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The kinetics of a variety of transport-controlled processes can be reduced to the problem of determining the
mean time needed to arrive at a given location for the first time, the so-called mean first-passage time (MFPT)
problem. The occurrence of occasional large jumps or intermittent patterns combining various types of motion
are known to outperform the standard random walk with respect to the MFPT, by reducing oversampling of
space. Here we show that a regular but spatially heterogeneous random walk can significantly and universally
enhance the search in any spatial dimension. In a generic minimal model we consider a spherically symmetric
system comprising two concentric regions with piecewise constant diffusivity. The MFPT is analyzed under
the constraint of conserved average dynamics, that is, the spatially averaged diffusivity is kept constant. Our
analytical calculations and extensive numerical simulations demonstrate the existence of an optimal heterogeneity
minimizing the MFPT to the target. We prove that the MFPT for a random walk is completely dominated by what
we term direct trajectories towards the target and reveal a remarkable universality of the spatially heterogeneous
search with respect to target size and system dimensionality. In contrast to intermittent strategies, which are most
profitable in low spatial dimensions, the spatially inhomogeneous search performs best in higher dimensions.
Discussing our results alongside recent experiments on single-particle tracking in living cells, we argue that the
observed spatial heterogeneity may be beneficial for cellular signaling processes.
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I. INTRODUCTION

Random search processes are ubiquitous in nature [1–17],
ranging from the diffusive motion of regulatory molecules
searching for their targets in living biological cells [5,8,18–25]
and bacteria and animals searching for food by active motion
[2,8] all the way to the spreading of epidemics and pandemics
[3,4] and computer algorithms in high-dimensional optimiza-
tion problems [26]. The fact that the search strategy in these
processes is to a large extent random reflects the incapability
of the searcher to keep track of past explorations at least over
more than a certain period [5]. Over the years several different
search strategies have been studied in the literature, including
Brownian motion [8,18,27,28], spatiotemporally decoupled
Lévy flights (LFs) [29–34], and coupled Lévy walks (LWs)
[35–46] in which the searcher undergoes large relocations
with a heavy-tailed length distribution either instantaneously
(LFs) or with constant speed (LWs), as well as intermittent
search patterns, in which the searcher combines different
types of motion [5], for instance, three-dimensional and one-
dimensional diffusion [18–25,47,48], three-dimensional and
two-dimensional diffusion [49,50], or diffusive and ballistic
motion [5,8,51–57].

The efficiency of the search strategy is conventionally
quantified via the mean first-passage time (MFPT) defined
as the average time a random searcher needs to arrive at the
target for the first time [5,27,28,58,59]. The physical principle
underlying an improved search efficiency is an optimized
balance between the sampling of space on a scale much
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larger than the target and on a scale similar to or smaller
than the target [5]. More specifically, periods of less-compact
exploration, for instance, diffusion in higher dimensions, Lévy
flights, or ballistic motion, aid towards bringing the searcher
faster into the vicinity of the target. Concurrently, a searcher
in such a less-compact search mode may thereby easily
overshoot the target [32,33]. In contrast, compact exploration
of space (for instance, diffusion in one dimension) is superior
when it comes to hitting the target from close proximity, but
performs worse when it comes to the motion on larger scales
taking the searcher from its starting position into the target’s
vicinity: Typically frequent returns occur to the same location,
a phenomenon referred to as oversampling. Mathematically,
this is connected to the recurrent nature of such compact
random processes. The idea behind search optimization is to
find an optimal balance of both more- and less-compact search
modes in the given physical setting [5]. For instance, in the
so-called facilitated diffusion model for the target search of
regulatory proteins on DNA [19–23], the average duration of
noncompact three-dimensional free diffusion is balanced by
an optimal compact one-dimensional sliding regime along the
DNA molecule. In an intermittent search [5,8,51] persistent
ballistic excursions are balanced by compact Brownian phases.
This optimization principle intuitively works better in lower
dimensions, where a searcher performing a standard random
walk oversamples the space. Hence, the typically considered
optimized strategies have the largest gain in low dimensions.

In a variety of experimental situations the motion of a
searcher is characterized by the same search strategy but is
not translationally invariant. A typical example is a system
in which the searcher performs a standard random walk but
with a spatially varying rate of making its steps. This type
of motion is actually abundant in biological cells, where
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experiments revealed a distinct spatial heterogeneity of the
protein diffusivity [60–62]. Several aspects of such diffusion in
heterogeneous media have already been addressed [27,63–67],
but the generic first-passage time properties remain elusive, in
particular, for quenched environments.

Here was ask the question whether spatial heterogeneity is
generically detrimental for the efficiency of a random search
process or whether it could even be beneficial. Could it
even be true that proteins find their targets on the genome
in the nucleus faster because their diffusivity landscape in
the cell is heterogeneous? On the basis of exact results for
the MFPT in one, two, and three dimensions in a closed
domain under various settings we show here that a spatially
heterogeneous search can indeed significantly enhance the rate
of arrival at the target. We explain the physical basis of this
acceleration compared to a homogeneous search process and
quantify an optimal heterogeneity, which minimizes the MFPT
to the target. Furthermore, we show that heterogeneity can
be generically beneficial in a random system and is thus a
robust means of enhancing the search kinetics. The optimal
heterogeneous search rests on the remarkable observation that
the MFPT is completely dominated by those direct trajectories
heading directly towards the target. We prove that the MFPT
for the heterogeneous system can be exactly described with the
results of a standard random walk. We compare our theoretical
findings to recent experiments on single-particle tracking in
living cells, which are indeed in line with the requirements for
enhanced search.

The paper is organized as follows. Section II introduces our
minimal model for heterogeneous search processes. In Sec. III
we briefly summarize our main general results, which hold
irrespective of the dimension (d = 1, 2, or 3). Section IV is
devoted to the analysis of the most general situation with a
specific starting point and position of the interface. In Sec. V
we focus on the global MFPT, that is, the MFPT averaged
over the initial position. In Sec. VI we analyze a system
with a random position of the interface and optimize the
MFPT averaged over the interface position. In Sec. VII we
address the global MFPT in systems with a random position
of the interface. Throughout we discuss our results in a
biophysical context motivated by recent experimental findings.
We conclude in Sec. VIII by discussing the implications of our
results for more general spatially heterogeneous systems.

