Title:
High-speed, high-performance wireless and wireline applications using silicon-germanium BiCMOS technologies

Thumbnail Image
Author(s)
Shankar, Subramaniam
Authors
Advisor(s)
Cressler, John D.
Advisor(s)
Editor(s)
Associated Organization(s)
Series
Supplementary to
Abstract
The objective of the research in this dissertation is to demonstrate the viability of using silicon-germanium (SiGe) bipolar/complementary metal-oxide semiconductor (BiCMOS) technologies in novel high-speed, high-performance wireless and wireline applications. These applications include self-healing integrated systems, W-Band phased array radar systems, and multi-gigabit wireline transceiver systems. The contributions from this research are summarized below: 1. Design of a wideband 8-18 GHz signal source with the best reported tuning range and die area combination for self-healing applications [95]. 2. Design of a robust, multi-band 8-10/ 16-20 GHz signal source with amplitude-locking for self-healing applications. A figure-of-merit (FoM) is proposed that combines tuning range and die area, and this work achieves the best FoM compared with state-of-the art [51]. 3. First ever reported on-die healing of image-rejection ratio of an 8-18 GHz mixer integrated with the multi-band test signal source [52], [96]. 4. Design of a 94 GHz differential Colpitts oscillator with 14% tuning range that spans 86-99 GHz for phased-array radar systems. 5. Identification of technology platform related bottlenecks in multi-gigabit wireline systems. A novel study of linearity of switching transistors in a current-mode logic (CML) gate. 6. A novel FoM that can be used to predict large-signal CML delay using small-signal Y-parameter techniques [97].
Sponsor
Date Issued
2013-05-13
Extent
Resource Type
Text
Resource Subtype
Dissertation
Rights Statement
Rights URI