Title:
Carbon and nitrogen cycling in permeable continental shelf sediments and porewater solute exchange across the sediment-water interface

Thumbnail Image
Author(s)
Rao, Alexandra Mina Fernandes
Authors
Advisor(s)
Jahnke, Richard A.
Advisor(s)
Editor(s)
Associated Organization(s)
Organizational Unit
Series
Supplementary to
Abstract
Continental margin sediments play an important role in marine biogeochemical cycles, partly due to high primary production rates and efficient export of organic matter to sediments in margin environments. This thesis presents studies of solute exchange in fine-grained sediments representative of slope and rise environments, and carbon and nitrogen cycling in sandy sediments dominant in continental shelves worldwide. Results of these studies advance understanding of the role of benthic processes on marine ecosystems. In fine-grained sediments, solute exchange by diffusion, biological mixing and bioirrigation can be quantified using in situ flux chambers with inert tracer additions. Mechanistic models of chamber tracer transport across the seabed indicate that in organic-rich sediments, bioirrigation and mixing dominate over a wide range of bottom water oxygen levels, reflecting the patchiness and versatility of benthic macrofaunal communities. Positive correlations between benthic oxygen and tracer fluxes appear site-specific. Reliable chamber volume estimates derived from mechanistic models reveal that empirical fits to chamber tracer datasets may overestimate chamber volume and benthic solute fluxes. The biogeochemistry of sandy, highly permeable sediments that dominate continental shelves is largely unknown because of the difficulty in sampling and studying them under natural conditions. Novel sediment reactors were developed and used to mimic in situ porewater advection and natural sedimentary conditions. Compositional changes of natural seawater, with and without the addition of
Sponsor
Date Issued
2006-11-17
Extent
11178334 bytes
Resource Type
Text
Resource Subtype
Dissertation
Rights Statement
Rights URI