil is a special value that
cannot occur as an element of a sequence. Given a sequence zj,...,Zn, say that a permutation

Tiyeess®n of 1,...,m is duplicate-grouping for z1,...,zn if for all 4,7,k €N,if 1 <i < j < k< nand

Zx, = Zmy, then Zx; = zn;. iti a dupli grouping ion brings together duplicates

without necessarily sorting the elements.

Theorem 6.6: There is a constant ¢ > 0 such that the following problem can be solved on a
Covuision PRAM using O((log*n)?) time, O(n) operations and O(n) space with probability at

least 1 —27"°: Given a sequence 21,...,2, of n integers in the range 1..n, compute a padded
representation of size O(n) of a duplicate-grouping permutation for z1,...,2n.
Proof: As described in the last b of its proof, the ithm of Theorem 6.5

spreads the elements of each color class over O(log*n) segments. During the execution of the
algorithm, it is easy, for each bucket, to compute the prefix sums of the sizes of the segments
constituting the bucket. When the algorithm terminates, Theorem 4.10 can therefore be used to
allocate a single contiguous segment of the required size to each color class, after which the elements
of the color class can be trivially moved to the new segment. This produces the desired output. W

As an application of Theorem 6.6, we sketch an improvement of a recent result due to MacKenzie
and Stout (1991) concerning the following problem, which they call padded sorting: Given n
independent random numbers 71,...,7, drawn from the uniform distribution over the interval (0,1],
compute a padded representation of size n + o(n) of a sequence containing the elements 71,...,7, in
nondecreasing order. MacKenzie and Stout show that padded sorting can be carried out optimally
in expected time O(loglogn), which we improve to O(loglogn/logloglogn). The same result was
obtained independently by MacKenzie and Stout (MacKenzie, personal ication, April 1991).

Theorem 6.7: For every fixed k € N, the following problem can be solved on a COLLISION
PRAM using O(loglogn/logloglogn) time, O(n) operations and O(n) space with probability at
least 1 - 2-(°8™)": Given n > 2 independent random numbers ri,...,7, drawn from the uniform

24

distribution over the interval (0,1], compute a padded representation of size at most n(1 + (logn)~*)

of a sequence containing the elements r1,...,7, in nondecreasing order.

Proof: For j =1,...,n, let z; = [nr;]. As usual, for i =1,...,n, let B;={j:1<j<n
and z; = i} and b; = |B;| and call B; a color class. As follows easily from Chernoff bound (c),
max{b; : 1 < i < n} = (logn)°®), except with negligible probability. Hence if the algorithm of
Theorem 6.5 is modified to operate in its last stage with vy = [logn]® instead of vy = [n'/%],
for a suitable constant c € N, the dingly modified ithm of Theorem 6.6 with high
probability places each color class in a segment of size (logn)°(!). Standard prefix summation
techniques can now be used to compute by, ...,b, and to place the elements of each color class in

consecutive positions. Use Theorem 4.12 to allocate b? (virtual) processors to i, for i = 1,...,n.
These processors can sort R; = {r; : j € B;} using O(logb;/loglogb;) time and O(b?) operations, for
i=1,...,n. Since it is known that 3 _, b? = O(n), except with negligible probability, the sorting of
Ry, ..., Ry altogether uses O(loglogn/logloglogn) time and O(n) operations.

Now choose t € N with ¢ > (logn)**!, but t = (logn)°®). For I = 1,...,|n/t%],
5= Eﬂ‘:’(,_,],, 41 b is binomially distributed with expected value #*. Hence by Chernoff bound (a),
Pr($; > (1+t7)%) < e7t/3. 1t follows that max{S;:1 <1< |n/t*]} < (1+¢1)¢, except with
negligible probability. Using a prefix summation of b—1)e41,---,bu, it is now easy to place the
elements of UQ‘:‘(,_W,“ R; in sorted order in an array of size |[(1+¢7!)¢*], for I =1,...,|n/t*], and
to place the elements of UL /¢4 Ri in sorted order in an array of size (logn)°(®. The total
space used is |n/t*] - [(1+¢7)t2] + (logn)°™), which for sufficiently large values of n is bounded by
n(1+ (logn)~*).

7 Nonoptimal algorithms

This section investigates the effect for the problems considered of allowing slightly superlinear
processor and space bounds. In most cases, we also have to generalize the problems by introducing
a so-called slack parameter. Throughout this section, we assume the input size 7 to be larger than

some (unspecified) constant.

Definition: For n,m €N, di,...,dm € R and A > 1, the multi-compaction problem of size n and
with parameters dy,...,dm and slack X is the following: Given n integers 1,...,2, in the range
0..m such that for i =
Y1y--+,Yn such that

...,m, |{j:1<j < nandz; =i}| < di, compute n nonnegative integers

(1) Forj=1,...,n,2; =06 y; = 0;
(2)For 1<i<j<mifz; =2; %0, then g % yj;;
(3) Fori =

...,n,max{y; : 1 < j < nand y; = i} = O(Ady).