II. MINIMAL MODEL FOR SPATIALLY
HETEROGENEOUS RANDOM SEARCH

We focus on the simplest scenario of a spatially hetero-
geneous system. Even for this minimal model the analysis
turns out to be challenging and our exact results reveal a rich
behavior with several a priori surprising features. We consider
a spherically symmetric system in dimensions d = 1, 2, and
3 with a perfectly absorbing target of radius a located in the
center (Fig. 1). The outer boundary at radius R is taken to be
perfectly reflecting. The system consists of two domains with
uniform diffusivities denoted by D1 and D2 in the interior
and exterior domains, respectively. The interface between
these domains is located at rI. The microscopic picture we
are considering corresponds to the kinetic interpretation of
the Langevin or corresponding Fokker-Planck equations. In

(a)

(b)

FIG. 1. (Color online) Schematic of the model system: (a) A
spherical target with radius a is placed in the center of a spherical
domain of radius R. The free space between the radii a and R is
divided into two regions denoted by subscripts. The inner region is
bounded by a shell at radius rI. The outer region ranges from rI to the
reflective boundary at R. Initially, the particle’s starting position is
uniformly distributed over the surface of the sphere with radius r0. (b)
Microscopic picture of the problem starting from a discrete random
walk between spherical shells. The hopping rates are assumed to obey
detailed balance and the interface position is chosen to be placed
symmetrically between two concentric spherical surfaces.

particular we assume that the dynamics obey the fluctuation-
dissipation relation and in the steady state agree with the results
of equilibrium statistical mechanics [68].

In the biological context we consider that the system is in
contact with a heat bath at constant and uniform temperature
T . The signaling proteins diffuse in a medium comprising
water and numerous other particles, such as other biomacro-
molecules or cellular organelles. The remaining particles,
which we briefly call crowders, are not uniformly distributed
across the cell: Their identity and relative concentrations differ
within the nucleus and the cytoplasm and can also show
variations across the cytoplasm. The proteins hence experience
a spatially varying friction �(r), which originates from spatial
variations in the long-range hydrodynamic coupling to the
motion of the crowders, which is in turn mediated by the
solvent [69,70]. The proteins thus move under the influence of
a position-dependent diffusion coefficient D(r) = 2kBT �(r)
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and a fluctuation-induced thermal drift F(r) ∼ kBT ∇�(r)
(see [71] for details). The vital role of such hydrodynamic
interactions in the cell cytoplasm was demonstrated in [72].

Because of the spherical symmetry of the problem we can
reduce the analysis to the radial coordinate alone. That is, we
only trace the projection of the motion of the searcher onto
the radial coordinate and therefore start with a discrete space-
time nearest-neighbor random walk in between thin concentric
spherical shells of equal width �R = Ri+1 − Ri as depicted
in Fig. 1. The shell i denotes the region between surfaces with
radii Ri−1 and Ri . We assume that the hopping rates between
shells �(i → j ) obey detailed balance

p(i)�(i → i + 1) = p(i + 1)�(i + 1 → i). (1a)

Here p(i) denotes the probability distribution of finding the
particle in shell i. The hopping rates � are given as the product
of the intrinsic rate 2D(i)/�R2 and q(i), the probability to
jump from shell i to shell i + 1 [and 1 − q(i) for jumps in the
other direction],

�(i → i + 1) = 2D(i)

�R2
q(i). (1b)

Here D(i) is the arithmetic mean of the diffusivity in shell
i. The rate q(i) can be derived as follows. A random walker
located in shell i at time t can either move to shell i + 1
with probability q(i) or to shell i − 1 with probability 1 −
q(i). Due to the isotropic motion of the random walker, these
probabilities are proportional to the respective surface areas of
the bounding d-dimensional spherical surfaces at Ri−1 and Ri ,
that is, q(i) ∼ Rd−1

i and 1 − q(i) ∼ Rd−1
i−1 . The proportionality

constant is readily obtained from the normalization condition
leading to

q(i) = Rd−1
i

Rd−1
i + Rd−1

i−1

(1c)

and thus 1 − q(i) = Rd−1
i−1 /(Rd−1

i + Rd−1
i−1 ). Therefore, while

the random walker moves in all directions (radial, azimuthal, or
polar) we can project its motion on the radial coordinate only.
We assume that the interface is located between two concentric
shells leading to a continuous steady-state probability density
profile. The searcher starts at t = 0 uniformly distributed over
the surface of a d sphere with radius r0, as sketched in Fig. 1(a).

In our analytical calculations we model the system in terms
of the probability density function p(r,t |r0) to find the particle
at radius r at time t after starting from radius r0 at t = 0. Here
p(r,t |r0) obeys the radial diffusion equation

∂p(r,t |r0)

∂t
= 1

rd−1

∂

∂r

(
D(r)rd−1 ∂

∂r

)
p(r,t |r0) (2a)

with a position-dependent diffusivity D(r). Here we consider
the simplest version of a piecewise constant diffusivity

D(r) =
{
D1, a < r � rI

D2, rI < r � R.
(2b)

We assume that the target surface at radius a is perfectly
absorbing,

p(a,t |r0) = 0, (2c)

to determine the first-passage behavior. At the outer radius R

we use the reflecting boundary condition

∂p(r,t |r0)

∂r

∣∣∣∣
r=R

= 0. (2d)

These boundary conditions are complemented by joining
conditions at rI by requiring the continuity of the probability
density and the flux, which follow from our microscopic
picture.

To quantify our model system we introduce the ratio

ϕ = D1

D2
(3a)

of the inner and outer diffusivities. Moreover, we demand that
the spatially averaged diffusivity

D = d

Rd − ad

∫ R

a

rd−1D(r)dr (3b)

remains constant for varying D1 and D2. Without such
a constraint the problem of finding an optimal ϕ, which
minimizes the MFPT, is ill posed and has a trivial solution
ϕ = ∞. More importantly, we want to compare the search
efficiency as a function of the degree of heterogeneity, where
the overall intensity of the dynamics is conserved. Returning
to our microscopic picture of a signaling protein searching
for its target in the nucleus, the heterogeneous diffusivity
is due to spatial variations in the long-range hydrodynamic
coupling to the motion of the crowders. Their identity and
relative concentration in the cell vary in space, but the effect
is mediated by thermal fluctuations in the solvent at a constant
temperature. The constraint in Eq. (3b) then corresponds to
a redistribution of the crowders at constant temperature, cell
volume, and numbers of the various crowders, which would
not affect the spatially averaged diffusivity.

Under the constraint (3b) of constant spatially averaged
diffusivity we obtain for any given ϕ and rI that

D1 = ϕD

(ϕ − 1)χ (rI) + 1
, D2 = D

(ϕ − 1)χ (rI) + 1
, (4a)

where we introduced the hypervolume ratio

χ (rI) = rd
I − ad

Rd − ad
(4b)

of the inner versus the entire domain excluding the target
volume. To solve Eq. (2a) we take a Laplace transform in
time and the obtained Bessel-type equation is solved exactly
as shown in Sec. IV. The MFPT T(r0) for the particle to
reach the target surface at r = a is obtained from the Laplace
transformed flux into the target

j̃ (r0,s) = �dD1a
d−1 ∂P̃ (r,r0,s)

∂r

∣∣∣∣
r=a

(5a)

via the relation

T(r0) = −∂j̃a(r0,s)

∂s

∣∣∣∣
s=0

. (5b)

The angular prefactor �d = 1 for d = 1, �d = 2π for
d = 2, and �d = 4π for d = 3. We treat the degree of
heterogeneity ϕ as an adjustable parameter at a fixed value
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of rI and seek an optimal value minimizing the MFPT. The
optimal heterogeneity, which we denote by an asterisk, is thus
obtained by extremizing Ta(r0) with respect to ϕ.

