The aim of this study was to assess the ability of some vehicles (emulsion and emulgel), containing hydrogenated lecithin as penetration enhancer, in increasing the percutaneous absorption of the two model compounds dipotassium glycyrrhizinate (DG) and stearyl glycyrrhetinate (SG). Furthermore SG-loaded solid lipid nanoparticles (SLNs) were prepared and the effect of this vehicle on SG permeation profile was evaluated as well. Percutaneous absorption has been studied in vitro, using excised human skin membranes (i.e., stratum corneum epidermis or [SCE]), and in vivo, determining their anti-inflammatory activity. From the results obtained, the use of both penetration enhancers and SLNs resulted in being valid tools to optimize the topical delivery of DG and SG. Soy lecithin guaranteed an increase in the percutaneous absorption of the two activities and a rapid anti-inflammatory effect in in vivo experiments, whereas SLNs produced an interesting delayed and sustained release of SG.

Formulation strategies to modulate the topical delivery of anti-inflammatory compounds.

Puglia C;BONINA, Francesco Paolo
2013-01-01

Abstract

The aim of this study was to assess the ability of some vehicles (emulsion and emulgel), containing hydrogenated lecithin as penetration enhancer, in increasing the percutaneous absorption of the two model compounds dipotassium glycyrrhizinate (DG) and stearyl glycyrrhetinate (SG). Furthermore SG-loaded solid lipid nanoparticles (SLNs) were prepared and the effect of this vehicle on SG permeation profile was evaluated as well. Percutaneous absorption has been studied in vitro, using excised human skin membranes (i.e., stratum corneum epidermis or [SCE]), and in vivo, determining their anti-inflammatory activity. From the results obtained, the use of both penetration enhancers and SLNs resulted in being valid tools to optimize the topical delivery of DG and SG. Soy lecithin guaranteed an increase in the percutaneous absorption of the two activities and a rapid anti-inflammatory effect in in vivo experiments, whereas SLNs produced an interesting delayed and sustained release of SG.
File in questo prodotto:
File Dimensione Formato  
final paper.pdf

solo gestori archivio

Licenza: Non specificato
Dimensione 633.83 kB
Formato Adobe PDF
633.83 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/16760
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact