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Abstract 
 
Population balance models are of high interest for the efficient design, control and 
optimization of crystallization processes. They usually contain mathematical sub-models 
for the description of the relevant kinetic phenomena, such as growth, dissolution and 
nucleation of particles. Commonly, component-specific parameters included in these 
sub-models have to be determined for every substance system of interest or even for 
the specific experimental set-up. 
Thus, a short-cut-method is suggested that is based on analyzing the evolution of the 
crystal size distribution during a few batch crystallization experiments to efficiently 
parameterize kinetic sub-models required to predict and evaluate the performance of 
crystallization processes. To illustrate the overall procedure and to evaluate the 
accuracy of the proposed approach, in silico data with pre-defined kinetics 
corresponding to hypothetical non-isothermal batch runs are analyzed. It is shown that it 
is possible to recover pre-specified sub-model parameters with a rather limited amount 
of input information. Subsequently, less flexible sub-models and measurement errors 
are considered for comparison, in order to evaluate the loss of predictability. The 
agreement found between the results of a simulated continuous crystallization process 
applying both, (a) the initially provided model together with the pre-specified parameters 
or (b) parameter estimates provided by the short-cut-method demonstrates the practical 
applicability of the latter. 
 
Keywords : Crystallization processes, Particle size distributions, Kinetics, Nucleation, 
Growth, Dissolution  
 
1. Introduction 
 
Many industrially important substances are produced with a tailored product quality via 
crystallization. Ordinary sugar, for example, is desired to have a narrow crystal size 
distribution (CSD) with a mean value of 700-800 µm, almost without fine material and a 
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purity of 99.5% [1]. This is feasible exploiting one single seeded batch process based 
on the experience accumulated over many decades. For current industrial applications, 
faster approaches are needed to design crystallization processes. Increasingly 
theoretical concepts based on population balance equations (PBE) are utilized for this 
purpose. However, it is difficult to quantify the corresponding rates, e.g. for growth, 
nucleation and dissolution, which are required for this mathematical framework [2].  
Several publications describe a rather simple method, based on the observation of the 
evolution of the solid and liquid phase during well planned cooling batch crystallization 
in order to quantify the necessary crystallization kinetics. Obviously, crystal populations 
move to larger particle sizes due to growth (G) and to smaller sizes due to dissolution 
(D) (Fig. 1a and 1b, [3, 4]). It was theoretically shown, e.g. in [5], that it is possible to 
determine the growth rate by evaluating one specific characteristic of the CSD during 
crystallization.  
Hence, it is straightforward to exploit seeded batch crystallization experiments for this 
purpose if size-independent growth [6] is assumed even though growth rate dispersion 
occurs. The crystals, which are initially provided with an appropriate size and shape, 
can be observed during the crystallization process utilizing suitable online or offline 
measurement techniques, as e.g. sieve analysis or online microscopy.  Therefore, the 
seed particles should be large enough to distinguish them from eventually occurring 
nuclei and the substance-specific crystal shape should be developed completely to 
reduce their agglomeration tendency. Based on their specific growth or dissolution 
rates, the crystals move during the process with a certain velocity through the space of 
the characteristic coordinates (e.g. length or width of the particles). Thus, it is instructive 
and valuable to quantify the crystal size evolutions since they contain information 
regarding the underlying growth or dissolution kinetics. This information can be utilized 
directly (without the need of solving full population balance equations, PBE) together 
with observed supersaturation and temperature in the crystallizer to estimate free 
parameters in postulated kinetic sub-models for growth or dissolution.  
A similar simple procedure can be applied to analyze observed appearance (birth) rates 
of new crystals (B0). Observed positive temporal changes in the total number of crystals 
(N(t), Fig. 1c),  are directly connected to the nucleation kinetics provided that breakage 
and agglomeration events are negligible.  
 

 
Fig. 1: a) & b): Movement of a seed-peak due to crystal growth (G) and dissolution (D). c): 
Change of the particle number (N(t)) of the CSD due to nucleation (B0) [7]. Solid lines: Initial 
state; Dashed lines: Evolution of the state. 
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Altogether, the described evaluation procedure based on classical experiments leads to 
an efficient and fast quantification scheme. Essential information is extracted from 
measured CSDs and applied directly for the parameterization of different postulated 
kinetic models. The just described simple (“PBE-free“) procedure will be designated in 
the following as “Short-cut-method”. 
In recent years, several authors performed investigations around this main idea. One 
work describes the experimental set-up and data processing to calculate nucleation and 
growth rates during seeded cooling crystallizations at fixed supersaturation [8]. In that 
work, laser diffraction was applied to investigate the solid phase that can lead to errors 
when the crystal shape differs significantly from perfect spheres since reflections of 
facetted particles and the orientation of crystals influence the result significantly [9, 10]. 
Furthermore, the mean length of the whole crystal size distribution (CSD) was taken as 
an indicator for the growth of the particles [8]. This eventually obscures the real growth 
rate, in particular if nucleation occurs.  
Yokota et al. [11] analyzed four precisely determined CSDs of one non-isothermal batch 
crystallization and identified successfully the three parameters (kg,0, EA,g, g) of an 
assumed temperature-dependent power law for the crystal growth kinetics (eq. 1)        
 

,

,0
exp( )( 1)A g g

g
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G k S

RT

−
= −  (eq. 1) 

 
It is however rather difficult to accurately measure CSDs during an experiment. 
Consequently, four determined crystal size distributions may not be sufficient.  
In this paper, the potential of the short-cut-method is investigated more systematically 
utilizing predicted transients of batch experiments. The approach of [11] is extended in 
order to identify besides growth, also nucleation and dissolution kinetics and to evaluate 
the impact of the number, type and precision of input data on the quality of the 
estimated kinetic parameters.  
It is shown, that only a few experiments are necessary to estimate all basic 
crystallization kinetics for a large range of supersaturation and temperature. 
Furthermore, the numerical effort is reduced since no full PBE model is applied and only 
the parameters of one postulated kinetic sub-model is quantified at once.  
Finally the applicability of the short-cut method is also tested by comparing design 
scenarios for a continuous crystallization process using various parameter 
constellations. 
This article is organized as follows: In the following section, the model framework that 
was applied for the generation of synthetic (“perfect”) crystallization data is explained 
together with the properties of the assumed substance system. Subsequently, a 
synthetic reference data set of crystallization experiments is created. In the third 
section, the short-cut-method is explained in detail and the analysis of the synthetic 
crystallization experiments is presented. In the fourth section, the parameter 
optimization is shown for different amounts of data with and without noisy measurement 
signals. In the last section, a continuous crystallization process is designed with the 
estimated kinetic rates and with the initially provided values for comparison. Finally, all 
results are evaluated in a concluding section. 
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2. Generation of in silico process data 
 
For the evaluation of the short-cut-method, in silico data of batch crystallization 
experiments are generated and subsequently analyzed. A one-dimensional PBE system 
is used to create the required information. This ideal case assumes (at first) perfect 
concentration and temperature signals as well as a highly accurate measurement of the 
size distribution during the experiment. The model framework and all necessary process 
and kinetic parameters are explained in the following. 
 
 
2.1. Model framework 
For the crystallization case, the general population balance reduces to equation 2 if 
breakage and agglomeration are neglected, size independent growth and ideal mixing 
without volume contraction due to an occurring solid phase are assumed [12].   
 

( , ) ( , )
( ( ), ( ))

∂ ∂= −
∂ ∂

f t L f t L
G S t T t

t L
 for S ≥ 1 (eq. 2) 

 
Here, L is the internal size coordinate and G represents the growth rate. The 
corresponding driving force for crystal growth in equation 2, is the supersaturation, 
which is defined for ideal solutions [13] as the ratio between the actual concentration, c, 
and the saturation concentration, c*(T), at a certain saturation temperature. 
 

* ( )
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=   (eq. 3) 

 
For the simple batch case, the corresponding mass balance consists of the 
accumulation in the liquid phase and the transport of substance to the solid phase due 
to crystallization. 
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It should be noted that a constant solvent mass is assumed in equation 4. The 
population balance was subsequently discretized applying a finite volume method 
together with the upwind scheme [14], since an analytical solution is not available for 
this PDE system.  
For the resulting ODE system, three initial conditions (IC) are required. It is assumed 
that the seed crystals can be characterized by a perfect Gaussian distribution (eq. 5) 
with a certain mean value, 

Seed
L , and standard deviation, σSeed. Even though the same 

seed mass is used throughout the simulations, the initial distribution is scaled to a 
certain mass, mSeed, with equation 6 since the Gaussian distribution is normalized.  
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Furthermore, it is assumed that the liquid phase is saturated at a certain temperature, 
T0, with a concentration c0 (eq. 8). The occurrence of new crystals due to nucleation is 
introduced as an initial condition at the crystal size L = 0 (eq. 9). Subsequently, all 
conditions are defined for the crystallization case as follows:  
 
IC for S > 1: 
 

( 0, ) ( )
Seed

f t L f L= =    (eq. 7) 
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Similar to [11] (eq. 1), temperature and supersaturation dependent power-law 
approaches with three parameters (eq. 10) are applied to quantify the rates of the 
specific phenomena considered in equations 2, 4 and 9.  
 

32

1
exp( )( 1)

−= − pp
K p S

RT
 for K = G, D, B0 (eq. 10) 

 
Here, p1 is the pre-exponential factor, k0, p2 is usually referred to as the activation 
energy, EA, and p3 is the power law exponent.  
The in silico batch crystallization experiments were predicted as a combination of 
crystallization and dissolution to have information about all three kinetic phenomena 
considered in this study within one experiment.  
At first, after seeding the crystallizer is cooled down linearly until a certain temperature 
difference is achieved. Hence, the driving force will raise and nucleation and growth of 
present crystals will take place. Subsequently, the reactor is heated again with a linear 
temperature ramp back to the starting temperature. The dissolution rate, D, replaces the 
growth rate, G, in equations 2, 4 and 9 in case of undersaturation (S<1). Furthermore, 
the initial conditions (eqs. 7-9) have to be adjusted properly in the model frame work. In 
particular, particles approaching size zero have to vanish from the overall population. 
Hence, individuals leaving the first element of the finite volume grid due to dissolution 
are erased from the entity. 
The whole model (eqs. 2-9) was implemented in Matlab and the solutions were obtained 
via time integration using a Runge-Kutta method of 4th order [15]. All hypothetical 
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experiments were calculated for time steps of 10 s and 2000 finite volume elements of 
the internal coordinate to have moderate numerical diffusion at reasonable 
computational costs. The crystal size coordinate was discretized equidistantly between 
1 µm and 2 mm. 
All necessary kinetic parameters and the process conditions are given in the 
subsequent section. 
 
 
2.2. Model parameters and simulated experimental da ta 
For the simulation of the process data with the model framework introduced before, 
substance characteristics are required such as the solubility, the physical properties and 
parameters for the kinetics. Potassium alum is chosen in the present study as a model 
substance since it is a well-known compound for which the needed data is easily 
accessible. The solubility curve measured in preliminary experiments was approximated 
with a 4th order polynomial (eq. 14) and fitted to own experimental results (Fig. 2).  
Simulations of process trajectories with the PBE model requires compound specific 
characteristics such as physical properties, the solubility and rate laws including the 
parameters for the kinetics of the considered sub-processes. Parameters corresponding 
closely to the well-studied compound potassium aluminum sulfate dodecahydrate 
(potassium alum) were selected in the present study. The solubility curve measured in 
own preliminary experiments [7] was expressed using a 4th order polynomial (eq. 14, 
Fig. 2).  
 

* 2 3 4
,1 ,2 ,3 ,4 ,5S S S S Sc p p p p pθ θ θ θ= + + + +  (eq. 14) 

 

 
 

Fig. 2: Solubility curve of potassium aluminum sulfate dodecahydrate. Stars depict solubility 
measurements and the bold line illustrates the description applying a 4th order polynomial (eq. 
14). 
 
It should be mentioned, that errors of the solubility measurements and the 
corresponding mathematical expression can be a major source for erroneous parameter 
estimates. Therefore, this error influence is discussed in detail in section 4.2.   
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The physical characteristics of the solid phase as well as the solubility parameters, pS,i,  
are given in Table 1. The solid density corresponds to the value in [13] and the volume 
shape factor describes a perfect octahedron, which is the typical crystal shape of 
potassium alum grown from water. 
 
Table 1: Physical properties and solubility parameters of potassium alum. 
 

 
Symbol Value Unit 

Solid density [13] ρsolid 1750 [kg/m3] 

Volume shape factor kV √2/3 [-] 

    

Solub. Parameter 1 pS,1 5.06 [wt-%] 

Solub. Parameter 2 pS,2 0.23 [wt-%/°C] 

Solub. Parameter 3 pS,3 7.76x10-3 [wt-%/°C2] 

Solub. Parameter 4 pS,4 -2.43x10-4 [wt-%/°C3] 

Solub. Parameter 5 pS,5 4.86x10-6 [wt-%/°C4] 

 
Several authors investigated the crystallization kinetics of potassium alum over the past 
decades either with empirical approaches [11, 16] or based on thermodynamics [17]. In 
this article, kinetic equations and parameters are applied related to results of the 
mentioned own preliminary experimentally studies applying the short-cut-method 
analyzed here in more detail [7]. The parameter of the assumed power law sub-models 
(eq. 10) are listed in table 2. They were utilized to describe growth, nucleation or 
dissolution within the PBE model to generate transients of in silico batch experiments.   
 
