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Abstract

As a proof of concept the properties of path-following methods are studied
for multi-objective optimization problems involving dynamic systems (also
called multi-objective dynamic optimization or multi-objective optimal con-
trol problems), which have never been presented before. Two case studies
with two objectives are considered to cover convex, as well as non-convex
trade-off curves or Pareto sets. In order for the method to be applicable, the
infinite dimensional dynamic problems have to be discretized and scalariza-
tion parameters have to be introduced, which leads to large-scale parametric
nonlinear optimization problems. For both the chemical tubular reactor and
the fed-batch bioreactor case study it is found that a path-following continua-
tion approach is able to compute the Pareto fronts accurately and efficiently.
A branch switching technique is required whenever a constraint switches from
active to inactive or vice versa. When dealing with non-convex problems, a
technique for detecting inflection points is required. Simple switching tech-
niques are suggested and have been tested successfully.
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Nomenclature

Theoretical sections

β0 Fritz-John parameter
ε tolerance
ε1, ε2 disturbance
Γ curve length parameter
L Lagrangian
λ, ϕ lagrange multipliers
ν Fritz-John state
ω continuation parameter
Φ adaption parameter
Ψ line through solution space
τ tangent vector
x̃ augmented state vector
Υ step size
κ arc-length
ξ number of iteration steps
ζ slope of line through solution space
e unit vector
F vector of system equations
g inequality constraint
h equality constraint
J cost functional
p auxiliary scalar equation
s slack variable
w weighting factor
w∗ branch switching point
x state vector
y solution of algebraic system
Case study 1

α, β reaction kinetic constant
γ, δ reaction kinetic constant
c reactant concentration, mol/l
cf feed concentration, mol/l
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K scaling factor
L length of reactor, m
N number of grid points
Tf feed temperature, K
Tw jacket temperature, K
Tmax maximum reactor temperature, K
Tmin minimum reactor temperature, K
Tw,max maximum jacket temperature, K
Tw,min minimum jacket temperature, K
v flow velocity, m/s
x1 dimensionless reactant concentration
x2 dimensionless reactor temperature
z spatial coordinate, m
Case study 2

µ growth rate, 1/h
π production rate, g/gh
σ substrate consumption rate, g/gh
cs substrate concentration, g/l
cs,F feed substrate concentration, g/l
N number of grid points
t time coordinate, h
te terminal time, h
u volumetric rate of the feed stream, l/h
x1 biomass, g
x2 substrate, g
x3 product (lysine), g
x4 fermenter volume, l
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1. Introduction

Multi-objective or multi-criterion optimization deals with problems of the
form:

min
x

(J1(x), . . . , Jq(x)) ,

s.t. hi(x) = 0, i = 1, . . . , n,

gj(x) ≤ 0, j = 1, . . . ,m,

(1)

in which x are the optimization variables, Jk the objective functions, hi the
equality constraints and gj the inequality constraints. Most decisions of ev-
eryday life can be regarded as multi-objective optimization problems, because
in most cases our decisions are trade-offs between two or more possibilities.
These possibilities, or objectives, can very well be contradictory (Collette and
Siarry, 2003). Solutions of these problems are always trade-offs between the
objectives. When comparing the solutions, improvement of one objective is
only possible at the cost of deterioration of another objective. Such solutions
are called Pareto optimal. The main difference between single-objective and
multi-objective optimization is, that there is not only one optimal solution,
but a set of optimal solutions (Deb, 2014). This set is called Pareto front.
In practice, however, the user or decision maker can only use one of these
solutions. The user’s choice depends on other, higher level information (Deb,
2014). Therefore it is the main goal of multi-objective optimization to gen-
erate many solutions, in order to give the user a good overview about what
can be chosen from (Deb, 2014). To achieve this goal, Pareto fronts are usu-
ally calculated by (i) turning the multi-objective optimization problem into
a sequence of single-objective optimization problems or (ii) exploiting evolu-
tionary methods in which a set of candidate solutions gradually evolves to
the Pareto set (Miettinen, 1999; Deb, 2002). For methods from the former
class, various scalarization techniques, for example weighted sum method,
hyperboxing scheme and normalized normal constraint, are known in lit-
erature (Marler and Arora, 2004; Logist et al., 2009; Bortz et al., 2014).
Typical challenges these methods face are ensuring a homogeneous distri-
bution of the computed points on the Pareto front, as well as capturing
non-convex Pareto fronts. An alternative approach are path-following meth-
ods resulting from numerical continuation theory, which have been suggested
in literature (Rakowska et al., 1991; Lundberg and Poore, 1993; Seferlis and
Hrymak, 1996; Hillermeier, 2001; Gudat et al., 2007; Harada et al., 2007;
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Potschka et al., 2011; Ringkamp et al., 2012) but so far hardly have been
applied to large-scale optimization problems resulting from the optimization
of dynamic systems. Path-following methods are able to easily calculate
non-convex Pareto fronts. Further, they can be combined with established
predictor corrector continuation methods from bifurcation analysis to solve
bi-criterial optimization problems with a large number of optimization vari-
ables (Thompson Hale, 2005; Pérez, 2014). One of the major challenges of
this approach is the occurrence of bifurcations due to constraints (Rao and
Papalambros, 1989b,a; Guddat et al., 1990), which has been tackled recently
(Martin et al., 2016), but not yet solved for large-scale problems.
The idea discussed in the following is an extension of the predictor corrector
continuation algorithm reported in the conference paper (Keßler et al., 2016).
It is used as a path-following method for large-scale bi-criterial optimization
problems. The application to dynamic models illustrates the feasibility of the
method for optimization problems with differential equations as constraints,
i.e. dynamic optimization or optimal control problems. Normally such prob-
lems are solved using (i) direct optimal control approaches using gradient
based methods such as the sequential approach/single shooting and simulta-
neous approach/multiple shooting (Abo-Ghander et al., 2010; Logist et al.,
2012) and (ii) stochastic approaches (Bhaskar et al., 2000; Mitra et al., 2004;
Patel and Padhiyar, 2016).