Theorem 7.1: For all fixed k € N, there is a constant € > 0 such that for m = (logn)°®),
‘multi-compaction problems of size n with parameters dy,...,dn and with slack log*)n can be solved
on a TOLERANT PRAM using constant time, O(nlog*)n) processors and O(nlog*)n) space with

probability at least 1 — 27",

25

Proof: As the proof of Theorem 4.7, except that Theorem 4.3 is used only a constant number of

times. W

Definition: For n € N and A > 1, the interval allocation problem of size n and with slack A is the
following: Given n nonnegative integers z1,...,2n, compute n nonnegative integers yi,...,yn such
that

(1) Forj=1,...,n,2;=0% y; = 0;

(2) For 1 < i < j < n, if 0¢ {z;,2;}, then {z;,
(8) max{y; :1<j <n} = 0L}, 25)-

vtz —13n{y;...,0+2; -1} =0;

Theorem 7.2: For every fixed k € IN, there is a constant ¢ > 0 such that interval allocation
problems of size n and with slack log®*)n can be solved on a TOLERANT PRAM using constant time,
0(nlog™n) processors and O(nlog(*)n) space with probability at least 1 — 2~

Proof: As the proof of Theorem 4.10, except that Theorem 7.1 is used in place of Theorem 4.7. W

Definition: For n € N and A > 1, the interval marking problem of size n and with slack A is

the following: Given n nonnegative integers z1,...,2n with 3}, 2; = O(n), compute nonnegative
integers 8,2, ...,2, with s = O(An) such that
(1) For all integers 4,7,k with 1 <i < j <k < s, if z = 2 % 0, then z; = z;

(2)Fori=1,...,n, [{j:1<j <sandz=i} =z

Theorem 7.3: For every fixed & € IN, there is a constant € > 0 such that interval marking problems of
size n and with slack log)n can be solved on a TOLERANT PRAM using constant time, O(nlog*)n)
processors and O(nlog(*)n) space with probability at least 1 — 2-"°.

Proof: As the proof of Theorem 4.12, using Theorem 7.2 in place of Theorem 4.10 and part (b) of
Lemma 4.11 in place of part (a). W

Theorem 7.4: For every fixed k € IN, there is a constant € > 0 such that coarse-estimation problems
of size and width n can be solved on a TOLERANT PRAM using O(log*n) time, O(nlog(*)n)
processors and O(nlog(*)n) space with probability at least 1 — 27"

Proof: As the proof of Lemma 5.2, except that Theorems 7.2 and 7.3 are used in place of Theorems
410 and 4.12. W

Definition: Let n,m €N, and let z1,...,2, be n integers in the range 1..m. For i = 1,...,m, let
bi=|{j:1<j<mandzj=i}|. For A > 1, a coarse-estimator for zi,...,z, of width m and with
slack A is a sequence of m independent nonnegative random variables by,. .., b such that

(&) £, 8 = 00n);

(B)Fori=1,...,m and for all a > 1, Pr(b; > ab;) < 27°.

Theorem 7.5: For every fixed k € I, there is a constant € > 0 such that coarse-estimation problems
of size and width n and with slack log*)n can be solved on a TOLERANT PRAM using constant
time, O(nlog()n) processors and O(nlog(*)n) space with probability at least 1 — 2-"°.

26

Proof: Execute only Stages to,...,T of the algorithm of Theorem 7.4, where to = T — k — 1. The
proof of Lemma 5.4 shows that for i = 1,...,n and t = to + 1,...,T, Pr(i is tardy in Stage t) < v;".
Since v;, = O(log**!)n), it now follows as in the proof of Lemmas 5.5 and 5.7 that the total amount

of space and processors allocated is O(nlog®)n) an : = O(nlog®n). The remaining

argumentation is as in the proof of Lemma 5.2. I

Theorem 7.6: For every fixed k € N, there is a constant € > 0 such that n integers in the range
1..n can be chain-sorted on a TOLERANT PRAM using constant time, O(nlog*)n) processors and
0(nlog®n) space with probability at least 1 — 27"

Proof: Execute only Stages to,...,T of the algorithm of Theorem 6.5, where to = T — k — 2, and
use Theorem 7.2 in place of Theorem 4.10. The proof of Theorem 6.5 shows that the probability
that a fixed color class is expanded in Stage t > max{4,to + 1} is bounded by v;%. Since
vgy41 = O(log*+V)n), the claim now follows as in the proof of Theorem 6.5. W

Theorem 7.7: There is a constant € > 0 such that the following problem can be solved on
a TOLERANT PRAM using constant time, O(nlog*)n) processors and O(nlog®*)n) space with
probability at least 1 — 27"°; Given a sequence 2y, ...,2y of n integers in the range 1..n, compute a
(k),

padded representation of size O(nlog®n) of a duplicate-grouping permutation for 1,...,zn.

