Advanced search
1 file | 6.59 MB Add to list

Behaviour of monolithic and laminated glass exposed to radiant heating

Author
Organization
Abstract
Glass is seeing a growing interest as a structural material as a result of its relatively good strength to weight ratio and the obvious aesthetic benefits of its use in buildings. However due to the sensitivity of glass to thermal shock and the considerably temperature-dependent behaviour of interlayer materials as a result of their visco-elastic nature, the mechanical behaviour of laminated glass will be severely influenced by exposure to fire. Relatively little research has been conducted in the past to study the response of load bearing structural glass, and laminated glass in particular to radiant heating. This paper represents an effort to try to understand the effects of through depth radiation absorption and temperature conduction through laminated glass with a view to ultimately developing a model for studying load bearing glass exposed to elevated temperatures, such as those that would be expected in a fire. The paper reports on an experimental research programme in which several monolithic and laminated glass configurations were exposed to a radiant heat flux to study the different phenomena that occur upon exposure to fire conditions, including the ratios of absorbed, transmitted and reflected heat flux to the incident heat flux. The paper then presents a numerical heat transfer model which is developed based on these experimental results and that is able to determine the evolution of the temperature profile as a result of a given incident heat flux. The effectiveness of the heat transfer model is demonstrated through comparison with the temperatures measured during the experimental work.
Keywords
Structural glass, Beam, Radiation, Fire, FEM, Polymer interlayer

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 6.59 MB

Citation

Please use this url to cite or link to this publication:

MLA
Debuyser, Michaël, et al. “Behaviour of Monolithic and Laminated Glass Exposed to Radiant Heating.” CONSTRUCTION AND BUILDING MATERIALS, vol. 130, Elsevier BV, 2017, pp. 212–29, doi:10.1016/j.conbuildmat.2016.09.139.
APA
Debuyser, M., Sjöström, J., Lange, D., Honfi, D., Sonck, D., & Belis, J. (2017). Behaviour of monolithic and laminated glass exposed to radiant heating. CONSTRUCTION AND BUILDING MATERIALS, 130, 212–229. https://doi.org/10.1016/j.conbuildmat.2016.09.139
Chicago author-date
Debuyser, Michaël, Johan Sjöström, David Lange, Dániel Honfi, Delphine Sonck, and Jan Belis. 2017. “Behaviour of Monolithic and Laminated Glass Exposed to Radiant Heating.” CONSTRUCTION AND BUILDING MATERIALS 130: 212–29. https://doi.org/10.1016/j.conbuildmat.2016.09.139.
Chicago author-date (all authors)
Debuyser, Michaël, Johan Sjöström, David Lange, Dániel Honfi, Delphine Sonck, and Jan Belis. 2017. “Behaviour of Monolithic and Laminated Glass Exposed to Radiant Heating.” CONSTRUCTION AND BUILDING MATERIALS 130: 212–229. doi:10.1016/j.conbuildmat.2016.09.139.
Vancouver
1.
Debuyser M, Sjöström J, Lange D, Honfi D, Sonck D, Belis J. Behaviour of monolithic and laminated glass exposed to radiant heating. CONSTRUCTION AND BUILDING MATERIALS. 2017;130:212–29.
IEEE
[1]
M. Debuyser, J. Sjöström, D. Lange, D. Honfi, D. Sonck, and J. Belis, “Behaviour of monolithic and laminated glass exposed to radiant heating,” CONSTRUCTION AND BUILDING MATERIALS, vol. 130, pp. 212–229, 2017.
@article{8510530,
  abstract     = {{Glass is seeing a growing interest as a structural material as a result of its relatively good strength to weight ratio and the obvious aesthetic benefits of its use in buildings. However due to the sensitivity of glass to thermal shock and the considerably temperature-dependent behaviour of interlayer materials as a result of their visco-elastic nature, the mechanical behaviour of laminated glass will be severely influenced by exposure to fire. Relatively little research has been conducted in the past to study the response of load bearing structural glass, and laminated glass in particular to radiant heating. This paper represents an effort to try to understand the effects of through depth radiation absorption and temperature conduction through laminated glass with a view to ultimately developing a model for studying load
bearing glass exposed to elevated temperatures, such as those that would be expected in a fire. The paper
reports on an experimental research programme in which several monolithic and laminated glass configurations
were exposed to a radiant heat flux to study the different phenomena that occur upon exposure to fire conditions, including the ratios of absorbed, transmitted and reflected heat flux to the incident heat flux. The paper then presents a numerical heat transfer model which is developed based on these experimental results and that is able to determine the evolution of the temperature profile as a result of a given incident heat flux. The effectiveness of the heat transfer model is demonstrated through comparison with the temperatures measured during the experimental work.}},
  author       = {{Debuyser, Michaël and Sjöström, Johan and Lange, David and Honfi, Dániel and Sonck, Delphine and Belis, Jan}},
  issn         = {{0950-0618}},
  journal      = {{CONSTRUCTION AND BUILDING MATERIALS}},
  keywords     = {{Structural glass,Beam,Radiation,Fire,FEM,Polymer interlayer}},
  language     = {{eng}},
  pages        = {{212--229}},
  publisher    = {{Elsevier BV}},
  title        = {{Behaviour of monolithic and laminated glass exposed to radiant heating}},
  url          = {{http://doi.org/10.1016/j.conbuildmat.2016.09.139}},
  volume       = {{130}},
  year         = {{2017}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: