English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Secondary ozone peaks in the troposphere over the Himalayas

MPS-Authors
/persons/resource/persons187753

Ojha,  N.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101196

Pozzer,  A.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons203325

Akritidis,  D.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101104

Lelieveld,  J.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ojha, N., Pozzer, A., Akritidis, D., & Lelieveld, J. (2017). Secondary ozone peaks in the troposphere over the Himalayas. Atmospheric Chemistry and Physics, 17(11), 6743-6757. doi:10.5194/acp-17-6743-2017.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-9789-6
Abstract
Layers with strongly enhanced ozone concentrations in the middle-upper troposphere, referred to as Secondary Ozone Peaks (SOPs), have been observed in different regions of the world. Here we use the global ECHAM5/MESSy atmospheric chemistry model (EMAC) to (i) investigate the processes causing SOPs, (ii) explore both their frequency of occurrence and seasonality, and (iii) assess their effects on the tropospheric ozone budget over the Himalayas. The vertical profiles of potential vorticity (PV) and a stratospheric ozone tracer (O3s) in EMAC simulations, in conjunction with the structure of SOPs, suggest that SOPs over the Himalayas are formed by Stratosphere-to-Troposphere Transport (STT) of ozone. The spatial distribution of O3s further shows that such effects are in general confined to the northern part of India. Model simulated ozone distributions and backward air trajectories show that ozone rich air masses, associated with STT, originate as far as northern Africa and the North Atlantic Ocean, the Middle-East, as well as nearby regions in Afghanistan and Pakistan, and are rapidly (within 2–3 days) transported to the Himalayas. Analysis of a 15-year (2000–2014) EMAC simulation shows that the frequency of SOPs is highest during the pre-monsoon season (e.g. 11 % of the time in May), while no intense SOP events are found during the July–October period. The SOPs are estimated to enhance the Tropospheric Column Ozone (TCO) over the central Himalayas by up to 26 %.