A technique for quantifying heterogeneous ice nucleation in microlitre supercooled water droplets

Open access
Date
2015Type
- Journal Article
ETH Bibliography
yes
Altmetrics
156 readers on Mendeley
Abstract
In many clouds, the formation of ice requires the presence of particles capable of nucleating ice. Ice-nucleating particles (INPs) are rare in comparison to cloud condensation nuclei. However, the fact that only a small fraction of aerosol particles can nucleate ice means that detection and quantification of INPs is challenging. This is particularly true at temperatures above about −20 °C since the population of particles capable of serving as INPs decreases dramatically with increasing temperature. In this paper, we describe an experimental technique in which droplets of microlitre volume containing ice-nucleating material are cooled down at a controlled rate and their freezing temperatures recorded. The advantage of using large droplet volumes is that the surface area per droplet is vastly larger than in experiments focused on single aerosol particles or cloud-sized droplets. This increases the probability of observing the effect of less common, but important, high-temperature INPs and therefore allows the quantification of their ice nucleation efficiency. The potential artefacts which could influence data from this experiment, and other similar experiments, are mitigated and discussed. Experimentally determined heterogeneous ice nucleation efficiencies for K-feldspar (microcline), kaolinite, chlorite, NX-illite, Snomax® and silver iodide are presented. Show more
Permanent link
https://doi.org/10.3929/ethz-b-000109446Publication status
publishedExternal links
Journal / series
Atmospheric Measurement TechniquesVolume
Pages / Article No.
Publisher
CopernicusOrganisational unit
03690 - Lohmann, Ulrike / Lohmann, Ulrike
More
Show all metadata
ETH Bibliography
yes
Altmetrics
156 readers on Mendeley