Enzyme-immobilized hydrogels to create hypoxia for in vitro cancer cell culture

Date
2017-04
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

Hypoxia is a critical condition governing many aspects of cellular fate processes. The most common practice in hypoxic cell culture is to maintain cells in an incubator with controlled gas inlet (i.e., hypoxic chamber). Here, we describe the design and characterization of enzyme-immobilized hydrogels to create solution hypoxia under ambient conditions for in vitro cancer cell culture. Specifically, glucose oxidase (GOX) was acrylated and co-polymerized with poly(ethylene glycol)-diacrylate (PEGDA) through photopolymerization to form GOX-immobilized PEG-based hydrogels. We first evaluated the effect of soluble GOX on inducing solution hypoxia (O2 < 5%) and found that both unmodified and acrylated GOX could sustain hypoxia for at least 24 h even under ambient air condition with constant oxygen diffusion from the air-liquid interface. However, soluble GOX gradually lost its ability to sustain hypoxia after 24 h due to the loss of enzyme activity over time. On the other hand, GOX-immobilized hydrogels were able to create hypoxia within the hydrogel for at least 120 h, potentially due to enhanced protein stabilization by enzyme ‘PEGylation’ and immobilization. As a proof-of-concept, this GOX-immobilized hydrogel system was used to create hypoxia for in vitro culture of Molm14 (acute myeloid leukemia (AML) cell line) and Huh7 (hepatocellular carcinoma (HCC) cell line). Cells cultured in the presence of GOX-immobilized hydrogels remained viable for at least 24 h. The expression of hypoxia associated genes, including carbonic anhydrase 9 (CA9) and lysyl oxidase (LOX), were significantly upregulated in cells cultured with GOX-immobilized hydrogels. These results have demonstrated the potential of using enzyme-immobilized hydrogels to create hypoxic environment for in vitro cancer cell culture.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Dawes, C. S., Konig, H., & Lin, C.-C. (2017). Enzyme-immobilized hydrogels to create hypoxia for in vitro cancer cell culture. Journal of Biotechnology, 248, 25–34. https://doi.org/10.1016/j.jbiotec.2017.03.007
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of Biotechnology
Rights
IUPUI Open Access Policy
Source
Author
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}