III. SUMMARY OF THE MAIN RESULTS

Since R in combination with the diffusivity D sets the
absolute time scale, we can express, without loss of generality,
time in units of R2/D, set D = 1, and focus on the problem in
a unit sphere. We introduce dimensionless spatial units xa =
a/R, xI = rI/R, and x0 = r0/R. For the sake of completeness,
we retain the explicit R and D dependence in the prefactors.

Our first main result represents the fact that the MFPT to
the target in the inhomogeneous system in dimensions d = 1,
2, and 3 can be expressed exactly in terms of the corresponding
MFPT T0(x0; Di) in a homogeneous system with diffusivity
Di , with i = 1 or 2. Remarkably, the MFPT is thus exactly
equal to

T(x0) =
{

T0(x0; D1), x0 � xI

T0(xI; D1) + T0
xI

(x0; D2), x0 > xI.
(6)

In the second line the argument xI stands for the release of
the particle at the interface and the index xI of the last term
is used to indicate that this term measures the first passage
to the interface at xI. That is, in this case when the particle
starts in the inner region with diffusivity D1, Eq. (6) reveals
that the MFPT of the heterogeneous system is equal to that
of a homogeneous system with diffusivity D1 everywhere and
is independent of the position of the interface. Conversely, if
the searcher starts in the exterior region with diffusivity D2

the MFPT contains two contributions: (i) the MFPT from r0

to rI in a homogeneous system with diffusivity D2 and (ii) the
MFPT from rI to a in a homogeneous system with diffusivity
D1, as shown schematically in Fig. 2. Equation (6) is exact
and independent of the choice for D1,2 and thus holds for an
arbitrary set of diffusivities and even if D1 = D2. In other
words, it is not a consequence of a conserved D. Note that
if one starts from different mathematical assumptions for the
inclusion of inhomogeneous step frequencies, a result different
from Eq. (6) emerges [73].

The additivity principle of the individual MFPTs in Eq. (6)
is only possible if the excursions of the searcher in the
directions away from the target are statistically insignificant.
We would expect that some trajectories starting in the inner
region will carry the searcher into the outer region with
diffusivity D2 before the searcher eventually crosses the
interface and reaches the target by moving through the inner
region with diffusivity D1. Such trajectories will obviously
be different in the heterogeneous system in comparison to a
homogeneous system with diffusivity D1 everywhere. This

(a)

(b)

FIG. 2. (Color online) Schematic of the equivalence of MFPTs
in inhomogeneous and homogeneous systems in the case of (a) a
searcher starting in the inner region and (b) a searcher starting in the
outer region. The radius x1 of the initial particle position is shown by
the thin dashed circle. We show direct trajectories as solid lines. Each
panel also contains an indirect trajectory (dashed line) that leads the
particle into the outer region of the system. As our analysis shows
direct trajectories dominate the MFPT.

appears to contradict the complete independence of D2 of
the MFPT in Eq. (6) for trajectories with x0 � xI. This
observation can be explained by the dominance of direct
trajectories, whose occupation fraction outside the starting
radius is statistically insignificant: The MFPT for a standard
random walk in dimensions d = 1, 2, and 3 is completely
dominated by direct trajectories. As such, the MFPT is really
a measure for the efficiency of the direct trajectories. We
note that if the walker starts in the outer region (x0 > xI),
as intuitively expected, the MFPT diverges with vanishing D2.

Our second main result demonstrates that for x0 > xI a
finite optimal heterogeneity exists at a given interface position
and is given by

ϕ∗(x0) =
√

1 − χ (xI)

χ (xI)

T0(xI; 1)

T0
xI

(x0; 1)
. (7)

For this value the MFPT T(x0) attains a minimum. Hence, the
optimal heterogeneity is completely determined by the volume
fractions and the MFPT properties and hence strictly by the
direct trajectories. As above, the index xI in the MFPT T0(xI)
indicates the first passage to the interface, while without this
index the MFPT T0 quantifies the first passage to the target at
xa . The explicit results for ϕ∗(x0) are shown in Fig. 4 and are
discussed in detail in Sec. IV.

Often one is interested in the MFPT averaged over an
ensemble of starting positions, the global MFPT T. As before,
it can be shown that an optimal heterogeneity exists for any
interface position and is universally given by

ϕ∗ =

⎛⎜⎜⎜⎝1 − χ (xI)

χ (xI)

T0(xI; 1) −
∫ xI

xa

[
xd

0 (d/dx0)T0(x0; 1)
]
dx0

T0
xI

(1; 1) −
∫ 1

xI

[
xd

0 (d/dx0)T0
xI

(x0; 1)
]
dx0

⎞⎟⎟⎟⎠
1/2

. (8)
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Similar to the general case, ϕ∗ is again proportional to [χ (xI)−1 − 1]1/2 but here the corresponding MFPTs in the second factor
are reduced by a spatially averaged change of the MFPT with respect to the starting position. The optimal heterogeneity for the
global MFPT is shown in Fig. 5 and discussed in detail in Sec. V.

In a setting when the interface position is random and uniformly distributed we are interested in the MFPT from a given
starting position averaged over the interface position. A measurable quantity for this scenario for an ensemble of random-interface
systems is the MFPT {Ta(x0)}, where the curly brackets denote an average over the interface positions xI. Explicit results for
dimensions d = 1, 2, and 3 are given in Sec. VI. Solving for the optimal heterogeneity, we obtain

{ϕ}∗ =

⎛⎜⎜⎝ T0(x0) − (1 + 1/d)
∫ x0

xa

x[1 − xd/(d + 1)][(d/dxI)T0(xI)]dxI

xd+1
a T0(x0) − (1 + 1/d)

∫ x0

xa

x
[
xd/(d + 1) − xd

a

]
[(d/dxI)T0

xI
(x0)]dxI

⎞⎟⎟⎠
1/2

. (9)

The optimal heterogeneity for the MFPT averaged over the random interface position is shown in Fig. 6.
Finally, we compute the global MFPT averaged over the position of the interface {T} whose explicit results are given in

Sec. VI. Also here an optimal strategy can be identified as

{ϕ}∗ =

⎛⎜⎜⎜⎝
T

0 −
∫ 1

xa

(1 − xI)x
d
I

(
1 + d − xd

I

)/(
1 − xd

a

)
(d/dxI)T0(xI; 1)dxI

xd+1
a T

0 −
∫ 1

xa

xd
I

[
xd

I − (1 + d)xd
a

]
/
(
1 − xd

a

)
(d/dxI)T

0
xI
dxI

⎞⎟⎟⎟⎠
1/2

. (10)

The optimal heterogeneity for the global MFPT averaged over
the random interface position is shown in Fig. 7.

Equation (6) represents a rigorous proof that direct trajec-
tories dominate the MFPT for Brownian motion. In addition,
the heterogeneity does not affect the fraction of direct versus
indirect trajectories but only their respective durations. Due to
the fact that indirect trajectories are statistically insignificant,
we can in principle make them arbitrarily slow if we start in
the inner region. However, as we let the inner diffusivity go to
infinity (and hence the outer one to zero) we are simultaneously
slowing down the arrivals to the interface if starting from the
outer region. The following is the physical principle underlying
the acceleration of search kinetics: The optimal heterogeneity

corresponds to an improved balance between the MFPT to
reach the interface and the one to reach the target from the
interface.

IV. MEAN FIRST-PASSAGE TIME FOR FIXED INITIAL
AND INTERFACE POSITIONS

Here we present the mathematical derivation and the
explicit results for the situation with a specific initial condition
r0 and interface position rI. Equation (2a) is solved by Laplace
transformation and the resulting Green’s function with the
boundary conditions (2c) and (2d) reads

P̃ (r,s|r0) = (rr0)ν

�dD1

[
Cν(S1r,S1a)

/( Dν(S1a,S1rI)

Cν−1(S2rI,S2R)
+ 1√

ϕ

Cν(S1a,S1rI)

Dν(S2rI,S2R)

)]

×

⎧⎪⎪⎨⎪⎪⎩
Dν(S1r0,S1rI)

Cν−1(S2rI,S2R)
+ 1√

ϕ

Cν(S1r0,S1rI)

Dν(S2rI,S2R)
, a < r0 � rI

Dν(S2r0,S2R)

rIS1Dν(S2rI,S2R)Cν−1(S2rI,S2R)
, rI < r0 � R,

(11a)

where we introduced the abbreviation S1,2 = √
s/D1,2 and the

auxiliary functions

Dν(z1,z2) = Iν(z1)Kν−1(z2) + Kν(z1)Iν−1(z2),

Cν(z1,z2) = Iν(z1)Kν(z2) − Iν(z2)Kν(z1).
(11b)

Here the Iν(z) and Kν(z) denote the modified Bessel functions
of order ν = 1 − d/2 of the first and second kinds, respec-
tively. The Laplace transformed first-passage time density is
obtained from the flux (5a) into the target and the MFPT then
follows from relation (5b). In the case of d = 1 the target

size only enters the problem by determining the width of the
interval. Using Dν(z,z) = 1/z, it can be shown that Eq. (11a)
reduces to the ordinary expression for regular diffusion given
in Ref. [27] for rI = R and ϕ = 1.

The MFPT can be written exactly in terms of the expres-
sions for a homogeneous diffusion process in Eq. (6) (compare
Refs. [27,58]) and we obtain

1T0(x0; D) = R2

2D

[
2(x0 − xa) + x2

a − x2
0

]
, (12a)
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FIG. 3. (Color online) Ratio θ (x0) = T(x0)/T0(x0) as a function of ϕ = D1/D2 in dimensions (a) d = 1, (b) d = 2, and (c) d = 3 for initial
radii x0 = 0.3 (dashed lines) and x0 = 0.8 (solid lines), respectively. In (b) and (c) we plot the results for a target size xa = 0.1. The solid black
lines denote the � 1/ϕ and � ϕ scalings, respectively, and the dashed black line corresponds to � χ (xI).

2T0(x0; D) = R2

4D

[
2 ln

(
x0

xa

)
+ x2

a − x2
0

]
, (12b)

3T0(x0; D) = R2

6D

[
2
x0 − xa

x0xa

+ x2
a − x2

0

]
. (12c)

Here the left index denotes the dimensionality of the system.
Note that the parameter R in Eqs. (6) and (12) only sets the
corresponding time scale via τn = R2/2dD, but otherwise
completely factors out of the MFPT problem. In other words,
the problem is fully described by the search in a hypersphere of
unit radius, where time is measured in units of τn. In an infinite
system such a time scale ceases to exist and the corresponding
MFPT diverges. Our results show excellent agreement with
numerical simulations, as demonstrated in the Appendix.
Plugging the above expressions (12) into Eq. (6), we can
compare the search efficiency with respect to a homogeneous
random walk by introducing the dimensionless ratio

θ (x0) = T(x0)

T0(x0)
. (13)

The corresponding results for dimensions d = 1, 2, and 3 are
shown in Fig. 3. As a nonzero xa in d = 1 only rescales the
size of the domain R → R(1 − xa), we will in the following
set xa = 0 in d = 1.

The qualitative behavior of the MFPT with respect to ϕ,
that is, the degree of the heterogeneity, depends on the starting
position relative to the interface. If the initial position lies
in the inner region θ (x0) decays monotonically and saturates
at a finite asymptotic value θ (x0) → χ (xI). Hence, in this
case an optimal strategy does not exists and the best search
performance is achieved for large diffusivities in the inner
region. The lower bound on θ (x0) is set by the volume fraction
of the inner region, which sets a bound on the ratio D1/D. This
result is yet another manifestation of the fact that the MFPT is
completely dominated by direct trajectories.

Conversely, if the searcher starts in the outer region an
optimal strategy exists. To understand the existence and
meaning of the optimal heterogeneity we perform a power-
series expansion of θ (x0). We find the scaling θ (x0) � 1/ϕ as
ϕ → 0, which is due to the fact that in this regime D1 � ϕ,

which dominates the MFPT in this regime. In the other limit
as ϕ → ∞ we find θ (x0) � ϕ because here D2 � 1/ϕ and the
rate-determining step is the arrival at the interface. We can
understand the optimal heterogeneity as a beneficial balance
between the rate of arriving at the interface from the starting
position and the rate to find the target if starting from the
interface.

In contrast, too large values of ϕ prolong the time to
reach the interface and cannot be compensated by a faster
arrival from the interface towards the target. The optimal
heterogeneity as a function of the starting position is shown
in Figs. 4(a)–4(c) and reveals the divergence as x0 → xI: This
point corresponds to the disappearance of an optimal strategy.
As x0 gradually approaches unity, ϕ∗ continuously decreases
towards a plateau, which suggests that reaching the target from
the interface becomes the rate-determining step. Moreover,
ϕ∗ decreases with increasing target size, because the inner
region becomes smaller and thus allows a larger D2 in the
optimal scenario. The overall gain of an optimal search with
respect to a standard random walk is shown in Figs. 4(d)–
4(f). Only in the domain x0 > xI an optimal heterogeneity
exists, therefore we omitted the region x0 < xI. As mentioned
before, we observe the monotonic convergence θ (x0) → χ (xI)
from above as ϕ → ∞ and hence the heterogeneous search
always outperforms the standard Brownian search for ϕ > 1.
The highest gain is therefore set by the volume fraction
of the inner region, which becomes arbitrarily small as
xI → xa . For x0 > xI we find that the gain is largest for
starting positions near the interface and when the interface
is not too close to the outer boundary, where the system
essentially approaches the homogeneous limit. The variations
are larger in higher dimensions, which is, of course, con-
nected with the pronounced spatial oversampling in lower d.