Table 2: Provided kinetic parameters of the pre-specified rate laws (eq. 10) for growth, 
nucleation and dissolution to be recovered by the short-cut-method. p1 - pre-exponential factor, 
k0; p2 - activation energy, EA; p3 - exponent. 
 

Kinetic  p1 [m/s; 1/s] p2 [J/mol] p3 [-] 

Growth G 5x107 75x103 1.4 
Nucleation B 0 1x1015 50x103 1.5 
Dissolution D 6.5x10-6 100 1.1 

 
To predict in silico transients it was assumed that the processes of interest occur in a 
temperature range between 293 K to 323 K. In accordance to the preliminary studies, 
three different starting points with respect to the initial temperature of the batch runs 
were chosen, namely 303 K, 313 K and 323 K, in order to cover a significant range of 
supersaturation.   
All three simulations of seeded batch runs started from solutions saturated at the just 
mentioned initial temperatures. With respect to modulated temperature changes, simple 
linear cooling ramps were considered. In this case study, the cooling rates were fixed at 
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-5 K/h. This provided sufficient supersaturation, required for the identification of the 
kinetic parameters. Higher cooling rates would lead to severe nucleation, hampering the 
required observation of the growth rate of the seed crystals.  
Immediately after a total cooling by 10 K, in order to investigate the dissolution rate 
within the same run, linear heating was initiated until the initial saturation temperature 
was reached again. To generate an appropriate undersaturation, the heating rate was 
set to 20 K/h since dissolution proceeds faster than crystal growth.  
The CSD of the initial seeds was assumed to have a Gaussian distribution (eq. 5) with a 
mean length of 265 µm and a standard deviation of 20 µm. This scenario corresponds 
to a sieve fraction between 150 µm and 400 µm. The initial mass of the crystal phase 
was adjusted in the simulations to 0.57 gSeed/kgSolvent (5% of the expected product mass 
on average). Based on the available knowledge regarding the specific system [7], this 
ensures a good observability of the growth process while the initial crystal surface area 
is not strongly limiting the attainable supersaturation.  
Except for the initial temperatures all assumed parameters, which are summarized in 
table 3, were kept constant during all experiments. The temperature, concentration and 
supersaturation levels for all three simulations are depicted in figure 3. 
 
Table 3: Process conditions for the simulated batch crystallizations. All parameters were kept 
constant except the initial saturation temperature. Exp. 1: T0 = 303.15 K; Exp. 2: T0 = 313.15 K; 
Exp. 3: T0 = 323.15 K. 
 

Parameter  Value  Unit  

Saturation temperature, T 0
 303, 313, 323 [K] 

Final temperature, T end
 293, 303, 313 [K] 

Initial supersaturation, S 0 1 [-] 
Cooling ramp -5 [K/h] 
Heating ramp 20 [K/h] 
Seed mass, m Seed 0.57x10-3 [kgSeed/kgSolvent] 

Mean seed length, 
Seed

L  265 [µm] 

 

 
Fig. 3: Temperature, concentration and supersaturation of the simulated batch experiments. Exp. 
1: T0 = 303 K; Exp. 2: T0 = 313 K; Exp. 3: T0 = 323 K. 
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The results shown in figure 3 reveal, that all three sets of process parameters were well 
selected to cover reasonable ranges super- and undersaturation during the cooling and 
heating ramps, respectively. This selection was guided by the available a priori 
knowledge about the system considered [7]. Nevertheless, if first estimates of the 
crystallization kinetics exist, efficient tools [18, 19, 20] can be utilized to improve the 
selection of process parameters and to enhance the accuracy of the subsequent 
parameter optimization by setting convenient experimental conditions.  
 

 
 
Fig. 4: Trajectories of the three in silico batch experiments. Dashed lines illustrate the maximum 
ranges of temperature and super-/ undersaturation covered, for which parameters can be 
estimated in corresponding rate laws. 
 
The covered super- and under-saturation, together with the process temperatures, 
define the ranges, in which kinetic parameter can be estimated (Fig. 4) exploiting the 
available quasi-experimental data. In case of a successful fit, these ranges also limit the 
region of validating the rate laws. 
In the following, the predicted driving forces, process temperatures and the evolutions of 
the solid phase as simulated for the three runs will be used to re-estimate the pre-
specified parameters of the assumed corresponding kinetic laws (eq. 10) for the 
different sub-steps growth, dissolution and nucleation.  
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3. Data processing for the short-cut-method 
 
As described, the short-cut-method is based on observations of the evolution of the 
particulate and continuous phases in batch experiments. Information regarding the 
liquid phase, i.e. supersaturation and temperature level, are applied together with 
transients of crystal lengths to evaluate growth and dissolution kinetics. Additionally, the 
nucleation kinetics can be quantified evaluating the observed changes of the particle 
numbers instead.  
However, it is usually not possible in real processes to measure the CSD inline and 
continuously during the entire experiments. Therefore, a discrete sampling of the solid 
phase is typical and assumed here that yields only a few distinct crystal size 
distributions at discrete times during the process (Fig. 5 b). Subsequently, the essential 
information about growth dissolution and nucleation have to be extracted using only 
these few discrete CSDs.  
 

   
 
Fig. 5: a): Data utilized for the parameter estimation of the Gaussian distribution exemplarily 
shown for sample one and five. Dots: smaller inflection points of the grown seed fractions; black 
lines: initial seeds and data of sample one and five utilized for the parameter estimation. b): Five 
sampled crystal size distributions (grey dashed lines) with labeled mean lengths of the growing 
seed population (Exp. 3). The underlying black solid lines illustrate the Gaussian distribution 
fitted to the grown seed fractions. 

