We present the design of a robust lateral stability controller to track yaw rate and lateral velocity reference signals while avoiding front and rear tire force saturation. The controller takes into account the driver’s intent at the design stage by treating it as a measured disturbance. The uncertainty in the driver’s input is modeled as a set–valued function of the vehicle states. The control design is based on a hybrid piecewise affine bicycle model with input–dependent and state–dependent uncertainties. The performance of the controller and the importance of driver behavior modeling are demonstrated through experimental tests on ice with aggressive driver maneuvers.

Robust Vehicle Stability Control with an Uncertain Driver Model

Glielmo L;
2013-01-01

Abstract

We present the design of a robust lateral stability controller to track yaw rate and lateral velocity reference signals while avoiding front and rear tire force saturation. The controller takes into account the driver’s intent at the design stage by treating it as a measured disturbance. The uncertainty in the driver’s input is modeled as a set–valued function of the vehicle states. The control design is based on a hybrid piecewise affine bicycle model with input–dependent and state–dependent uncertainties. The performance of the controller and the importance of driver behavior modeling are demonstrated through experimental tests on ice with aggressive driver maneuvers.
File in questo prodotto:
File Dimensione Formato  
ECC13_1098_FI.pdf

non disponibili

Licenza: Non specificato
Dimensione 3.25 MB
Formato Adobe PDF
3.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/11043
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 6
social impact