Different from conventional strategies, intermittent or
Lévy-stable processes, which affect the compactness of explor-
ing space, a heterogeneous search is more profitable in higher
dimensions [see Figs. 4(d)–4(f)]. Because heterogeneity acts
by enhancing and retarding the local dynamics and does not
affect spatial oversampling, it is intuitive that it performs better
for noncompact exploration of space. Both the existence and
the gain of an optimally heterogeneous search are thus a direct
consequence of direct trajectories dominating the MFPT.
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FIG. 4. (Color online) Optimal heterogeneity as a function of the starting position x0 for three interface positions xI = 0.25 (blue), xI = 0.5
(red), and xI = 0.75 (orange) in dimensions (a) d = 1, (b) d = 2, and (c) d = 3. The target sizes in (b) and (c) are xa = 0.1 (solid lines) and
xa = 0.2 (dashed lines). Also shown is the ratio θ (x0) = T(x0)/T0(x0) for the optimal heterogeneity ϕ∗ in dimensions (d) d = 1, (e) d = 2,
and (f) d = 3. In (e) and (f) the target size is xa = 0.1.

V. GLOBAL MEAN FIRST-PASSAGE TIME FOR FIXED INTERFACE POSITION

The global MFPT is obtained by direct averaging of Eq. (6) over the initial position x0,

T = d

1 − xd
a

∫ 1

xa

xd−1
0 T(x0)dx0. (14)

The exact expressions for the global MFPT in the various dimensions read

1T = R2[(1 − 1/ϕ)xI + 1/ϕ]

D

[
ϕ

3
+ xI(1 − ϕ) − x2

I (1 − ϕ) + x3
I (1 − ϕ)

3

]
, (15a)

2T = R2[(1 − 1/ϕ)x2
I + 1/ϕ − x2

a

]
4D

(
1 − x2

a

)2

[
2(1 − ϕ) ln(xI) − 2 ln(xa) − (

x2
I − x2

a

) (
2 − x2

I + x2
a

2

)
− ϕ

(
3

2
− 2xI + x4

I

2

)]
, (15b)

3T = R2
[
(1 − 1/ϕ)x3

I + 1/ϕ − x3
a

]
6D

(
1 − x3

a

)2

[
2

xa

+ 2(ϕ − 1)

xI
+ 2x2

I (ϕ − 1)

(
1 − x3

I

5

)
− 9ϕ

5
+ 2x2

a

(
1 − x3

a

5

)]
. (15c)

These are to be compared with their homogeneous counterparts

1T
0 = R2

3D
, (16a)

2T
0 = R2

4D
(
1 − x2

a

)2

[
−3

2
+ 2x2

a − x4
a

2
− 2 ln(xa)

]
, (16b)

3T
0 = R2

3D
(
1 − x3

a

)2

[
1 − 9xa

5
+ x3

a

(
1 − x3

a

5

)]
(16c)

in d = 1, 2, and 3, respectively. As before, we introduce the
dimensionless enhancement ratio

θ = T

T
0 . (17)

The results are shown in Fig. 5. In this case we are effectively
considering a weighted average of the results presented in
Sec. IV. Noticing that most of the volume of a d-sphere
is increasingly concentrated near the surface for growing
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ALJAŽ GODEC AND RALF METZLER PHYSICAL REVIEW E 91, 052134 (2015)

 0.8

 0.9

1

0  0.5 1

θ-(ϕ∗)

 0.4

 0.6

 0.8

1

0  0.5 1

θ-(ϕ∗)

 0.2
 0.4
 0.6
 0.8

1

0  0.5 1

θ-(ϕ∗)

100

101

102

0  0.25  0.5  0.75 1

ϕ- *

xI

(d)

101

102

0  0.25  0.5  0.75 1

ϕ- *

xI

(e)

101

102

0  0.25  0.5  0.75 1

ϕ- *

xI

(f)

10-1

100

101

10-1 100 101 102 103 104

θ- x I

ϕ

(a) d=1

∼ϕ∼ϕ-1

xI= 0.4

xI= 0.6

10-1

100

101

10-1 100 101 102 103 104

θ- x I

ϕ

(b) d=2

∼ϕ
∼ϕ-1

10-1

100

101

10-1 100 101 102 103 104

θ- x I

ϕ

(c) d=3

∼ϕ∼ϕ-1

FIG. 5. (Color online) Ratio θ = T/T
0

as a function of ϕ = D1/D2 for different dimensions and interface positions xI = 0.4 (blue) and
xI = 0.6 (orange). The target sizes in (b) and (c) are xa = 0.1 (solid lines) and xa = 0.2 (dashed lines). (d)–(f) Optimal heterogeneity for
different dimensions as a function of the interface position xI. In (e) and (f) the target sizes are xa = 0.05 (blue), xa = 0.1 (red), and xa = 0.2
(orange). The insets in (d)–(f) show θ for the optimal heterogeneity ϕ∗.

dimensions, we anticipate that the results will be more
prominently influenced by the features of trajectories starting
farther away from the target. An interesting question will
therefore be whether an optimal heterogeneity exists for all
interface positions and dimensions. An expansion of T in a
power series of ϕ reveals that θ � 1/ϕ as ϕ → 0 and θ � ϕ as
ϕ → ∞ for all positions of the interface [see Figs. 5(a)–5(c)].
Thus, an optimal heterogeneity always exists for all d. From
Figs. 5(a)–5(c) we observe that the dependence of the relative
gain compared to θ on the interface position in the limit ϕ → 0
is very weak in all dimensions as long as it is not too close to
the external boundary. In the case of large ϕ somewhat larger

variations are observed for dimensions d = 1 and 2. In d = 3
the dependence on the interface position is largest near the
optimal value for ϕ but very weak elsewhere. Hence, a control
of the target location dynamics by adjusting xI is only efficient
near the optimal point ϕ = ϕ∗. This is observed from the
respective scalings θ � 1/ϕ and θ � ϕ as ϕ → 0 and ϕ → ∞
as explained in Sec. IV. Overall, the gain with respect to the
homogeneous random walk is larger for higher dimensions,
which has the same origin as in the general case discussed
above, however here the additional effect of averaging over
the initial position enters. The optimal heterogeneity has the
exact results

1ϕ
∗ =

√
3(1 − xI) + x2

I

1 − xI
, (18a)

2ϕ
∗ =

((
1 − x2

I

){ − 4 + x2
I + x2

a + [
4/

(
x2

I − x2
a

)]
ln(xI/xa)

}
−4 ln(xI) − 3 + 4x2

I − x4
I

)1/2

, (18b)

3ϕ
∗ =

((
1 − x3

I

)5
[
(xI/xa)

(
1 + x3

a

) − (
1 + x3

I

)] + xI
(
x5

I − x5
a

)
(1 − xI)3{5 + xI[6 + xI(3 + xI)]}

)1/2

. (18c)

The behavior of Eqs. (18) is shown in Figs. 5(e) and 5(f).
In higher dimensions the optimal heterogeneity shows a non-
monotonic behavior with respect to the interface position and
increases upon approaching the target or the outer boundary.
Simultaneously, the overall dependence of the global MFPT
on ϕ vanishes in these limits [see the insets of Figs. 5(e) and
5(f)], corresponding to the situation when the system is no

longer heterogeneous. These results can be rationalized by
the fact that in the limit xI → xa the ratio χ (xI) becomes
negligible and hence a higher D1 is allowed without slowing
down the dynamics of reaching the interface from the external
region. Conversely, as xI → 1 also χ (xI) → 1 and smaller D2

are allowed because the rate-limiting step is hitting the target
from the inner region. In both limits, however, the overall
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enhancement effect with respect to a standard random walk
becomes negligible. Away from these limits the gain of the
optimal heterogeneity is larger for higher dimensions and can
be remarkably large for intermediate interface positions [see
the inset of Figs. 5(e) and 5(f)] and increases with decreasing
target size.