 
To characterize the growth behavior it is sufficient to follow the mean length of the 
growing seed fraction (eq. 15).  
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This mean length is a characteristic for the growth of the entire crystal population, which 
is not influenced by growth rate dispersion, if size independent growth is assumed. 
However, it is practically impossible to define the correct Lmin and Lmax that corresponds 
only to the growing seed fraction from an entire CSD as nucleation, breakage or 
agglomeration can be involved.  
Nevertheless, it is assumed that the distribution function, which describes the seeds 
initially best, e.g. a Gaussian distribution, is conserved during the crystallization. It is 
then convenient, to fit the mean value and standard deviation of this function (eq. 5) 
using a part of the grown seed fraction (black lines indicate the utilized data for sample 
one and five in Fig. 5 a). In the case of simulated datasets, it is straight forward to 
identify this seed crystal distribution from the simulation results, as they are always the 
largest sub-population in the entire CSD. Classification between the seed crystal 
population from nucleated crystals was in this work ensured by considering only the 
crystal sizes that were larger than the smaller inflection point of the grown seed 
distribution (dots in Fig. 5 a) that was automatically detected for the parameter fitting. In 
case of real CSD measurements, this classification is, however, not feasible and is 
therefore discussed in detail in the second part of this article series. Subsequently, 
distortions due to nucleation (and breakage/ agglomeration for real experiments) can be 
attenuated by application of the estimated Gaussian distributions (black lines in Fig. 5 b) 
and the corresponding parameters.  
After a successful fit of the distribution function to the growing seed fraction of each 
CSD, a set of values for the parameters L  and σ is obtained. This finally yields the 
transient evolution of the mean length of the growing seed fraction and therefore the 
required objective information about the growth kinetics, L exp(t, S, T). A similar 
procedure can be applied during the dissolution of the crystal population, to acquire the 
necessary information for the corresponding dissolution kinetics.  
Furthermore, the measured CSDs are integrated yielding the total particle number, 
Nexp(t, S, T). The increase of particles while the solution is supersaturated can be 
utilized for the determination of the specific nucleation sub-model (e.g. eq. 10).  
The simulated data of all three experiments were sampled equidistantly 5 times while 
super- or under-saturation was present. Hence, small deviations with respect to time 
occur since the change from crystallization to dissolution differs between the 
experiments. The acquired CSDs were processed as described above to obtain the 
necessary data (Points in Fig. 6 and 7) for the subsequent parameter estimation.  
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Fig. 6: Sampled mean length of the growing/ dissolving seed fraction from the size distributions, 
which serve as input information for the growth and dissolution parameter estimation. Points: 
Mean lengths of the seed fraction of the sampled CSD; Grey lines: Trends for the entire 
experiments. 

 

 
Fig. 7: Sampled particle number evolution from integrated number density distributions, which 
serve as input information for the nucleation parameter estimation. Points: Total particle 
numbers of the sampled CSD; Grey lines: Trends for the entire experiments. 
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4. Parameter estimation 
 
At first, it will be shown that the kinetic parameters given in table 2 can be re-estimated 
with the data set discussed in section 3. The objective functions, applying a least 
squares method for the three experiments (nExp = 3) with five samples (nSamples = 5), are: 

( )2

, , exp, ,
1 1

Exp Samplen n

G sim i j i j
j i

OF L L
= =

= −∑∑   for S ≥ 1  (growth) (eq. 16) 

 

( )2

, , exp, ,
1 1

Exp Samplen n

B sim i j i j
j i

OF N N
= =

= −∑∑  for S ≥ 1  (nucleation) (eq. 17) 
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= −∑∑  for S < 1 (dissolution) (eq. 18) 

The values L sim and Nsim in these objectives can be calculated by: 
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0
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sim seed
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t

d

sim S
L L k dt  for S < 1 (eq. 21) 

 
where 

1<S
L stands for the last mean length of the grown seed fraction before 

undersaturation is established. All kinetic sub-models (eqs. 19-21) were fitted to the 
corresponding data separately, applying the Nelder-Mead simplex algorithm [21] with a 
stochastic generator for the initial guess. The range of the initial values of the different 
parameters was chosen based on experience. Thereby, three parameters were 
estimated for each mechanism separately evaluating different data sets. The obtained 
parameters minimizing all objective functions are summarized in table 4 (compare table 
2). 
 
Table 4: Values of the estimated kinetic parameters (eq. 10) and the corresponding average 
errors (eq. 23) for growth, nucleation and dissolution applying the data of 3 in silico experiments 
where 5 samples were taken. p1 - pre-exponential factor, k0; p2 - activation energy, EA; p3 - 
exponent. 

Kinetic  free 
parameters  p1 [m/s; 1/s] p2 [J/mol] p3 [-] 

Error average [%]  
(Eq. 23) 

Growth G 3 Est. 4.6 x107 74.8 x103 1.39 0.04 

  Orig.* 5 x107 75 x103 1.4  
Nucleation B 0 3 Est. 8.9 x1014 49.8 x103 1.49 0.1 

  Orig.* 1 x1015 50 x103 1.5  
Dissolution D 3 Est. 5.9 x10-6 2.1 x10-4 1.11 0.16 

  Orig.* 6.5 x10-6 100 1.1  

*Table 2 



15 
 

As expected, small deviations occur between the given kinetic parameters and the re-
estimates even with undisturbed simulated data due to the well-known correlation 
between the parameters in power laws [22, 23]. Furthermore, numerical errors resulting 
from the discretization, the tolerances of the applied Runge-Kutta-method and the 
optimization routine as well as errors from the adaption of the seed-peak affect the 
parameter estimation. 
However, the deviation of p2 of the dissolution kinetics is conspicuous. Nevertheless, 
the absolute error of the activation energy of all three mechanisms is in the same range. 
Furthermore, the initial value of 100 J/mol for p2 represents almost temperature 
independency of the dissolution kinetics. Hence, the large relative error of p2 of this 
kinetics is not significant since also the deviation of the overall dissolution kinetics is 
very small as well (table 4, Erroraverage = 0.16%).  
The left hand side of figure 8 shows the corresponding logarithmic objective function for 
growth calculated for various pre-exponential factors and various exponents, 
log(OFG(kg,0,g). The logarithmic objective growth function calculated for different pre-
exponential factors and for different activation energies, log(OFG(kg,0,EA,g), is depicted 
on the right side of figure 8. 
 

 
 
Fig. 8, left: Logarithmic dependence of the objective function on the pre-exponential factor and 
the exponent in eq. 10 with constant estimated activation energy; Right: Logarithmic objective as 
a function of the pre-exponential factor and the activation energy of eq. 10 with constant 
estimated exponent (activation energy values of the abscissa are chosen to provide a good 
visibility of the optimum). Bold black lines: Individual 95% confidence intervals. 
 
In both cases, the objective function depicts straight contour lines in the logarithmic 
diagram due to strong correlation of the corresponding parameters. Particularly the 
objective function calculated for different pre-exponential factors and activation energies 
(Fig. 8, right) shows an elongated valley that is unfavorable for parameter identification. 
Additionally, this finding emphasizes that the pre-exponential factor is more sensitive to 
perturbations than the activation energy or the exponent. An approach to improve the 
issue of correlated parameters in temperature dependent power law kinetics is given in 
[22, 23]. It was not applied here due to the different focus of the present study.  
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for K = G, B0, D (eq. 10); Sk = Smin...Smax and Tm = Tmin…Tmax. 
 
Nevertheless, the deviation (eq. 22) between the estimated and the given kinetic 
parameters is rather small as shown in figure 9. The depicted errors are 0.04% for 
growth, 0.1% for nucleation and 0.16% for dissolution on average (eq. 23). Thus, kinetic 
parameters can be re-estimated applying the short-cut-method via this optimization 
procedure. Furthermore, the information extracted from the CSD was fitted to every 
mechanism separately. Thus, the objective function does not depend on the solution of 
a full population balance model. Only the nonlinear correlations in the equations 19-21 
are applied, which decreases the computational effort during the parameter estimation 
significantly.  
 

