eCommons

 

Synthesis Of Carbon Supported Ordered Intermetallic Nanoparticles As Oxygen Reduction Catalysts In Polymer Electrolyte Membrane Fuel Cells

Other Titles

Abstract

Polymer Electrolyte Membrane Fuel cells are electrochemical devices that convert energy stored in chemical bonds of fuel (hydrogen gas, methanol, etc.) directly into electrical energy with high theoretical efficiency. The major challenges are the slow oxygen reduction reaction kinetics, requiring a significant amount of Pt catalyst to achieve significant current densities. Finding catalysts, which are more active and cheaper than Pt, as well as being stable under cathodic conditions will be key to making this technology more economically attractive. First, a method was developed to synthesize ordered intermetallic nanoparticles in the 4-6 nm size range. The synthetic method used was a modified solution phase coreduction method, which is able to synthesize ordered intermetallic nanoparticles in the 4-6 nm size range. This method was used to form carbon supported, ordered tetragonal Pt2MM' (M and M' are = Fe, Co, or Ni) nanoparticles. After extensive characterization and electrochemical measurements, it was found that ordered tetragonal Pt2FeNi/C catalyst showed the highest activity roughly four times as efficient as pure platinum, with a half-wave potential roughly 30 mV more positive than the Pt/C standard. The ordered tetragonal material also showed high stability under cathodic conditions, losing roughly 10% of the 3d element after 2000 cycles (from 0.05 - 1.10 V at 50 mV/s).

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2014-01-27

Publisher

Keywords

Fuel Cell; Nanoparticle; Catalysis; ORR; Ordered Intermetallic

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Disalvo, Francis J

Committee Co-Chair

Committee Member

Abruna, Hector D
Van Dover, Robert B.

Degree Discipline

Chemistry and Chemical Biology

Degree Name

Ph. D., Chemistry and Chemical Biology

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record