In a biological context, the present setting is relevant
for signaling proteins searching for their target in the nu-
cleus when the proteins are initially uniformly distributed
throughout the cell cytoplasm. Recent experiments revealed
a significant heterogeneity in the spatial dependence of
the protein diffusion coefficient across the cell, with a
faster diffusivity near the nucleus [60,61]. Such a spa-
tial heterogeneity could therefore be beneficial for the
cell by accelerating the dynamics of signaling molecules.

VI. MEAN FIRST-PASSAGE TIME IN A RANDOM
HETEROGENEOUS SYSTEM FOR FIXED

INITIAL POSITION

We now address the MFPT problem when the interface
position is random in a given realization and uniformly dis-
tributed over the radial domain. Specifically, we are interested
in the MFPT of a particle starting at x0 averaged over the
interface position xI,

{T}(x0) = 1

1 − xa

∫ 1

xa

T(x0)dxI. (19)

Experimentally, this would correspond to measuring an en-
semble of systems with random value of xI. For dimensions
d = 1, 2, and 3 the MFPT {T}(x0) has the explicit form

1{T}(x0) = R2

2D
x0

{
1 + 1

ϕ
+

(
1 − 3

ϕ

)
x0

[
1

2
+

(
1 − 1

ϕ

)
x0

]
+ (1 − ϕ)2x3

0

4ϕ

}
, (20a)

2{T}(x0) = R2

12D
(
1 − x2

a

)
(1 − xa)

{(
1 + 1

ϕ

)
x0

(
6
(
1 − ϕx2

a

) − 2x2
0

[
4 − ϕ

(
1 + 3x2

a

)]
3

− 2x4
0 (ϕ − 1)

5

)

−
(

2

ϕ
+ 1 − xa{3 + xa[3 − xa(1 + 2ϕ)]}

)[
2 ln

(
x0

xa

)
− x2

0

]
−

[
6

(
1 − 1

ϕ

)

− xa

(
1 + 6 − xa[8 − ϕ(16ϕ − 17)]

3ϕ

)
− x2

a

(
3 − x2

a

2 + ϕ{11 + 2ϕ}
ϕ

)]}
, (20b)

3{T}(x0) = R2

8D(1 − xa)(1 − x3
a )

(
1

3

(
1

ϕ
− 1

)
x0
{
2
[
5 − ϕ

(
1 − 4x3

a

)] − (1 − ϕ)x3
0

}
+x3

a

3

[
2

(
4ϕ − 5

1

ϕ

)
+ x3

a

(
1

ϕ
+ 2ϕ

)]
+

(
2

xa

+ x2
a

){
3

ϕ
+ 1 − 4xa

[
1 + x2

a

(
1 − 3xa

4

)]}
−
(

2

x0
+ x2

0

){
3

ϕ
+ 1 − 4xa

[
1 + x2

a

(
1 − (3ϕ + 1)xa

4

)]}
− 8

(
1

ϕ
− 1

) (
1 − ϕx3

a

)
ln

(
x0

xa

))
. (20c)

The gain compared to the homogeneous random walk

{θ (x0)} = {T}(x0)

T(x0)
(21)

is shown in Figs. 6(a)–6(c) and reveals a somewhat less
sharp optimal heterogeneity as compared to the global MFPT.
The limiting behavior for small and large ϕ is the same as
for the previous cases, but here there is a wider range of
ϕ values producing a comparable gain. We also observe a
stronger dependence on the starting position as ϕ → ∞ and
a very weak dependence for ϕ → 0, which is yet another
consequence of direct trajectories dominating the MFPT. The
optimal heterogeneity is obtained from Eq. (9) and reads

1{ϕ}∗ = 1

x0

(
3(2 − x0)[2 − x0(2 − x0)]

4 − 3x0

)1/2

, (22a)

2{ϕ}∗ =
(

2 ln(x0/xa) − 3[Q1(x0) − Q1(xa)]

2x3
a ln(x0/xa) + Q2(x0,xa)

)1/2

, (22b)

3{ϕ}∗ =
(

24 ln(x0/xa) + Q3(x0) − Q3(xa)

24x3
a ln(x0/xa) − Q4(x0,xa)

)1/2

. (22c)

Here we introduced the auxiliary functions

Q1(y) = y

[
3 + y

(
1 − 4y

3
+ y3

5

)]
, (23a)

Q2(y,z) = y3

(
1

3
− y2

5

)
− z2

[
y(3 − y2)

− z

(
8

3
− y2

)
− z3

5

]
, (23b)

Q3(y) = 18

y
+ y2[9 − y(10 − y3)], (23c)

Q4(y,z) = y3[2(1 + y2z) − y3] + z3(2 + y3)

(
8 − 9z

y

)
.

(23d)
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FIG. 6. (Color online) Ratio {θ} = {T}/T(x0) as a function of ϕ = D1/D2 for different dimensions and x0 = 0.4 (blue) and x0 = 0.6
(orange). The target sizes in (b) and (c) are xa = 0.1 (solid lines) and xa = 0.2 (dashed lines). (d)–(f) Optimal heterogeneity for different
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The insets in (d)–(f) show {θ} for the optimal heterogeneity {ϕ∗}.

The results for various dimensions are depicted in
Figs. 6(d)–6(f). Accordingly, an optimal heterogeneity always
exists. Note that the dependence of {ϕ}∗ on the target size
in d = 2 and 3 becomes reversed upon increasing the initial
separation to the target. When starting near the target the
initial position will on average lie in the inner region in an
ensemble of realizations of the interface position. The optimal
heterogeneity will thus on average correspond to a very fast
diffusion in the inner region. For small x0 the probability of
starting in the inner region (1 − x0)/(1 − xa) will be lower
for smaller targets and hence {ϕ}∗ will be larger accordingly.
Conversely, if starting farther away from the target x0 will
on average lie in the outer region and the search time will be
more strongly influenced by the rate of arriving at the interface
in each realization. An optimal heterogeneity will therefore
correspond to a smaller asymmetry of diffusivities in the inner
and outer regions. More specifically, since the probability of
starting in the outer region (x0 − xa)/(1 − xa) will be lower
for larger targets, the value of {ϕ}∗ will accordingly be smaller.
The gain of the optimal heterogeneity is shown in the insets
of Figs. 6(d)–6(f) and reveals a significant improvement with

respect to the standard random walk in every dimension. The
dependence on target size has again a nonmonotonic behavior,
which follows from the argument presented above. Hence,
even in a system with a random and quenched position of
the interface a spatially heterogeneous search process will
on average strongly outperform the standard random walk in
every dimension.