     

 
Fig. 9: Deviations (eq. 22) between the estimated and the pre-specified kinetics. a): Growth; b): 
Nucleation; c): Dissolution; White dashed lines: Transient temperature and supersaturation of the 
experiments used (compare Fig. 4); Points: Sample times of the solid phase. 
 
 
4.1. Sub-model reduction 
In the previous section, the ideal case was considered, where the structure of the 
“correct” rate laws is known (eq. 10). Commonly however, the kinetic mechanisms are 
unknown, when real experimental data are processed. In order to evaluate the 
magnitude of resulting errors, which occurs when a non-adequate kinetic law is 
assumed, the rate law given by equation 10 is simplified and applied to analyze the 
same in silico data as applied in the previous section. Thereby, the number of free 
parameters is reduced and thus, the complexity of the estimation problem is decreased. 
Two simplifications are chosen as examples. In the first scenario, a linear 
supersaturation dependence is assumed (p3=1, eq. 24). In the second very simple 
scenario additionally temperature independent kinetics are assumed (p2=0, p3=1, eq. 
25). Other scenarios are also possible but are not considered here. 

a) b) c) 
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 for K = G, D, B0 (eq. 24) 

 

1
( 1)= −K p S  for K = G, D, B0 (eq. 25) 

 
The two simplified kinetic sub-models (eq. 24 & 25) were applied to analyze the same 
synthetic data of the three experiments assuming again that five samples were taken. 
The errors in the quantified rates for the estimated kinetics with two free parameters 
(eq. 24) and one free parameter (eq. 25) are shown in figures 11 a)-c) and figures 11 d)-
f), respectively. The errors increase with lowering the complexity of the kinetic approach 
as expected (compare Fig. 11 a) & d)). The deviations are particularly high, when the 
kinetics is rather fast as well as at the borders of the considered supersaturation and 
temperature ranges. Furthermore, the error of the dissolution kinetics is rather low 
compared to the errors of the nucleation and growth kinetics for both simplifications 
considered (eq. 24 & 25, table 5). This can be explained by the low supersaturation and 
temperature dependence of the original dissolution kinetic. 
 

 

 

 

  
Fig. 10: Deviations (eq. 22) between the estimated kinetics with two free parameters (eq. 24 and 
parameters in table 5) and the given kinetics. a): Growth; b): Nucleation; c): Dissolution; 
Deviations (eq. 22) between the estimated kinetics with one free parameters (eq. 25 and 
parameters in table 5) and the given kinetics. d): Growth; e): Nucleation; f): Dissolution; White 
dashed lines: Transient temperature and supersaturation of the experiments used; Points: Sample 
times of the solid phase or times where CSD information is available for the parameter 
estimation. 
 

a) b) c) 

d) e) f) 
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The same holds for the average deviation (eq. 23) of the simplified estimated kinetics. 
The average error (compare table 4 and table 5) increases by a factor of 10 for 
dissolution if the supersaturation dependency is less pronounced (eq. 24) and by a 
factor of 50 to 70 for growth and nucleation. If additionally the temperature dependence 
is neglected as well (eq. 25), the average error doubles again for the latter two kinetic 
rates. Consequently, the deviation of the dissolution remains nearly constant as the 
temperature dependence is rather low (see table 2 for comparison). 
 
Table 5: Values of the estimated kinetic parameters (eqs. 24, 25) and the corresponding average 
errors (eq. 23) for growth, nucleation and dissolution with a linear temperature dependent and 
independent kinetic approach. The data of three experiments, where five samples were taken, 
was applied. p1 - pre-exponential factor; p2 - activation energy; p3 - exponent. 
 

Kinetic  
free 

parameters p1 [m/s; 1/s] p2 [J/mol] p3 [-] 
Error average [%]  

(eq. 23) 
Growth G 2 6.0x105 61.4x103 1 2.9 

Nucleation B 0 2 1.9x1012 32.7x103 1 5.3 
Dissolution D 2 6.8x10-6 1.3x103 1 1.4 

Growth G 1 1.9x10-6 0 1 10.2 
Nucleation B 0 1 4.9x105 0 1 10.1 
Dissolution D 1 4.1x10-6 0 1 1.5 

 
Even though an average error of 10% for the most simple linear rate law (eq. 25) is 
rather low, a fair evaluation is only possible if the kinetic rates themselves are compared 
to the considered supersaturation and temperature ranges.  
 

     
 
Fig. 11: Comparison of growth rates for different supersaturation and different temperature. Left: 
Comparison of the given kinetic (colored surface) with the estimated kinetic containing one free 
parameters (eq. 25, black surface). Right: Comparison of the given kinetic (colored surface) with 
the estimated kinetic containing two free parameters (eq. 24, black surface).  
 
Figure 11 (left) shows that the linear kinetics intersects on a single curve with the 
original growth kinetics and strongly deviates otherwise. In contrary, a good description 
is achieved if the temperature dependence is conserved (eq. 24; Fig. 11, right). Hence, 
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a model prediction with this simplified kinetic approach would also agree rather well with 
experimental measurements.  
In the following, to mimic unavoidable errors in the experimental data, the accuracy of 
the proposed short-cut-method is investigated by evaluating measurement signals that 
exhibit deviations from the perfect in silico data.  
 
4.2. Influence of measurement error 
In contrast to simulated (i.e. in silico) data, experimental measurements have limited 
precision, e.g. for the determination of the solubility curve and the resulting 
supersaturation level. Several distortions or errors occur due to manual mistakes during 
the experimental procedure, the accuracy of measurement technology or random 
deviations. Hence, the results of the data analysis and processing will be erroneous as 
well. Therefore, the error propagation for the presented short-cut-method has to be 
investigated. At first the amount of samples and experiments is kept constant but two 
different noisy measurements are assumed. 
Essential for the estimation scheme are the information of the CSD as well as the 
concentration and temperature levels of the liquid phase. The precision of the entire 
particle size distribution is strongly dependent on the applied measurement technique. 
For example, the correct amount of very small particles is hardly detectable by a sieve 
analysis. On the other hand, reflections and scattering of big crystals will influence the 
accuracy of laser diffraction measurement techniques. A general and precise simulation 
of these errors is impossible. Thus, a generic error will be assumed for both required 
information of the CSD, the crystal number and the mean length evolution of the seed 
fraction. The transient data point will be distorted randomly with a maximal deviation of 
5% of the actual value (Fig. 12, left).  
Another important information for kinetic estimation methods is the super- or 
undersaturation. Here, the precision of the concentration measurement and the 
accuracy of the solubility curve are decisive. Therefore, a stochastic error is assumed 
for the concentration and the temperature information for the solubility data points 
depicted in figure 2. Subsequently, a new solubility curve (eq. 14) was fitted to the faulty 
data and applied for the parameter estimation. A maximal stochastic error of 1% was 
assumed for the solubility analysis based on own experience. Furthermore, a noise 
level of 1% was applied to the concentration signal. An example for the resulting 
distorted supersaturation signal is depicted in figure 12 (left). 
It can be expected that also an error of the temperature information influences the 
subsequently estimated kinetic rates. However, resistance temperature measurement 
devices are quite precise and the impact should be rather small in comparison to the 
other defective signals considered. Therefore, this case is not investigated in the 
present study. 
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Fig. 12: Example of randomly distorted measurement signals. Left: Supersaturation signal, 
which was created by a stochastic fluctuation of the concentration signal in combination with a 
deflected saturation curve. Right: Mean length of the seed fraction of the simulated experiment 1. 
The black lines depict the maximum error, which was randomly added to the original data.  
 