2. Theoretical background

This section introduces the theoretical background of the methods used to
produce the results of this work. We will explain the weighted sum scalariza-
tion method for solving multi-objective optimization problems and outline its
drawbacks and we will show how predictor corrector continuation algorithms
work and how they can be used to overcome these drawbacks.

2.1. Weighted sum method

A traditional approach in multi-objective optimization is the weighted
sum method (Marler and Arora, 2004). In this approach, the multi-objective
optimization problem is reformulated, such that the objectives are combined
in a weighted sum, which then gets minimized, to find a Pareto optimal
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solution (Marler and Arora, 2004)

min
x

J(x) =

q
∑

i=1

wk · Jk(x), (2a)

s.t. hi(x) = 0, i = 1, . . . , n (2b)

gj(x) ≤ 0, j = 1, . . . ,m, (2c)

with wk being the weight or scalarization parameter of the k-th objective.

2.2. Optimality conditions

The numerical continuation algorithm outlined in section 2.3 is able to
solve algebraic systems. In order for this method to be applicable to opti-
mization problems, we need to transform the optimization problem into an
algebraic problem. To do this, we make use of optimality conditions.
The most commonly used necessary conditions for an optimum of a con-
strained optimization problem are called Karush-Kuhn-Tucker (KKT) con-
ditions. Inequality constraints can be transformed into equality constraints,
by introducing so called slack variables sj (Boyd and Vandenberghe, 2004).
That is possible, because gj(x) ≤ 0 only holds, iff there is a sj ∈ ℜ, such that
gj(x)+s2j = 0. If the inequality constraints are transformed, the optimization
problem has m additional unknowns.
It is worth noting that this traditional approach may result in numerical dis-
advantages for conventional optimization algorithms (Gill et al., 1981; Jongen
and Stein, 2003). Especially for poor initial guesses, the slack variable ap-
proach may have convergence problems (Armand and Orban, 2012). In our
case, this is not critical, as we assume that one point on the Pareto front
or one optimal solution is known. Hence, local convergence of the algorithm
is sufficient for our purposes. Furthermore, the use of slack variables can
introduce instabilities and singularities, if it is not done correctly (Robinson,
1976). Therefore squared slack variables were avoided by experts in optimiza-
tion theory very early (Tapia, 1980). The singularities occur on bifurcation
points, where at least two solution branches intersect. In some cases com-
mon optimization algorithms will not be able to switch to the correct branch
and thus produce incorrect or suboptimal solutions (Armand and Orban,
2012). One way to overcome this problem is to introduce some conditions
which guarantee the non-negativity of the slack variables (Robinson, 1976;
Ohtsuka, 2004).
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On the other hand, the slack variable approach has advantages in our case,
because we can directly exploit the strict complementarity to check whether
or not we reached a point where one of the constraints switches from active
to inactive or vice versa by simply checking the sign of the slack variables
and their corresponding Lagrange multipliers. Thus we can also guarantee
the non-negativity of the slack variables and their corresponding Lagrange
multipliers, hence we do not have the convergence problems due to singu-
larities. A thorough discussion concerning the bifurcations and our branch
switching strategies is presented in Section 3. Furthermore the approach is
computationally less expensive than other approaches, for example when us-
ing a log-barrier approach the weighting factor for the logarithmic part has
to be decreased iteratively until it is near zero. Therefore we would have to
implement an underlying Newton-iteration for that. Whereas we don’t need
to do that when using the squared slack variable approach.
For the calculation of a starting point, i.e. one point on the Pareto front,
it may, however, be more advantageous to use other reformulations such as
log-barriers or interior point methods.
The basic idea of the KKT conditions is to augment the objective function
with a weighted sum of the constraints (Boyd and Vandenberghe, 2004),
yielding the Lagrangian

