Efficient and accurate simulation of integrate-and-fire neuronal networks in the hippocampus

Date
2007
Journal Title
Journal ISSN
Volume Title
Publisher
Description
Abstract

This thesis evaluates a method of computing highly accurate solutions for network simulations of integrate-and-fire (IAF) neurons. Simulations are typically evolved using time-stepping, but since the IAF model is composed of linear first-order ODEs with hard thresholds, explicit solutions in terms of integrals of exponentials exist and can be approximated using quadrature. The technique presented here utilizes Clenshaw-Curtis quadrature to approximate these integrals to high accuracy. It uses the secant method to more precisely identify spike times, thus yielding more accurate solutions than do time-stepping methods. Additionally, modeling synaptic input with delta functions permits the quadrature method to be practical for simulating largescale networks. I determine general conditions under which the quadrature method is faster and more accurate than time-stepping methods. In order to make these methods accessible to other researchers, I introduce and develop software designed for simulating networks of IAF hippocampal cells.

Description
Degree
Master of Arts
Type
Thesis
Keywords
Mathematics
Citation

Kellems, Anthony Richard. "Efficient and accurate simulation of integrate-and-fire neuronal networks in the hippocampus." (2007) Master’s Thesis, Rice University. https://hdl.handle.net/1911/20512.

Has part(s)
Forms part of
Published Version
Rights
Copyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
Link to license
Citable link to this page