Studies of ultracompact H II regions - II. High-resolution radio continuum and methanol maser survey

Access & Terms of Use
metadata only access
Altmetric
Abstract
High spatial resolution radio continuum and 6.67-GHz methanol spectral line data are presented for methanol masers previously detected by Walsh et al. (1997). Methanol maser and/or radio continuum emission is found in 364 cases towards IRAS-selected regions. For those sources with methanol maser emission, relative positions have been obtained to an accuracy of typically 0.05 arcsec, with absolute positions accurate to around 1 arcsec. Maps of selected sources are provided. The intensity of the maser emission does not seem to depend on the presence of a continuum source. The coincidence of water and methanol maser positions in some regions suggests there is overlap in the requirements for methanol and water maser emission to be observable. However, there is a striking difference between the general proximity of methanol and water masers to both cometary and irregularly shaped ultracompact (UC) H ii regions, indicating that, in other cases, there must be differing environments conducive to stimulating their emission. We show that the methanol maser is most likely present before an observable UC H ii region is formed around a massive star and is quickly destroyed as the UC H ii region evolves. There are 36 out of 97 maser sites that are linearly extended. The hypothesis that the maser emission is found in a circumstellar disc is not inconsistent with these 36 maser sites, but is unlikely. It cannot, however, account for all other maser sites. An alternative model which uses shocks to create the masing spots can more readily reproduce the maser spot distributions.
Persistent link to this record
DOI
Link to Open Access Version
Additional Link
Author(s)
Walsh, Andrew
;
Burton, Michael
;
Hyland, A
;
Robinson, Garry
Supervisor(s)
Creator(s)
Editor(s)
Translator(s)
Curator(s)
Designer(s)
Arranger(s)
Composer(s)
Recordist(s)
Conference Proceedings Editor(s)
Other Contributor(s)
Corporate/Industry Contributor(s)
Publication Year
1998
Resource Type
Journal Article
Degree Type
UNSW Faculty