L(x, λ, ϕ) = J(x) +
m
∑

i=1

λi · gi(x) +
n

∑

i=1

ϕi · hi(x), (3)

where λi and ϕi are called Lagrange multipliers.
The KKT conditions are defined as

gi(x
∗) ≤ 0, for all i = 1, . . . ,m (4a)

hi(x
∗) = 0, for all i = 1, . . . , n (4b)

λ∗

i ≥ 0, for all i = 1, . . . ,m (4c)

λ∗

i · gi(x
∗) = 0, for all i = 1, . . . ,m (4d)

0 = ∇J(x∗) +
m
∑

i=1

λ∗

i · ∇gi(x
∗) +

n
∑

i=1

ϕ∗

i · ∇hi(x
∗). (4e)

An alternative set of optimality conditions, which proves to be useful for our
study, are the so called Fritz-John conditions (Poore and Tiahrt, 1987). Their
difference to the KKT conditions is that the cost functional gets multiplied by
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an additional unknown parameter ν. For ν = 1, the Lagrangian is identical
to the Lagrangian obtained for the KKT conditions. For ν = 0 the cost
functionals are not taken into account. To achieve ν > 0, an additional
equation

ν2 + λT · λ− β2
0 = 0, (5)

is defined, where β0 is a real parameter (Lundberg and Poore, 1993). For
a properly chosen β0, the Lagrange multipliers will take larger numerical
values, resulting in a better scaled numerical problem.
The biggest difference between the KKT and FJ conditions is, that the KKT
conditions need a set of constraint qualifications, whereas the FJ conditions
do not need it (Poore and Tiahrt, 1987). They can, however, also be used
when the constraint qualification holds. Thus every KKT point is also a FJ
point, but not every FJ point is a KKT point.
The computational effort of the FJ conditions is only slightly higher than that
of the KKT conditions (one additional equation), but it offers an additional
tuning parameter β0. Therefore, it seems worthwhile testing both sets of
conditions. The case studies will show, that the FJ conditions indeed have the
mentioned scaling effect on the Lagrange multipliers and improve numerical
robustness in some cases.

2.3. Numerical continuation

Numerical continuation algorithms are used to approximate a solution of
an underdetermined system of the form

F (ω, x) = 0, (6)

where x ∈ ℜa is the state vector, ω ∈ ℜ is a free parameter and F : ℜ×ℜa 7→

ℜa (Keller, 1977). To solve the whole curve numerically, it is needed to gener-
ate a set of solutions y(i), with i = 0, 1, 2, . . . , which satisfy a given tolerance
∣

∣F (y(i))
∣

∣ ≤ ε, with ε > 0 (Allgower and Georg, 1990). To do this, a predictor-
corrector approach is used.

Using the tangent predictor, a tangent to the current solution y(k) is cal-
culated by solving the linear algebraic system

Fy

(

y(k)
)

· τ (k) = 0, (7)
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with τ (k) being the tangent and Fy

(

y(k)
)

being the Jacobian of the solution

y(k).
The Jacobian Fy

(

y(k)
)

needs to be extended by a scalar function to make it
a (a+ 1)× (a+ 1) matrix, in order to make equation (7) solvable. Equation
(7) can be rewritten and solved as (Seydel, 2009)

(

Fy

(

y(k)
)

e⊺j

)

· τ (k) = ea+1, (8)

where each element of ej ∈ ℜ
a+1 equals zero, except for the j-th one, which

equals unity. With the tangent τ (k) it is then possible to predict a new
solution (Seydel, 2009)

ŷ(k+1) = y(k) + Υ (k) · τ (k). (9)

In this notation Υ (k) denotes the step size at point k.

One simple approach for a step size adaption is to rely the adaption Φ on
the number of Newton iterations ξ needed in the previously calculated step
(Krasnyk, 2008).
The new step size is defined as

Υ (k+1) = Υ (k) · Φ
(

ξ(k)
)

. (10)

The corrector step is needed because the predicted solution ŷ(k+1) usually
does not satisfy the desired tolerance

∣

∣F (y(k+i))
∣

∣ ≤ ε.
The considered system is underdetermined and an additional auxiliary scalar
equation,

p(ω, x,Γ) = 0, (11)

is needed, in order to make the extended system
(

F (ω, x,Γ)
p(ω, x,Γ)

)

= 0 (12)

regular. This process is called parametrization. In the algorithm we use
in this work the local parametrization is implemented, which parametrizes
the curve along the locally most rapidly changing parameter y

(k)
i (Krasnyk,

2008). The algorithm is illustrated in the pseudo-code Algorithm 1 (Krasnyk,
2008)

9



Postprint version of paper published in Computers and Chemical Engineering 2017, vol. 98, p. 89–99. 

The content is identical to the published paper, but without the final typesetting by the publisher. 

Journal homepage: https://www.journals.elsevier.com/computers-and-chemical-engineering  

Original file available at: http://www.sciencedirect.com/science/article/pii/S0098135416303738?np=y  

 

Algorithm 1 Continuation algorithm

1: Input : x0, ω0, Υ
(0)

2: Output : y(1), . . . , y(kmax)

3: y(0) ← initial correction(x0, ω0)

4: ~y(0) ← predictor(y(0))
5: k ← 0
6: repeat

7: ỹ(k+1) = y(k) + Υ (k) · ~y(k)

8: y(k+1) ← corrector(ỹ(k+1))

9: ~y(k+1) ← predictor(y(k+1))

10: Υ (k+1) ← stepsize(y(k+1), Υ (k))

11: compute test functions(y(k+1))

12: if test condition occurs then

13: return ContiOkTestFunction
14: k ← k + 1
15: if k ≥ kmax then

16: return ContiOkMaxStepsMade

17: until boundary achieved

18: return ContiOkAchievedBoundary

10
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3. Scalarization of bi-criterial optimization problems

The optimality conditions from section 2.2 lead to sets of algebraic equa-
tions, which can be solved using numerical continuation methods introduced
in section 2.3.

Our approach to bi-criterial optimization problems is a direct application
of the weighted sum method. We scalarize the bi-objective optimization
problem and use the weighting factor w as continuation parameter. Doing
this has some advantages over the normal weighted sum method, but there
also arise some difficulties which have to be addressed.
Subsection 3.1 will explain the general problems occurring when applying
continuation algorithms to constrained optimization problems due to bifur-
cations. The following subsection will give insight into the problems arising
from non-convex Pareto fronts. Finally, subsection 3.3 will suggest how to
solve these problems with branch switching algorithms.
Note that there may also occur disconnected Pareto sets. Our approach
would be able to compute disconnected Pareto sets part-wise, if it is possi-
ble to generate a starting point on each subset. It is, however, not meant
to do that automatically and is currently not able to detect them. There
are, however, other algorithms which are able to cope with these problems,
i.e. methods based on set-inversion (Kubica and Wozniak, 2007, 2012) and
evolutionary methods (Miettinen, 1999; Deb, 2002).

3.1. Scalarization of constrained problems

The approach presented in this work is applicable to optimization prob-
lems with an arbitrary number of equality and inequality constraints. How-
ever, for better readability, we restrict the discussion in this section to a
simplified optimization problem with a single inequality constraint

min
x

J(x, w) = (1− w) · J1(x) + w · J2(x),

s.t. g(x) ≤ 0.
(13)

We do not include equality constraints, because they are always active and
therefore do not pose any problems for our method. After applying the KKT
conditions and replacing the inequality constraint with an equality constraint
by introducing a slack variable s we get the following set of equations for the
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w

s

w
∗

active

inactive

w

λ

w
∗

active

inactive

Figure 1: Solution branches for s and λ. The solid line shows the valid solution branch and
the dotted line, marked with circles in the first graph, shows the invalid solution branch
for w < w∗, the dashed line, marked with stars in the first graph, shows the valid solution
branch for w > w∗. The valid solution path is shown in green.

Lagrangian and it’s partial derivatives with respect to all states

L = J(x, w) + λ · (g(x) + s2), (14a)

∂L

∂x
=

∂J

∂x
+ λ ·

∂g

∂x
= 0, (14b)

∂L

∂s
= 2 · λ · s = 0, (14c)

∂L

∂λ
= g(x) + s2 = 0. (14d)

There are two cases we have to take into account. Under the assumption of
strict complementary slackness from equation (14c) follows that s = 0, λ > 0
for active inequality constraints and λ = 0, s 6= 0 for inactive inequality
constraints.
Now, assume without loss of generality that

λ = 0, for w = w∗,

λ ≤ 0, for w < w∗,

λ > 0, for w > w∗.

(15)

The examination of the sign of λ yields, that, though there exist solutions
for all w, the only relevant solutions for s = 0 are the solutions where λ > 0
and, hence, w > w∗ (active inequality constraints).
For inactive inequality constraints (w ≤ w∗) we get

s2 = −g(x). (16)

Because the constraint is inactive and g(x) < 0 holds, there exist two real
solutions, namely

s = ±
√

−g(x). (17)

12
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Figure 1 illustrates the feasible solutions of the optimization problem.
In summary the inequality constraints require a switching strategy between
solution branches at points where an inequality constraint becomes active or
inactive.
A more thorough discussion on which bifurcations may occur can be found
in (Guddat et al., 1990).

3.2. Treatment of non-convex Pareto fronts

For an optimization problem with a convex Pareto front there exists only
one feasible solution for a given value of w, but if we deal with optimization
problems with non-convex Pareto fronts there is the possibility that more
than one solution point on the Pareto front belong to a given value of w.
Figure 2 depicts an example of a non-convex Pareto front. The weighted sum
can be interpreted as a line Ψ through the solution space, with w defining the
slope ζ of this line. If the Pareto front is non-convex, it has inflection points
and thus more than one point with a given slope. These inflection points on
the Pareto front lead to turning points in the curves of the objective functions
when plotted against w. Predictor corrector continuation algorithms, which
have their origin in numerical bifurcation analysis, were designed to continue
solution branches around turning points and, hence, can be tailored to the
computation of non-convex Pareto fronts. If equipped with a proper step size
control, they avoid the problem of clustering. Further, many implementations
of continuation algorithms are available that are applicable to large-scale
algebraic equation systems.
It is possible, that a turning point and a switching point of an inequality
constraint coincide. The bifurcations occurring in such cases are shown in
Figure 3. All the feasible solution branches in such a case lie in the region
w < w∗.