In a biological context the present setting is important
for the experimentally observed quenched spatial disorder
revealed by single-particle tracking [61,62,65,74–76]. More
generally, the ideas can also be extended to the dynamics in
complex disordered systems [77,78] and Sinai-type diffusion
[79]. Our results show that quenched spatial heterogeneity can
robustly enhance random search processes even in a disordered
setting. This robustness could eventually be exploited in search
strategies, because it requires less prior knowledge about
the location of the target. Note, however, that our model
assumes a generic spherical symmetry, such that corrections
may be needed to quantitatively describe the above-mentioned
biological systems [61,62,65,74–76].

VII. GLOBAL MEAN FIRST-PASSAGE TIME IN A RANDOM SYSTEM

This section completes our study, addressing the global MFPT in a random system

{T} = 1

1 − xa

∫ 1

xa

T dxI. (24)
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As far as a blind spatially heterogeneous search is concerned, this is the most robust setting. It can be shown that the exact results
for {T} have the form

1{T} = R2

60D

[
13 + ϕ + 6

ϕ

]
, (25a)

2{T} = R2

2D
(
1 − x2

a

)2
(1 − xa)

[
− 127

63ϕ
+ 293

630
+

(
4

3ϕ
− 3

)
xa + 1

30

(
40

ϕ
+ 97 − 32ϕ

)
x2

a

+ 7

18

(
1 − 4

ϕ

)
(1 + 2ϕ) x3

a − 1

6

(
2

ϕ
+ 13

)
x4

a + 1

30

(
20

ϕ
+ 47 + 8ϕ

)
x5

a + 1

2
x6

a

− 1

240

(
20

ϕ
+ 79 + 6ϕ

)
x7

a − 2

3

(
2

ϕ
+ 1 + xa{−3 + xa[−3 + xa(1 + 2ϕ)]}

)
ln(xa)

]
, (25b)

3{T} = R2

40D
(
1 − x3

a

)2
(1 − xa)

[
45

xa

(
1 + 3

ϕ

)
− 148

ϕ
− 361 + 5ϕ + 324xa + 135

(
1

ϕ
− 1

)
x2

a

+3

(
−45

ϕ
+ 83 + 70ϕ

)
x3

a − 81(1 + 3ϕ)x4
a − 27

(
1

ϕ
+ 7

)
x5

a + 3

(
15

ϕ
+ 47 + 10ϕ

)
x6

a

+36x8
a −

(
5

ϕ
+ 29 + 2ϕ

)
x9

a + 18

(
1 − 1

ϕ

)(
x3

a − 1

ϕ

)
ln(xa)

]
. (25c)

The relative gain
{θ} = {T}

T
(26)

with respect to the global MFPT for the standard random walk is shown in Fig. 7. The limiting scaling as ϕ → 0 and ϕ → ∞
remains unchanged and the dependence of the overall gain on the target size becomes significant for large ϕ. The optimal
heterogeneity in the different spatial dimensions is obtained in the form

1{ϕ}∗ =
√

6, (27a)

2{ϕ}∗ =
√

5

(
−127 − 84 ln(xa) + xa[126 + xa(84 − xa{98 + 3xa[7 − 2xa(7 − x2

a )]})]
16 − 420x3

a ln(xa) − x2
a

{
336 − xa

[
245 + 3x2

a

(
28 − 3x2

a

)]} )1/2

, (27b)

3{ϕ}∗ =
(

135/xa − 148 + x2
a

{
135 − xa

[
135 − x2

a

(
9 − x3

a

)]} + 180 ln(xa)

5 + x3
a

{
210 − xa

[
243 − x2

a

(
30 − 2x3

a

)]} + 180x3
a ln(xa)

)1/2

. (27c)

The results are plotted in Fig. 7(a). It can be shown that the results in the d = 2 and d = 3 cases converge to the result obtained
in d = 1 in the limit xa → 1. This is expected since the system effectively becomes one dimensional when the ratio of the
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annulus thickness to the curvature approaches zero. In the other limit xa → 0 we find the diverging optimal heterogeneity
[see Fig. 7(b)]

2{ϕ}∗ �
√

5[−127 − 84 ln(xa)]

4
(28a)

in d = 2 and

3{ϕ}∗ �
√

27

xa

− 148

5
(28b)

in d = 3. The gain of the optimal heterogeneity is shown in Fig. 7(c). In d = 1 the optimal gain is

1{θ}∗ = (13 + 2
√

6)/29 � 0.894 95 (29a)

and the expected convergence to this result in higher d as xa → 1 is depicted in Fig. 7(c). In the corresponding limit xa → 0 the
optimal gain in d = 2 behaves as

2{θ}∗ �
[

2032√
5[−127 − 84 ln(xa)]

− 293/5 + ln(xa)

(
1344√

5[−127 − 84 ln(xa)]
+ 84

)]/
63[3 + 4 ln(xa)], (29b)

ultimately converging logarithmically to 1/3. Conversely, in d = 3 the gain converges to 1/4 much more rapidly,

3{θ}∗ � 1

4
+

√
xa

12
−

(
47

36
+ ln(xa)

)
xa. (29c)

We therefore find that for vanishingly small targets an op-
timal heterogeneous search in a random system configuration
with uniformly distributed starting position is remarkably 3
and 4 times faster, respectively, in two and three dimensions.
We should stress here that this gain is achieved under the
constraint of a conserved D, which means that we do not
introduce any additional resources. This is in striking contrast
to the optimization of active-passive intermittent strategies,
where the ballistic excursions based on active motion are by
definition more expensive [5,8,51–57]. If we were to relax
the constraint on the conserved D, the gain could in principle
become arbitrarily large.

VIII. DISCUSSION AND CONCLUDING REMARKS

We analyzed the kinetics of a Brownian search in quenched
heterogeneous media. Analyzing a minimal model system
capturing the fundamental physical aspects of the problem,
we obtained exact analytical results for the MFPT of a particle
to find the target in various settings. We showed that the
MFPT for a Brownian search, both homogeneous and spatially
heterogeneous, is dominated by direct trajectories and the
results for the MFPT are insensitive to possible excursions
to the outer region of our model system away from the
target. Under the constraint of conserved average dynamics,
we proved the existence of an optimal heterogeneity, which
minimizes the MFPT.

We demonstrated and explained how a blind diffusive
searcher in a spatially heterogeneous environment can signif-
icantly outperform the homogeneous random walk when the
motion is faster near the target. This gain, which depends on
the size of the target, is significant and persists upon averaging

over the starting position, interface position, or even both. The
enhancement is hence very robust. In contrast to conventional
search strategies (intermittent or Lévy-stable motion), which
have the highest gain in lower dimensions, the heterogeneous
search performs best in higher dimensions. Because the MFPT
is dominated by direct trajectories and the heterogeneity does
not affect the compactness of exploring the surrounding space,
but instead acts by enhancing or retarding the local dynamics,
it performs better for noncompact exploration.