Proof: As the proof of Theorem 6.6, using Theorem 7.6 instead of Theorem 6.5 and Theorem 7.2
instead of Theorem 4.10. N

Acknowledgment: Parts of Sections 4 and 5 resulted from a joint investigation with Holger Bast. T
thank Peter Miltersen for pointing me to the papers by Stockmeyer and Ajtai and Ben-Or. An earlier
version of the present paper achieved running times of O(loglog nlog*n/logloglogn), the bottleneck
being essentially compaction. After receiving a preliminary sketch of the algorithm of Theorem 4.10,
Joseph Gil informed the author of the results of Matias and Vishkin and also observed that the
prefix sums of few small integers can be computed in constant time (Lemma 2.4), thus removing the
last obstacle to interval allocation in O(log*n) time. The interval allocation results described in this

paper are improvements and generalizations of Gil’s result.

References

AsTAI, M., AND BEN-OR, M. (1984), A Theorem on Probabilistic Constant Depth Computations,
in Proc. 16th Annual ACM ium on Theory of C ing, pp. 471-474.

Bast, H., AND HAGERUP, T. (1991), Fast and Reliable Parallel Hashing, in Proc. 3rd Annual ACM
on Parallel Algorithms and Archi to appear.

BEAME, P., AND HAsTAD, J. (1989), Optimal Bounds for Decision Problems on the CRCW PRAM,
J. ACM 36, pp. 643-670.

BERKMAN, O., AND VISHKIN, U. (1989), Recursive *-Tree Parallel Data-Structure, in Proc. 30th
Annual Symposium on Foundations of Computer Science, pp. 196-202.

27

BuaTT, P. C.P., Diks, K., HAGERUP, T., PRASAD, V. C., RADZIK, T., AND SAXENA, S. (1989),
Tmproved Deterministic Parallel Integex Sortmg, Inform. and Comput., to appear.

BoLLoBAs, B. (1987), i lities and Random Graphs, in Collog. Math.
Soc. J. Bolyai 52, pp. 113-139.

CHLEBUS, B.S., Diks, K., HaGeruP, T., AND RaDzIK, T. (1989) New Simulations between
CRCW PRAMs in Proc. 7th In ional C¢ on s of C ion Theory,
Springer Lecture Notes in Computer Science, Vol. 380, pp. 95-104.

CoOLE, R., AND VISHKIN, U. (1989), Faster Optimal Parallel Prefix Sums and List Ranking, Inform.
and Comput. 81, pp. 334-352.

EPPSTEIN, D., AND GALIL, Z. (1988), Parallel A i i i for C i ial Computa-
tion, Ann. Rev. Comput. Sci. 3, pp. 233-283.

GaveiL, F. (1975), Merging with Parallel Processors, Comm. ACM 18, pp. 588-591.

Hagerup, T., AND RapzIK, T. (1990), Every Robust CRCW PRAM Can Efficiently Simulate
a PrioriTy PRAM, in Proc. 2nd Annual ACM i on Parallel Algori and
Architectures, pp. 117-124.

Hacerup, T., AND RiB, C. (1990), A Guided Tour of Chernoff Bounds, Inf. Proc. Lett. 33, pp.
305-308.

HaGERUP, T. (1991), Fast and Optimal Simulations between CRCW PRAMs, manuscript.

MACKENZIE, P.D., AND STOUT, Q. F. (1991), Ultra-Fast Expected Time Parallel Algorithms, in
Proc. 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 414-423.

Matias, Y., AND VISEKIN, U. (1991), Converting High Probability into Nearly-Constant Time —
with Applications to Parallel Hashing, in Proc. 23rd Annual ACM Symposium on Theory of
Computing, pp. 307-316.

RAGDE, P. (1990), The Parallel Simplicity of C jon and Chaining, in Proc. 17th jonal
c jum on Automata, L and P ing, Springer Lecture Notes in Computer
Science, Vol. 443, pp. 744-751.

RAJASEKARAN, S., AND REIF, J. H. (1989), Optimal and Sublogarithmic Time Randomized Parallel
Sorting Algorithms, SIAM J. Comput. 18, pp. 594-607.

RAMAN, R. (1990), The Power of Collision: Randomized Parallel Algorithms for Chaining and
Integer Sorting, in Proc. 10th Confe on Foundations of Software Technology and Th ical
Computer Science, Springer Lecture Notes in Computer Science, Vol. 472, pp. 161-175.

RAMAN, R. (1991), Optimal Sub-logarithmic Time Integer Sorting on the CRCW PRAM, Tech.
Rep. no. 370, Univ. of Rochester.

REISCHUK, R. (1985), Probabilistic Parallel Algorithms for Sorting and Selection, STAM J. Comput.
14, pp. 396-409.

STOCKMEYER, L. (1983), The Complexity of Approximate Counting, in Proc. 15th Annual ACM
Symposium on Theory of Computing, pp. 118-126.

STOCKMEYER, L., AND VISHKIN, U. (1984), Simulation of Parallel Random Access Machines by
Circuits, SIAM J. Comput. 13, pp. 409-422.

28