3.3. Branch switching strategy

Like shown in section 3.1 we have to take two scenarios into account, for
which a branch has to be switched. These scenarios are switching the branch
s = 0, λ 6= 0 to the branch s 6= 0, λ = 0 and vice versa, which correspond to
an inequality constraint switching from active to inactive and from inactive
to active, respectively. For each of the two cases we implemented a different
branch switching approach.
Firstly, we will describe the approach for inequality constraints switching
from active to inactive. We detect the critical point by monitoring the sign

13
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of λ. If a change in the sign is detected, we set w = w∗ + ε1, x = x∗, λ = 0
and s = ε2 as a guess for the starting point on the new branch and continue
with a corrector step. The parameters ε1/2 are used to push the new starting
point far enough into the new branch, so that the numerical solver does not
return to the old branch.
When an inequality constraint switches from inactive to active we make use
of an approach which was inspired by the arc-length continuation introduced
by Chan and Keller (1982). We have to calculate the tangent to the new
solution branch from

Fx̃ ·
∂x̃

∂κ
+ Fw ·

∂w

∂κ
= 0, (18)

where F =

(

∂L

∂x
,
∂L

∂s
,
∂L

∂λ

)

, x̃ = (x, s, λ) and κ is the arc-length which

specifies how far we move on the curve. To generate a new starting point,
we use the correlation

∆x̃ = −F−1
x̃ · Fw ·∆w, (19)

which is obtained from equation (18). This correlation is used to calculate a
predicted solution on the new solution branch [w = w∗ +∆w , x = x∗ +∆x,
s = 0, λ = ∆λ]. The precise new solution on the new branch is calculated
by Newton’s method, using the predicted solution as starting point.
These switching techniques are augmented by an algorithm which checks the
solutions for possible turning points due to non-convexity of the Pareto front.
To check whether or not we
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Table 1: Parameter values of constrained PFR-equations.

Parameter Meaning Value

cf Feed concentration 0.02 mol
l

K Scaling factor 250 000
L Length of reactor 1m
N Number of grid points 50
Tf Feed temperature 340K
Tmax Maximum reactor temperature 400K
Tmin Minimum reactor temperature 280K
Tw,max Maximum jacket temperature 400K
Tw,min Minimum jacket temperature 280K
v Flow velocity 0.1 m

s

α Reaction kinetic constant 0.0582 1
s

β Reaction kinetic constant 0.2 1
s

γ Reaction kinetic constant 16.659
δ Reaction kinetic constant 0.25

accidentally passed a turning point we make use of the duality of the Lagrange
multipliers and slack variables. A flowsheet of the algorithm is depicted in
Figure 4. If we detect a change in the sign of λ or s we save the current states
before switching the branch. Then we check if the corresponding other, dual,
costate (in the case of a zero passing λ we check s and in the case of a zero
passing s we check λ) holds a negative value after switching the branch. If so,
we load the states and do a branch switching in the other direction. If not,
we proceed with the continuation. That way we are able to overcome the
problem of inflection points on non-convex Pareto fronts and are therefore
not only able to compute a convex hull, but the whole Pareto front. The full
algorithm is shown in the pseudo-code Algorithm 2. Whether ε1 is added
or subtracted from w depends on the continuation direction, therefore it is
denoted as ±ε1.

4. Case studies

Two case studies illustrate the feasibility of our approach. The first case
study considers a Plug-Flow-Reactor with a convex Pareto front, the second
case study considers a Fed-Batch bioreactor with a non-convex Pareto front.
Both problems are taken from Logist et al. (2009). They involve a dynamic
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Figure 4: Branch switching algorithm, including detection of inflection points
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Algorithm 2 Branch switching

1: Input : w(0), x(0), λ
(0)
j , s

(0)
j , initial direction

2: repeat

3: call continuation algorithm

4: for all j do

5: if λ
(k)
j < 0 then

6: save w(k), x(k), λ
(k)
(1,...,n), s

(k)
(1,...,n)

7: set λ
(k)
j = 0, w(k) = w(k) ± ε1, s

(k)
j = ε2

8: call Newton iteration

9: if s
(k)
j < 0 then

10: inflection detected

11: load w(k), x(k), λ
(k)
(1,...,n), s

(k)
(1,...,n)

12: set direction = direction · (−1)

13: set λ
(k)
j = 0, w(k) = w(k) ± ε1, s

(k)
j = ε2

14: break

15: if s
(k)
j < 0 then

16: save w(k), x(k), λ
(k)
(1,...,n), s

(k)
(1,...,n)

17: predict solution on new branch

18: call Newton iteration

19: if λ
(k)
j < 0 then

20: inflection detected

21: load w(k), x(k), λ
(k)
(1,...,n), s

(k)
(1,...,n)

22: set direction = direction · (−1)
23: predict solution on new branch

24: call Newton iteration

25: break

26: until boundary achieved
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optimization problem with differential equations as constraints and optimal
control profiles to be determined. In our work, we use the ProMoT and
Diana simulation environment (Krasnyk et al., 2007) to solve the problems
numerically.