It should be noted, that the assumed stochastic errors do not cover all effects which can 
occur in wet-lab experiments. Nevertheless, they serve as an example to investigate 
how robust the short-cut-method for different kinetic sub-models (eqs. 10, 24, 25) is. All 
parameters of all models were estimated 10 times for different erroneous measurement 
information. The mean of the average errors (eq. 23) with respect to the original kinetics 
are shown together with the corresponding standard deviation in figure 13.  
 
 

 
 

Fig. 13: Resulting average kinetic errors of the three kinetic phenomena calculated according to 
eq. 23 for different distorted measurement signals. The kinetic parameters were estimated 
applying the short-cut-method together with the original signal (“None”), the distorted seed 
mean length and crystal number (“L & N”), the erroneous supersaturation signal (“S”) or both 
errors (“Both”). a): Average errors for all three estimated kinetics applying an approach with 
three free parameters (eq. 10). b): Average errors for all three estimated kinetics applying an 
approach with two free parameters (eq. 24). c): Average errors for all three estimated kinetics 
applying an approach with one free parameter (eq. 25). The error bars depict the standard 
deviation of 10 different estimates with randomly generated distorted signals. 
 

a) b) c) 
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It can be seen that the identification of the correct kinetic model parameters (eq. 10, Fig. 
13 a) is quite sensitive to measurement errors. Furthermore, it can be concluded that a 
noisy supersaturation signal (“S”) has a higher impact compared to noise applied to the 
crystal length and number information (“L & N”). An exception is the average error of the 
dissolution kinetics that is rather sensitive towards deviations in the evolution of the 
mean lengths of the seed fraction. It can be supposed that the stronger dynamic of the 
data is one reason for this fact since the dissolution is rather fast compared to 
nucleation or growth. Furthermore, this relation can be found also for the other model 
approaches. If the supersaturation signal and the crystal length and number information 
are erroneous (Erroneous signal “Both”) for the parameter estimation a simple 
superimposition of the single errors can be observed.  
The trends described for the model approach with three free parameters become 
apparent for the other model approaches as well (Fig. 13 b) and c). Nevertheless, a 
decreasing amount of free parameters, which have to be estimated, leads to higher 
robustness if measurement errors occur. For example, the kinetic approach with two 
free parameters (eq. 24, Fig. 13 b) has lower average kinetic errors and lower standard 
deviations if noise is applied to both measurement signals. 
In contrary, almost no change is observed for the growth and nucleation kinetics with 
one free parameter (eq. 25, Fig. 13 c). The initial kinetics cannot be described by a 
linear approach and thus, measurement errors will have a rather low influence the error 
propagation in this case. The dissolution kinetics can be reflected by a linear approach 
since it has a rather low supersaturation and temperature dependence. Thus, the effect 
of erroneous measurement signals is visible in that case. 
The mean parameters, which were estimated with the defective transient measurement 
signals, are listed in table 6 together with the estimated parameters applying the original 
signals for all three model approaches. It can be seen that none of the parameters can 
be re-estimated exactly except the kinetic approach with one single free parameter. The 
reason is the correlation of the corresponding parameters of the applied power laws 
(eqs. 10 and 24). Hence, erroneous measurement information induces a strong shift of 
the global minimum of the objective function and therefore completely different 
parameter combinations. Furthermore, local minima, which can occur due to the 
randomized errors, have to be taken into account. Hence, the high standard deviation 
especially of the pre-exponential factor is obvious. 
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Table 6: Estimated kinetic parameters for growth, G, nucleation, B, and dissolution, D, rate. The 
mean values of the parameters of the three different considered approaches (eqs. 10, 24, 25) are 
given, which were estimated applying the perfect (Orig.) and the distorted (Error) measurement 
signals. p1 - pre-exponential factor; p2 - activation energy; p3 - exponent; σ - absolute standard 
deviation. 
 

Free 
parameter 

Kinetic Signal 
p1,mean 

[m/s; 1/s] 
±σ p2,mean 

[J/mol] 
±σ p3,mean 

[-] 
±σ 

3 G Orig.* 5x107 
 

75x103 
 

1.4 
 

Error 2.1x108 6.6x108 62.7x103 9x103 1.2 0.4 

B Orig.* 1x1015 
 

50x103 
 

1.5 
 

Error 2.9x1013 4.8x1013 31.8x103 8.8x103 1.2 0.5 

D Orig.* 6x10-6 
 

100 
 

1.1 
 

Error 1.9x10-4 3.3x10-4 7.3x103 5.9x103 0.8 0.3 

2 G Orig.** 6x105 
 

61.4x103 
   

 Error 1.3x1010 4x1010 58.7x103 14.9x103 
  

B Orig.** 1.9x1012 
 

32.7x103 
   

Error 9.1x1013 2.9x1014 27.3x103 10.1x103 
  

D Orig.** 6.8x10-6 
 

1.3x103 
   

Error 2.1x10-4 3.1x10-4 5.8x103 5.7x103 
  

1 G Orig.** 1.9x10-6      
Error 1.9x10-6 1.5x10-7 

    
B Orig.** 4.9x105 

     
Error 4.9x105 3.8x104 

    
D Orig.** 4.1x10-6 

     
Error 4.2x10-6 4x10-7 

    
* compare table 2 
**  compare table 5 
 
However, a higher accuracy of the estimated kinetic rates can be expected if more 
information is provided for the short-cut-method. Hence, the impact of the amount of 
experiments and CSD samples must be investigated as well. Therefore, the evolution of 
the average error (eq. 23) between the given and the estimated kinetic is investigated 
with respect to an increasing amount of experimental data. Figure 14 a) shows, that at 
least three experiments and three CSD samples are necessary for a kinetic approach 
with three free parameters (eq. 10) to achieve a low average error. However, a further 
increase of CSD samples does not necessarily result in a better estimate. It can be 
seen that even with 12 CSD samples a worse estimate is possible compared to the 
case where four CSD samples are applied.  
Regarding this fact, there is evidence that four samples of one single experiment is in 
general not sufficient for the estimation of kinetic rates as suggested by Yokota et al. 
[11], if the precision of the measured quantities is not high enough.  
In contrast, a kinetic approach with two free parameters (Fig. 14 b) shows already a 
good fit if only two experiments and at least two CSD samples are provided. 
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Furthermore, the kinetic approach with one free parameter (Fig. 14 c)) will not give a 
much better result regardless how much information is provided. 
It should be mentioned, that the conclusions drawn above are distinct for the specific 
randomized errors considered. The results will differ significantly if, e.g. static or 
oscillating errors, are considered as well. 