According to recent single-particle-tracking experiments
in living cells, the diffusivity of smaller proteins is faster
close to the nucleus and slower in the cell periphery [60,61].
In addition, even in the presence of quenched spatially
disordered heterogeneity, which is often observed in particle-
tracking experiments inside cells [61,62,74–76], the target
search kinetics can be enhanced as well, even if the process
starts from a spatially uniform initial distribution of the
searching molecules. Inside cells signaling proteins are found
at extremely low concentrations, down to, for instance, a dozen
of λ-repressor molecules searching for a single target in an E.
coli cell, whose volume is about 1 μm3. The search kinetics is
thus central and rate limiting for signaling dynamics. Hence,
heterogeneous search processes are important and relevant
phenomena at the few-molecule level.

At this point a few additional remarks are in order. The
additivity in Eq. (6) only holds for the MFPT and not for higher
moments. Based on our present arguments, the additivity
principle in Eq. (6) should hold for an arbitrary number of
segments, but a formal proof is part of our current investigation.
If this is indeed the case, an optimal heterogeneity function can
be formally constructed for any situation by first taking the
appropriate limits of small segments and afterward optimizing

052134-12



OPTIMIZATION AND UNIVERSALITY OF BROWNIAN . . . PHYSICAL REVIEW E 91, 052134 (2015)

using variational methods. The underlying physical principle,
however, will remain unchanged. This will allow the study of
more realistic heterogeneity profiles such as those observed
experimentally in living cells [60–62,74–76].

In the present context the optimization of diffusion het-
erogeneity cannot be perceived as a search strategy in the
traditional sense [5,8,18–21,23]. A searcher would somehow
have to know the position of the target in order to optimize
his motion pattern according to an optimal heterogeneity.
Conversely, in a cell the position of the target is given and
so are the cytoplasm and nucleus properties giving rise to a
spatially varying diffusivity. However, it could be part of an
evolutionary optimization to improve the search efficiency of
biomolecules in cell regulatory processes.

The present results can be extended and generalized in
numerous ways, the immediate extension being the study
of the full distribution of first-passage times. Furthermore,
within the context of a traditional search strategy, our find-
ings cannot be directly used to assess the efficiency of a
heterogeneous search with a general off-center target position
as in [50]. The optimization of the target-position-averaged
MFPT with respect to the ratio ϕ of diffusivities continues to
be investigated. Given the present results, we can speculate,
however, that an enhancement might indeed be possible in
terms of an optimal heterogeneity at least for target positions
not too close to the external boundary. One can therefore
imagine that heterogeneous search strategies are also beneficial
for computer search or stochastic minimization algorithms.
The ideas can be generalized to diffusion processes in more
complex disordered systems [77–79] and even anomalous
diffusion processes of continuous-time random-walk type
[80]. Namely, in a finite system the heavy-tailed waiting-time
density between individual jumps in a subdiffusive continuous-
time random walk is expected to be exponentially tempered,
exhibiting subdiffusion over a transient but long-time scale,
which would ultimately terminate with a normal diffusion
regime. In such a system the MFPT to the target will be
finite and it would be interesting to investigate how, if at
all, the existence and properties of an optimal heterogeneity
change in a heterogeneous system with transiently subdiffusive
dynamics. The most obvious extension of the present results,
however, is in the direction of a heterogeneous intermittent
search. Clearly, a combination of both could lead to a highly
superior search dynamics.
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APPENDIX: COMPUTER SIMULATION RESULTS

Computer simulations were performed according to the
scheme of transition probabilities outlined in Sec. II. We
simulated 105 trajectories for each set of xa , xi , and/or x0. The
simulations correspond to a discrete random walk in between
spherical shells with an absorbing boundary at x = xa and a
reflecting one at x = 1 recording the number of steps within
each region n1,2 as well as the total number of steps n to obtain
the process time according to

t = �R2

2D1
(n1 − n2 + n) + �R2

2D2
(n2 − n1 + n). (A1)

Note that n also counts the number of steps in the interfacial
shells. The results for various cases are plotted below. We find
remarkably good agreement between our analytical results and
the simulation results. The MFPT as a function of the interface
position is shown in Fig. 8. Intuitively, the MFPT depends
strongly on the starting and interface positions and can exhibit
zero, one, or two local minima as a function of xI. Hence, it is
possible for a given ϕ that two distinct interface positions lead
to the same MFPT. It should be noted that an equal ϕ does
not correspond to equal D1 and D2; only their ratio is fixed. A
degeneracy of the MFPT depending on the interface position is
thus not surprising. The simulation results for the global MFPT
are shown in Fig. 9 and compared to the analytical predictions
of Sec. V. In the case of the global MFPT as well, zero, one,
or two minima are observed depending on ϕ. Here we observe
significant differences in the features of the global MFTP at
equal ϕ in different dimensions. This is due to the fact that the
statistical weight of various starting positions is different in
different dimensions and more distant starting configurations
have a higher weight in higher dimensions. The simulation
results for the interface-position-averaged MFPT in a random
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FIG. 8. (Color online) Ratio θ = T(x0)/T0(x0) as a function of xI for x0 = 0.6 and xa = 0.1 in different dimensions. The colors depict
results for various heterogeneities: ϕ = 0.6 (blue), 2 (red), 10 (green), and 150 (orange). The symbols are results of simulations and the solid
lines correspond to the analytical results in Eqs. (12).
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FIG. 9. (Color online) Ratio θ = T/T
0

as a function of xI for xa = 0.1 in different dimensions. The colors depict results for various
heterogeneities: ϕ = 0.5 (blue), 2 (red), 10 (green), and 120 (orange). The symbols are results of simulations and the solid lines correspond to
the analytical results in Eqs. (25).

system are shown in Fig. 10 and compared to the analytical
predictions of Sec. VI. In the case of the MFPT with a random
interface position, the disorder-averaged MFPT (Fig. 10) is
only weakly dependent on x0 as long as ϕ is not too large.
Again, very distinct behavior is found for different dimensions
at equal ϕ. In contrast to the global MFPT, this originates solely
from the differences in the exploration of space. The results

for the interface-position-averaged global MFPT in a random
system are shown in Fig. 11. Here also we find excellent
agreement between theory and simulation. We see that the
dependence on the target size becomes more prominent in
higher dimensions because of the different statistical weight
of starting positions at a given distance from xa and the
differences in sampling space.
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FIG. 10. (Color online) Ratio {θ} = {T}/T(x0) as a function of x0 for xa = 0.1 in different dimensions. The colors depict results for various
heterogeneities: ϕ = 0.5 (blue), 2 (red), 10 (green), and 120 (orange). The symbols are results of simulations and the solid lines correspond to
the analytical results in Eqs. (20).
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FIG. 11. (Color online) (a) Ratio {θ} = {T}/T as a function of ϕ for different dimensions and target sizes. In dimensions (b) 2 and (c) 3
the target sizes correspond to 0.05 (blue), 0.1 (red), and 0.2 (green).
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