4.1. Tubular reactor

The model equations of the Plug-Flow-Reactor (PFR) are defined as

∂x1

∂t
= −

∂x1

∂z
+

α

v
· (1− x1) · e

γ·
x2

1 + x2 , (20a)

∂x2

∂t
= −

∂x2

∂z
+

α · δ

v
· (1− x1) · e

γ·
x2

1 + x2 +
β

v
·

(

Tw − Tf

Tf

− x2

)

, (20b)

with the boundary conditions

x1(0) = 0, (21a)

x2(0) = 0. (21b)

The states of the system are the dimensionless reactant concentration, x1,
and the dimensionless reactor temperature, x2, which are defined as

x1 =
cf − c

cf
, (22a)

x2 =
T − Tf

Tf

. (22b)

There is only one input to control the system, which is the spatially dis-
tributed jacket temperature Tw, with the spatial coordinate z defined in
[0, L]. The parameters used in equations (20) are given in Table 1.

4.1.1. Scalarization

In order to make the problem solvable by a numerical continuation method,
it gets discretized using the Finite Volume Method with N = 50 grid points.
We only consider the steady-state of the system, therefore the right hand
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side of the resulting 100 equations equals zero

0 =
x1,i−1 − x1,i

∆z
+

α

v
· (1− x1,i) · e

γ·
x2,i

1 + x2,i , for i = 1, . . . , N, (23a)

0 =
x2,i−1 − x2,i

∆z
+

α · δ

v
· (1− x1,i) · e

γ·
x2,i

1 + x2,i +
β

v
·

(

Tw,i − Tf

Tf

− x2,i

)

, for i = 1, . . . , N,

(23b)

where the lower index i stands for the i-th grid point zi. These grid points
are equally distant spaced by ∆z in the definition interval of z. The first grid
point, i = 0, is the inlet, where the boundary conditions have to be fulfilled,
resulting in x1,0 = 0 and x2,0 = 0.
The corresponding optimization problem is defined as

min
Tw,i

J = (1− w) · J1 + w · J2,

s.t. discretized system equations (23),

x2,min ≤ x2,i ≤ x2,max,

Tw,min ≤ Tw,i ≤ Tw,max,

(24)

with the objective functions J1 and J2 defined as

J1 = cf · (1− x1(L)) = cf · (1− x1,N), (25a)

J2 =
T 2
f · x

2
2(L)

K
=

T 2
f · x

2
2,N

K
. (25b)

The first objective is to minimize the reactant concentration at the outlet of
the reactor, i.e. maximize the conversion, the second objective is to hold the
reactor temperature at the outlet as close to the inlet temperature as possi-
ble, i.e. minimize the heat loss. To transform the constrained optimization
problem into an algebraic problem solvable by the continuation algorithm, we
apply the Karush-Kuhn-Tucker conditions. In the equation for the gradient
of the Lagrangian

0 =− (1− w) · cf ·
∂x1,N

∂Tw,j

+ 2 · w ·
T 2
f

K
· x2,N ·

∂x2,N

∂Tw,j

−

N
∑

i=1

µ1,i ·
∂x1,i

∂Tw,j

+
N
∑

i=1

µ2,i ·
∂x2,i

∂Tw,j

− µ3,j + µ4,j,

(26)
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there occur the unknown sensitivities ∂x1,i/∂Tw,j and ∂x2,i/∂Tw,j, for which
further equations have to be added to the equation set. These additional
equations are calculated by introducing the derivative

∂F

∂Tw,j

=
∂F

∂xi

·
∂xi

∂Tw,j

, (27a)

=











∂f1
∂x1,i

·
∂x1,i

∂Tw,j

+
∂f1
∂x2,i

·
∂x2,i

∂Tw,j

∂f2
∂x1,i

·
∂x1,i

∂Tw,j

+
∂f2
∂x2,i

·
∂x2,i

∂Tw,j











, for i, j = 1, . . . , N. (27b)

To generate a starting point for the continuation we solve equations (23)
semi analytically for w = 0. For w = 0 the only objective is to minimize the
reactant concentration at the outlet. To convert the most of the reactant, the
reactor has to be held at the highest temperature possible. This is achieved
by setting Tw to Tw,max in the inlet region of the reactor, i.e. in a region
z < z∗, where z∗ is the point, where the reactor temperature reaches Tmax.
Hence, for z < z∗, equation (23) has to be solved numerically for x1,i and x2,i

setting Tw,i = Tw,max. for z > z∗, equation (23) is solved analytically for x1,i

and Tw,i, setting x2,i = x2,max.

4.1.2. Results

The results generated by using the continuation approach are shown in
Figure 5. The branch switching algorithm had to trigger 36 times. The two
upper graphs show the states with respect to z for different values of w. The
third figure shows the jacket temperature profiles and the last figure shows
the resulting Pareto front. For each value of w, the reactor gets heated up as
fast as possible until it reaches Tmax, to obtain a high conversion. From that
point on the reactor has to be cooled, to compensate the heat of reaction,
preventing the temperature to exceed Tmax. Towards the right end of the re-
actor the cooling temperature has to be increased stepwise, because the more
reactant is converted, the less energy is set free by the reaction. For w = 0
only J1 is active, therefore the reactor temperature is held constant at Tmax

until the end of the reactor, to maximize the conversion. For w = 1 only J2
is active, therefore the reactor has to be cooled down from a specific point
on, to reach the inlet temperature at the output and to minimize the heat
loss. For w ∈ (0, 1) there are combinations of the behaviors of the extremes,
two of them are depicted.
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The problem is rather complex, with 200 inequality constraints, 100 equality
constraints and 50 optimization variables, and close to a real application of
the scalarization. The drawback of the weighted sum method, that it may
not yield uniformly distributed results on the Pareto front, does not affect
the accuracy of the Pareto front. This can be seen when comparing our
results with the results obtained by Logist et al. (2009). The numerical re-
sults we obtained agree well with those from Logist et al. (2009), using the
more complex normalized normal constraint and normal boundary intersec-
tion methods. The algorithm calculated a total of 232 points on the Pareto
front.

4.2. Biochemical fed-batch reactor

The second example illustrates the application of the approach to a prob-
lem with a non-convex Pareto front.
The model of a bioreactor is given by the following equations

dx1

dt
= µ · x1, (28a)

dx2

dt
= −σ · x1 + u · cs,F , (28b)

dx3

dt
= π · x1, (28c)

dx4

dt
= u, (28d)

with the initial conditions

x1(0) = 0.1 g, (29a)

x2(0) = 14 g, (29b)

x3(0) = 0 g, (29c)

x4(0) = 5 l. (29d)

In this model x1 is the biomass in g, x2 is the substrate in g, x3 is the
product (lysine) in g and x4 is the fermenter volume in l. The system input
u is the volumetric rate of the feed stream, which contains a feed substrate
concentration cs,F of 2.8 g/l. The other parameters are the rates for growth
µ in 1/h, the rate for substrate consumption σ in g/gh and the rate for
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production π in g/gh. They are defined as

µ = 0.125 · cs, (30a)

σ = µ/0.135, (30b)

π = −384 · µ2 + 134 · µ, (30c)

where cs is the substrate concentration x2/x4 in g/l.

4.2.1. Scalarization

Similar to the previous case study, we have to discretize the problem.
We use N = 50 grid points in time and obtain a system consisting of 200
equations. Taking the different rates into account, we derive the following
equation system

x1,i − x1,i−1

∆t
= 0.125 ·

x2,i

x4,i

· x1,i, (31a)

x2,i − x2,i−1

∆t
= −

25

27
·
x2,i

x4,i

· x1,i + ui · cs,F , (31b)

x3,i − x3,i−1

∆t
=

(

−6 ·

(

x2,i

x4,i

)2

+ 16.75 ·

(

x2,i

x4,i

)

)

· x1,i, (31c)

x4,i − x4,i−1

∆t
= ui, for i = 1, . . . , N. (31d)

The first grid point i = 0 is the starting point, at which the initial conditions
have to be fulfilled. The grid points are equally spaced along the time do-
main, but the interval between grid points is changed during the optimization
process, because the terminal time, te, is one of the optimization variables.
The optimization problem is defined as

min
ui, te

J = (1− w) · J1 + w · J2,

s.t. discretized system equations (31),

5 l ≤ x4,i ≤ 20 l,

0 l/h ≤ ui ≤ 2 l/h,

20 h ≤ te ≤ 40 h,

20 g ≤ (x4,N − x4,0) · cs,F ,

(32)
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with the objective functions J1 and J2 given by

J1 = −
x3,N

te
, (33a)

J2 = −
x3,N

(x4,N − x4,0) · cs,F
. (33b)

The first objective is to minimize the negative ratio between the product at
the terminal time and the process duration, e.g. maximize the productivity,
and the second objective is to maximize the yield.
Like in the previous case study we apply optimality conditions to transform
the optimization problem into an algebraic problem. The sensitivities for
the control, dxi/duj, can be calculated like the sensitivities for the jacket
temperature in the previous example, found in equation (27). The sensitivity
for the terminal time can be calculated with

dxi,j

dte
=
dxi

dtj
·
dtj
dte

, with: (34a)

dxi

dtj
=

xi,j − xi,j−1

∆t
, (34b)

tj =
te
N
· j, (34c)

dtj
dte

=
j

N
, for i = 1, . . . , 4 and j = 1, . . . , N. (34d)

In this case study we implemented the Fritz-John conditions, as well as the
KKT conditions, to compare the computation times.