 

 
 
 

Fig. 14: Average deviations (eq. 23) between the estimated growth kinetics and the given 
kinetics applying different sub-models and different amounts of experiments and CSD samples. 
a): Estimated growth approach with 3 free parameters (eq. 10); b): Estimated growth approach 
with 2 free parameters (eq. 24); c): Estimated growth approach with 1 free parameter (eq. 25). 
 
The concept of the short-cut-method is to apply the least amount of experiments and 
CSD samples to reduce the effort for the quantification of kinetic rates. However, a 
general conclusion cannot be stated since the necessary amount of experimental 
information depends on the complexity of the original kinetics, the precision of the 
measurement devices and the amount of model parameters to be determined. For the 
specific constellation considered it can be stated that two experiments with three CSD 
samples are sufficient to determine the parameters of the growth, nucleation and 
dissolution kinetic if a model with two free parameters is assumed. This yields an 
average error of 5% with respect to the original kinetics and the considered range of 
supersaturation and temperature (eq. 23).  
However, in general the average deviations and the precision of the parameters are not 
of major interest. Crucial for the short-cut-method is the efficient quantification of kinetic 
rates to optimize existent or design new crystallization processes. Hence, the effect of 
the discussed deviations is evaluated with respect to the performance of a simulated 
crystallization process in the next section. 
  

a) b) c) 
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5. Application of the prediction method and design of a continuous 
crystallization process 

 
To evaluate the quality of the initially assumed parameters and the parameters 
estimated utilizing the short-cut method, they are used in this section to predict another 
industrially relevant type of crystallization process. Therefore, a mixed-suspension, 
mixed-product-removal (MSMPR) process is considered. It can be assumed, that 
deviations from the original kinetics will have a larger impact on the process results 
compared to the batch case due to the continuous operation.  
The batch crystallizer model introduced in chapter 2 (eqs. 2 and 4) is modified to 
describe the continuous crystallization process (eqs. 26 and 27). The well-known model 
[12] additionally assumes a non-classifying product withdrawal and a crystal-free inlet 
stream. All other assumptions and conditions, e.g. the initial seeding, are identical to the 
batch crystallizer model. 
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If the original kinetics for growth and nucleation (Table 2) are applied, the product 
quality, e.g. the mean size (eq. 15), and the outlet concentration can be calculated for 
various combinations of supersaturation, S, temperature, T, and mean residence time, τ 
(eq. 28). Figure 15 illustrates these calculations with respect to the mean product crystal 
size. The bold black lines depict in the τ-S-plane the mean product levels for the 
considered supersaturations and mean residence times at constant temperature. 
Whereas, the S-T-plane depicts the mean product levels for the considered 
supersaturation and temperatures at constant mean residence time. It can be seen for 
the considered range of the process variables, that the influence of the crystallization 
temperature is higher than the effect of supersaturation and the mean residence time 
due to the strong temperature dependency of the growth and nucleation kinetics. 
Furthermore, smooth curves result for the contours of the product quality for the simple 
power-law kinetics chosen. 
Additionally, if the total crystal mass inside the reactor drops below the initial seed mass 
no steady-state is achievable as the crystallizer would run out of solid material. This 
assumption is necessary since secondary nucleation yields positive values independent 
of the process conditions. Thus, even if the mean residence time approaches zero and 
the supersaturation approaches one, a continuous crystallization would be possible, 
which is not feasible. 
Three different combinations of temperature, supersaturation and mean residence time 
were chosen leading to different steady-states, which serve for the comparison (Table 
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7, black dots in Fig. 15). Considering the trajectories of the batch experiments (Fig. 15 
right) these combinations are in the range of the observed supersaturation and 
temperature. Nevertheless, for point two and three the highest deviations are expected 
as they are near the border where the estimated kinetics is assumed to be valid. For 
every combination of process parameters, the continuous crystallization was simulated 
for a span of 10 mean residence times. This ensures steady state operation that was 
reached after 5-8 mean residence times for the applied conditions. Subsequently, the 
model approaches with three, two and one free parameters (eqs. 10, 24, 25) is applied 
and the mean product sizes as well as the outlet supersaturation are compared to the 
original kinetics. It should be mentioned, that the different parameter combinations 
resulting from the 10 randomly erroneous supersaturation and CSD information are 
applied and not their mean values (Table 6).  

 
Table 7: Tested process variables combinations of the different steady-states. 

 T [K] S [-] τ [h] 

P1 300 1.027 0.42 

P2 300 1.053 0.83 

P3 322 1.027 0.83 

 

 
 

Fig. 15 Left: Mean product size (eq. 15) of a continuous crystallization process applying the 
original kinetic parameters and the kinetic law  of eq. 10. Bold black lines: Contour lines of the 
mean product size with some indicated values. Red dashed line: Assumed border of achievable 
steady-states with respect to the process variables. Right: Tested process parameter combinations 
for the evaluation of the quality of the kinetics in context with the trajectories of the simulated 
batch experiments. Points: Indications of tested process parameter combinations for the 
evaluation of the quality of the kinetics, which were estimated applying distorted measurement 
signals. 
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Table 8 shows the results of the continuous crystallization simulations for the three 
operating conditions and the different models. The comparison between the original and 
the estimated kinetics shows that the outlet supersaturation and the mean product size 
are well predictable with the model approaches consisting of two and three free 
parameters (eqs. 10, 24). The differences of the mean crystal size (product quality) are 
3.9% and 1.8% on average. Furthermore, the predictions of the final supersaturation 
and solute concentration (not shown in table 8) exhibit an average error of 0.1%. Thus, 
the estimated kinetic parameters are applicable to predict and analyze the considered 
continuous crystallization process even though the parameter estimation was done with 
faulty measurement signals. The linear model approach deviates the most with around 
1% regarding the outlet supersaturation and with nearly 25% with respect to the product 
mean size. In summary, all kinetic approaches are able to predict the final liquid 
composition of the steady-states rather precisely. With respect to the product quality 
deviations are higher using the linear approach, but much lower with the more complex 
models.  

 
Table 8: Results of the continuous crystallization process simulation for three different 
combinations of process variables. Depicted are the mean supersaturation and the mean product 
size (eq. 15) from the steady-state using the original and the estimated kinetics, which were 
optimized (eqs. 10, 24, 25) with different distorted measurement signals (compare Table 6). σ - 
Absolute standard deviation. 
 

Set 
point 

Free 
parameter 

(eq.) 
Send  ±σ [-] µend [µm]  ±σ [µm] 

P1 Orig. 1.025 
 

39.5 
 

 3 (eq. 10) 1.024 0.002 40.8 7.8 

 2 (eq. 24) 1.024 0.001 43.8 3.6 

 1 (eq. 25) 1.019 0.001 57.5 1.7 

P2 Orig. 1.025 
 76.1  

 3 (eq. 10) 1.023 0.006 75.9 3.6 

 2 (eq. 24) 1.021 0.002 76.8 2.7 

 1 (eq. 25) 1.015 0.001 86.2 0.1 

P3 Orig. 1.008 
 

102.2 
 

 3 (eq. 10) 1.008 0.003 100.1 4.7 

 2 (eq. 24) 1.006 0.001 102.9 3.3 

 1 (eq. 25) 1.014 0.001 80.6 1.5 
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6. Conclusion 
 
In summary, the presented short-cut-method is capable of quantifying growth, 
nucleation and dissolution rates for the here presented systems. It could be shown that 
a sporadic sampling of the solid phase is sufficient to follow the evolution of the crystal 
phase with respect to the total number and the enlargement of the seed crystal fraction. 
In the following, the original kinetic parameters were re-estimated with this sparse 
information at high precision.  
The required flow of information of the short-cut-method is illustrated in figure 16. 
 

 
 

Fig. 16: Scheme of the proposed short-cut method. 
 
The sampled crystal size distributions from the seeded batch experiments are analyzed 
regarding the grown seed fraction and the total particle number. These data serve as 
the experimental input values for the subsequent quantification of the rate law 
parameters. The super- or undersaturation is calculated based on the solubility curve 
together with the corresponding temperature and concentration signal. Finally, 
appropriate sub-models are chosen to calculate theoretical rates with the data of the 
liquid phase and the comprised parameters are estimated by comparison with the 
experimental information.  
However, the correct kinetic approaches and their complexity are usually unknown for 
new substances and thus simplifications of the initial kinetics are compared in this work. 
It can be stated that a simplification of the kinetic law is justified if the main 
dependencies are conserved. An oversimplification will lead to rather high uncertainties 
of the model predictions. But several kinetic models can be evaluated efficiently with the 
here proposed short-cut-method since the computational effort of the estimation routine 
is rather low.  
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Afterwards, the synthetic data was distorted randomly to simulate measurement errors 
as well as to quantify the error propagation for the estimation procedure. It was found 
that a precise supersaturation signal is most important to achieve a correct fit of the 
kinetics. Furthermore, it could be shown that the more complex model approach was 
rather sensitive to erroneous input signals. Eventually, if all measurement errors were 
considered together, the models with two and three free parameters exhibited the same 
quality.  
Furthermore, the data amount, which is provided for the optimization routine, is also 
decisive for the resulting accuracy if erroneous measurement signals are involved. It 
was shown, that for the considered situation at least three experiments for the model 
approach with three free parameters and two experiments for the model approach with 
two free parameters together with three CSD samples are necessary to achieve a good 
estimation result.  
A continuous crystallization process was analyzed with the different sets of estimated 
parameters since the main focus of the short-cut-method is to efficiently evaluate 
crystallization process performances. Three different process variable combinations, 
which led to three different steady-states, were chosen to evaluate the quality of the 
estimated kinetic rates in case of faulty measurement signals. Even though, the 
estimated kinetics with three and two free parameters deviated from the original kinetics 
on average by 8%, the deviation from the expected steady-state condition was only 
0.1% with respect to the liquid phase and 3-4% with respect to the product quality. This 
is only one possible application where the short-cut-method serves for parameterizing 
the overall process model. Generally, the proposed method can be applied to every 
crystallization processes described by one internal coordinate (e.g. particle size). It 
should be emphasized, that the seed population serves as a benchmark for the whole 
crystal ensemble. A different growth behavior due to growth rate dispersion e.g. 
exposed by nucleated particles will not be detected. Furthermore, the characteristic 
length of the particles is among other things mainly defined by the CSD measurement 
technique. A Laser diffraction measurement of a certain crystal population yields a 
different size distribution than e.g. sieve analysis. Hence, the kinetic investigations have 
to be carried out with one and the same method with the characteristic length defined by 
the measurement principle. 
The proposed short-cut-method is capable of estimating and quantifying rates with 
various kinetic model approaches. Furthermore, it provides reliable kinetic parameters, 
which can be validated with corresponding in silico experiments. Additionally, the 
numerical effort is reduced because every kinetic approach is estimated separately and 
there is no need to use the population balance model. The experimental proof of this 
procedure is the task of a second paper. 
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Symbols & abbreviations 

 
Avg. error [-]  Average error 
abs  [-]  Absolute value 
B0  [1/s]  Nucleation rate 
b  [-]  Nucleation exponent 
c  [-]  Concentration (mass loading, gSolute/gSolvent) 
D  [m/s]  Dissolution rate 
d  [-]  Dissolution exponent 
EA,i  [J/Kmol] Activation energy for the diff. kinetic approaches (i = g, b, d) 
Error   [-]  Error  
f  [#/m]  Number density distribution/ function 
G  [m/s]  Growth rate 
g  [-]  Growth exponent 
i   [-]  Exponent of the Arrhenius approach (i = g, b, d) 
K   [m/s; 1/s] Kinetic G, B0 or D  
kV  [-]  Volume shape factor 
ki  [m/s; 1/s] Rate constant for i = g, b, d 
L  [m]  Property coordinate 
L   [m]  Mean length 
log10  [-]  Logarithm to the base 10 
m  [kg]  Mass 
N  [#/m3]  Crystal number 
n  [-]  Number in eq. 23 
OF  [m; #]  Objective function 
p   [-]  Parameters for the solubility correlation and kinetic laws  
R  [J/Kmol] Universal gas constant 
ρ   [kg/m3] Density 
S  [-]  Relative Supersaturation 
σ  [m]  Standard deviation 
T  [K]  Temperature  
t  [h]  Time 
τ  [h]  Mean residence time 
θ  [°C]  Temperature  
V  [m3]  Volume 
V&   [m3/h]  Volumetric flow rate 
 
Sub- & Superscripts 
 
Average   Average 
End    Final 
Est    Estimated 
Exp    Experiment 
In    Inlet stream 
Liquid     Liquid phase 
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Max    Maximum value 
Mean    Mean value 
Min    Minimum value 
Reactor   Reactor 
Sample   Sample 
Sat     Saturation 
Seed    Seed 
Sim    Simulated 
Solid     Solid phase 
Solvent   Solvent 
0    Initial value 
*    Saturation 
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