In this research paper we present an immunological algorithm (IA) to solve global numerical optimization problems for high-dimensional instances. Such optimization problems are a crucial component for many real-world applications. We designed two versions of the IA: the first based on binary-code representation and the second based on real values, called opt-IMMALG01 and opt-IMMALG, respectively. A large set of experiments is presented to evaluate the effectiveness of the two proposed versions of IA. Both opt-IMMALG01 and opt-IMMALG were extensively compared against several nature inspired methodologies including a set of Differential Evolution algorithms whose performance is known to be superior to many other bio-inspired and deterministic algorithms on the same test bed. Also hybrid and deterministic global search algorithms (e.g., DIRECT, LeGO, PSwarm) are compared with both IA versions, for a total 39 optimization algorithms.The results suggest that the proposed immunological algorithm is effective, in terms of accuracy, and capable of solving large-scale instances for well-known benchmarks. Experimental results also indicate that both IA versions are comparable, and often outperform, the state-of-the-art optimization algorithms.

Clonal Selection - An Immunological Algorithm for Global Optimization over Continuous Spaces

PAVONE, MARIO FRANCESCO;NICOSIA, GIUSEPPE
2012-01-01

Abstract

In this research paper we present an immunological algorithm (IA) to solve global numerical optimization problems for high-dimensional instances. Such optimization problems are a crucial component for many real-world applications. We designed two versions of the IA: the first based on binary-code representation and the second based on real values, called opt-IMMALG01 and opt-IMMALG, respectively. A large set of experiments is presented to evaluate the effectiveness of the two proposed versions of IA. Both opt-IMMALG01 and opt-IMMALG were extensively compared against several nature inspired methodologies including a set of Differential Evolution algorithms whose performance is known to be superior to many other bio-inspired and deterministic algorithms on the same test bed. Also hybrid and deterministic global search algorithms (e.g., DIRECT, LeGO, PSwarm) are compared with both IA versions, for a total 39 optimization algorithms.The results suggest that the proposed immunological algorithm is effective, in terms of accuracy, and capable of solving large-scale instances for well-known benchmarks. Experimental results also indicate that both IA versions are comparable, and often outperform, the state-of-the-art optimization algorithms.
2012
immunological algorithm; global optimization; non-linear optimization
File in questo prodotto:
File Dimensione Formato  
pavone-jogo-2011.pdf

solo gestori archivio

Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri
Nicosia-J-Global-Optimization-2012.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/40371
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 34
social impact