4.2.2. Results

The results are shown in Figures 6 and 7. The branch switching algo-
rithm had to trigger 42 and detected two inflection points. The first graph
in Figure 6 shows the optimal control sequences, the four graphs below show
the according behaviors of the states. The state profiles are numbered in
the order of their appearance during the continuation process. Due to the
non-convex nature of this optimization problem, there occur ambiguities in
the weighting factor w, which can be seen clearly in Figure 7, in which the
Pareto front and the objective profiles are depicted and where the marked
red points belong to the correspondingly numbered state profiles from Figure
6. Our starting point for the continuation is w = 1, where the optimal input
profile consists of three parts. At the beginning the input equals zero, then
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it has a trapezoidal shape and then it equals zero again until the upper time
limit of 40 h is reached. We start the continuation in a decreasing direc-
tion. On this solution branch the terminal time decreases and the trapezoid
gets steeper. The first inflection point is reached at w = 0.501. From this
point on the terminal time increases again and the steepness of the input
trapezoid stays constant. The next inflection point is reached at w = 0.76,
where the terminal time has again reached its upper limit of 40 h. From here
on the terminal time decreases again and the input trapezoid gets steeper.
At around w = 0.48 the behavior changes and a small input occurs around
t = 0h. This small input evolves gradually towards the end of the contin-
uation and the input takes the maximum value for a short amount of time,
until it returns to its minimum-trapezoid-minimum shape. This maximum
stimulates the biomass growth and thus increases the productivity, which is
advantageous because at w = 0 the productivity is the only objective. Note
that this additional max arc has been automatically added to the sequence
by the algorithm.
The objective profiles in Figure 7 have several kinks. These kinks are a
result of the constraints switching from active to inactive. The slack vari-
able belonging to the constraint of the terminal time te is shown in Fig-
ure 7 as an illustration. As a short reminder, the constraint is defined as:
te − te,max + s25 = 0. From the red 1 to the green I the terminal time te
takes its maximum value te,max = 40h and both objectives keep their values
until the green I is reached. This behavior can also be seen for the classical
weighted sum method, resulting in a cluster in this region. After the green I
is passed, the terminal time begins decreasing. The first turning point and
the second kink coincide. Until that point is crossed the substrate added
to the process lies at its minimum value. The third kink is a result of the
terminal time reaching its maximum again. At the second turning point and
fourth kink the reactor volume reaches its maximum and from the fifth kink
on the terminal time starts decreasing again.
The non-convex character of the optimization problem can be seen very well.
Despite the fact that the weighted sum approach is not able to compute
non-convex Pareto fronts, our approach is able to compute the Pareto front
accurately with a total of 485 points on the Pareto front. Moreover, using
our approach it is possible to get the exact position of the non-convex part
of the Pareto front.
As stated above, we used this case study to compare the results and compu-
tational expenses of the KKT and Fritz-John conditions. The results for both
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optimality conditions are the same. We evaluated the Fritz-John conditions
for various values of β0, the profiles of the Fritz-John state ν can be found
in Figure 7. It can be seen, that the size of ν depends on β0. Because the
cost function values get magnified by ν, the costates also have to take larger
values. Therefore it becomes easier for the continuation algorithm to find
the branch switching points, requiring less computation steps. By using the
Fritz-John conditions we could decrease the computation time for this case
study by around 11%, from 7 minutes 46 seconds to 6 minutes 54 seconds.

5. Conclusions

In our work we investigated as a proof of concept the feasibility of using
predictor corrector continuation methods from bifurcation analysis for solv-
ing multi-objective optimal control problems. These methods can be used,
if the optimization problem gets transformed into an algebraic problem by
applying optimality conditions. Our approach is a direct application of the
weighted sum method, which has some major drawbacks. By using the nu-
merical continuation, however, we are able to overcome the heavy clustering
of solutions and it is possible to calculate non-convex Pareto fronts.
We demonstrate with two case studies, that the approach is able to cal-
culate Pareto fronts accurately and efficiently, if the algorithm takes into
account that there occur ambiguities, and thus inflection points, due to non-
convexities and bifurcations due to constraints. The results agree well with
those obtained by the normalized normal constraint and normal boundary
intersection methods presented by Logist et al. (2009), which are much more
complex. Further, it adaptively changes the step size and thus generates a
detailed Pareto front with many more points than the more commonly used
approaches would generate.
Even for complex and large-scale applications we are able to calculate ac-
curate solutions within a reasonable amount of time. We found, that this
amount of time can be lowered even more by using the Fritz-John optimality
conditions.
The presented algorithm is applicable to bi-criterial optimization problems.
An extension to multicriterial problems may be possible by using multi-
parameter continuation algorithms like Multifario (Henderson, 2002).
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