Title:
Two-photon absorption in cruciform and dipolar chromophores: excitonic interactions and response to metal ions

Thumbnail Image
Author(s)
Siegel, Nisan Naftali
Authors
Advisor(s)
Perry, Joseph W.
Advisor(s)
Editor(s)
Associated Organization(s)
Organizational Unit
Series
Supplementary to
Abstract
Structure-property relationships for two-photon absorption (2PA) in branched organic chromophores is a topic of current interest, as is the design of chromophores with advantageous properties for two-photon laser scanning microscopy (2PLSM). The main goals of this dissertation were to study and explain the one-photon absorption (1PA) and 2PA properties of cruciform chromophores based on 1,4-distyryl-2,5-bis(phenylethynyl)benzene with varying electron donor (D) and acceptor (A) groups, and to characterize the 2PLSM-relevant response of some of these chromophores and a set of dipolar chromophores to binding with zinc ions. The compounds were studied by 1PA, fluorescence and 2PA spectroscopy. A ππ* exciton model was developed to explain the spectral properties of the 1,4-distyryl-2,5-bis(phenylethynyl)benzene cruciform with no D or A groups or with four identical D groups at the termini of the linear arms of the chromophore. This model indicated that there is some coupling and mixing of the lowest excited states e of the linear arms, leading to splitting of the 1PA spectrum of the cruciform. There was little coupling or mixing of the higher excited states e′ accessed in 2PA, leading to a two-band 2PA spectrum for the chromophore, in contrast to cruciform compounds in the literature with identical conjugated arms, which have one visible 2PA band. For cruciforms with D groups on the styryl arm and A character on the terminal phenyls of the phenylethynyl arms (D/A cruciforms), the ππ* exciton model was complemented with a charge-transfer (CT) exciton model describing interactions of charge-transfer pathways between the D and A groups. This model explained the broadness of the 1PA band of D/A cruciforms as well as the two 2PA bands observed for these chromophores. The fluorescence and 2PA spectral responses to binding of Zn²⁺ ions to the D or A groups of some cruciform compounds were also assessed, to provide insight into the design of new analyte-sensing cruciforms for 2PLSM that take advantage of enhancement or reduction of D/A character upon analyte binding. It was found that canceling charge donation from the D groups in differing D/A cruciforms resulted in fluorescence and 2PA spectra nearly indistinguishable from each other, suggesting that turn-off of D groups is not an optimal modality of 2PLSM analyte sensing in cruciforms. Binding Zn²⁺ to A groups was shown to result in an increase in the D/A character of the cruciform, with fluorescence peak energies that changed depending on the location of the A group. It is suggested that the use of non-binding donors and analyte-binding A groups in differing patterns on the arms could be a valuable design motif to achieve 2PLSM sensor compounds based on this cruciform structure. The 2PA spectra of a set of dipolar Zn²⁺ sensing dyes designed for ratiometric imaging in 2PLSM were also studied. These dyes had moderate 2PA strength, with redshifts of fluorescence 2PA spectra on Zn²⁺ binding. The isosbestic point of 2PA of most chromophores was within the range of 2PLSM excitation sources commonly used, rendering these dyes good candidates for use in ratiometric sensing in 2PLSM.
Sponsor
Date Issued
2010-06-04
Extent
Resource Type
Text
Resource Subtype
Dissertation
Rights Statement
Rights URI