This work presents an experimental study on the specific quantitative contributions of antireflective and effective surface areas on the photocatalytic and antibacterial properties of rutile TiO2 nanospikes. They are studied when continuously distributed over the whole surface and when integrated into well-defined microstructures. The nanospikes were produced following MeV ion beam irradiation of bulk rutile TiO2 single crystals and subsequent chemical etching. The ion beam irradiation generated embedded isolated crystalline nanoparticles inside an etchable amorphous TiO2 layer, and nanospikes fixed to the not etchable TiO2 bulk substrate. The produced nanospikes are shown to resist towards aggressive chemical environments and act as an efficient UV antireflective surface. The photocatalytic activity experiments were performed under the ISO 10678: 2010 protocol. The photonic and quantum efficiency are reported for the studied samples. The combined micro-and nanostructured surface triples the photonic efficiency compared to the initial flat surface. Results also revealed that the antireflective effect, due to the nanostructuring, is the dominating factor compared to the increase of surface area, for the observed photocatalytic response. The obtained results may be taken as a general strategy to design and precisely evaluate photoactive nanostructures. (C) 2015 AIP Publishing LLC.

UV-black rutile TiO2: An antireflective photocatalytic nanostructure

ROMANO, LUCIA;ZIMBONE, MASSIMO;
2015-01-01

Abstract

This work presents an experimental study on the specific quantitative contributions of antireflective and effective surface areas on the photocatalytic and antibacterial properties of rutile TiO2 nanospikes. They are studied when continuously distributed over the whole surface and when integrated into well-defined microstructures. The nanospikes were produced following MeV ion beam irradiation of bulk rutile TiO2 single crystals and subsequent chemical etching. The ion beam irradiation generated embedded isolated crystalline nanoparticles inside an etchable amorphous TiO2 layer, and nanospikes fixed to the not etchable TiO2 bulk substrate. The produced nanospikes are shown to resist towards aggressive chemical environments and act as an efficient UV antireflective surface. The photocatalytic activity experiments were performed under the ISO 10678: 2010 protocol. The photonic and quantum efficiency are reported for the studied samples. The combined micro-and nanostructured surface triples the photonic efficiency compared to the initial flat surface. Results also revealed that the antireflective effect, due to the nanostructuring, is the dominating factor compared to the increase of surface area, for the observed photocatalytic response. The obtained results may be taken as a general strategy to design and precisely evaluate photoactive nanostructures. (C) 2015 AIP Publishing LLC.
2015
HETEROGENEOUS PHOTOCATALYSIS, WETTABILITY CONVERSION, WATER-TREATMENT, ANATASE, NANOBELTS, ARRAYS, MODEL, BAND.
File in questo prodotto:
File Dimensione Formato  
1.4913222-uv.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/47122
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 19
social impact