Advanced search
1 file | 626.25 KB Add to list

EEG inverse problem solution using a selection procedure on a high number of electrodes with minimal influence of conductivity

Bertrand Russel Yitembe (UGent) , Guillaume Crevecoeur (UGent) , Roger Van Keer (UGent) and Luc Dupré (UGent)
(2011) IEEE TRANSACTIONS ON MAGNETICS. 47(5). p.874-877
Author
Organization
Abstract
The uncertain conductivity value of skull and brain tissue influences the accuracy of the electroencephalogram (EEG) inverse problem solution. Indeed, when the assumed conductivity in the numerical procedure is different from the actual conductivity then a source localization error is introduced. When using traditional least-squares minimization methods, the number of electrodes in the EEG cap does not influence the spatial resolution. A recently developed reduced conductivity dependence (RCD) methodology, based on the selection of electrodes, is able to increase the spatial resolution of the EEG inverse problem. This paper presents the implications of the RCD method when using a large number of electrodes in the EEG cap on the spatial resolution of the EEG inverse solutions. We show by means of numerical experiments that in contrast to traditional methods, the RCD method enables to increase the spatial resolution. The computations show that the EEG hardware should be modified with as large as possible electrodes.
Keywords
DIPOLES, SOURCE LOCALIZATION, HEAD MODEL, inverse problem, electroencephalogram (EEG), Conductivity, resolution, uncertainty

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 626.25 KB

Citation

Please use this url to cite or link to this publication:

MLA
Yitembe, Bertrand Russel, et al. “EEG Inverse Problem Solution Using a Selection Procedure on a High Number of Electrodes with Minimal Influence of Conductivity.” IEEE TRANSACTIONS ON MAGNETICS, vol. 47, no. 5, 2011, pp. 874–77, doi:10.1109/TMAG.2010.2072909.
APA
Yitembe, B. R., Crevecoeur, G., Van Keer, R., & Dupré, L. (2011). EEG inverse problem solution using a selection procedure on a high number of electrodes with minimal influence of conductivity. IEEE TRANSACTIONS ON MAGNETICS, 47(5), 874–877. https://doi.org/10.1109/TMAG.2010.2072909
Chicago author-date
Yitembe, Bertrand Russel, Guillaume Crevecoeur, Roger Van Keer, and Luc Dupré. 2011. “EEG Inverse Problem Solution Using a Selection Procedure on a High Number of Electrodes with Minimal Influence of Conductivity.” IEEE TRANSACTIONS ON MAGNETICS 47 (5): 874–77. https://doi.org/10.1109/TMAG.2010.2072909.
Chicago author-date (all authors)
Yitembe, Bertrand Russel, Guillaume Crevecoeur, Roger Van Keer, and Luc Dupré. 2011. “EEG Inverse Problem Solution Using a Selection Procedure on a High Number of Electrodes with Minimal Influence of Conductivity.” IEEE TRANSACTIONS ON MAGNETICS 47 (5): 874–877. doi:10.1109/TMAG.2010.2072909.
Vancouver
1.
Yitembe BR, Crevecoeur G, Van Keer R, Dupré L. EEG inverse problem solution using a selection procedure on a high number of electrodes with minimal influence of conductivity. IEEE TRANSACTIONS ON MAGNETICS. 2011;47(5):874–7.
IEEE
[1]
B. R. Yitembe, G. Crevecoeur, R. Van Keer, and L. Dupré, “EEG inverse problem solution using a selection procedure on a high number of electrodes with minimal influence of conductivity,” IEEE TRANSACTIONS ON MAGNETICS, vol. 47, no. 5, pp. 874–877, 2011.
@article{2116185,
  abstract     = {{The uncertain conductivity value of skull and brain tissue influences the accuracy of the electroencephalogram (EEG) inverse problem solution. Indeed, when the assumed conductivity in the numerical procedure is different from the actual conductivity then a source localization error is introduced. When using traditional least-squares minimization methods, the number of electrodes in the EEG cap does not influence the spatial resolution. A recently developed reduced conductivity dependence (RCD) methodology, based on the selection of electrodes, is able to increase the spatial resolution of the EEG inverse problem. This paper presents the implications of the RCD method when using a large number of electrodes in the EEG cap on the spatial resolution of the EEG inverse solutions. We show by means of numerical experiments that in contrast to traditional methods, the RCD method enables to increase the spatial resolution. The computations show that the EEG hardware should be modified with as large as possible electrodes.}},
  author       = {{Yitembe, Bertrand Russel and Crevecoeur, Guillaume and Van Keer, Roger and Dupré, Luc}},
  issn         = {{0018-9464}},
  journal      = {{IEEE TRANSACTIONS ON MAGNETICS}},
  keywords     = {{DIPOLES,SOURCE LOCALIZATION,HEAD MODEL,inverse problem,electroencephalogram (EEG),Conductivity,resolution,uncertainty}},
  language     = {{eng}},
  number       = {{5}},
  pages        = {{874--877}},
  title        = {{EEG inverse problem solution using a selection procedure on a high number of electrodes with minimal influence of conductivity}},
  url          = {{http://doi.org/10.1109/TMAG.2010.2072909}},
  volume       = {{47}},
  year         = {{2011}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: